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An ubiquitous numerical problem

Reconstruct an unknown multivariate function

u : x 7→ u(x), x = (x1, . . . , xd ) ∈ D ⊂ Rd ,

from (possibly noisy) observations y i ≈ ℓi (u) ∈ R for i = 1, . . . ,m.

Here the ℓi are linear forms.

An important case : evaluation y i ≈ u(x i ) at sample points x i ∈ D for i = 1, . . . ,m.

Distinction between two data acquisition settings :

Passive setting : we do not choose the x i (or the ℓi ).

Active setting : we choose the x i (or the ℓi ).



General questions

In the active setting :

How should we sample ?

How should we reconstruct ?

Due to limited amount of data, even if noiseless, we will reconstruct in some simpler
class of function Vn represented by n ≤ m parameters, typically a n-dimensional space.

Thus, we reconstruct some approximation ũ ∈ Vn of u /∈ Vn.

Measuring performance : error ∥u − ũ∥ versus number of measurements m ?

But also : computational complexity of the reconstruction method (offline/online).

Here ∥ · ∥ = ∥ · ∥V is a norm of a Banach space V containing u.

Benchmark : best approximation error en(u) = en(u)V = minv∈Vn ∥u − v∥.

How should we pick good approximation spaces Vn ?



Agenda
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1. Recovery problems : applicative settings and objectives.

2. Tools from linear and nonlinear approximation theory : n-widths.

3. Reduced bases and PCA.

4. Breaking the curse of dimensionality : anisotropy and sparse approximation.

Day 2

5. Recovery from point evaluation : weighted least-squares methods.

6. Optimal sampling measure : theory and practical aspects.

7. More general measurements : the PBDW method.



Passive aquisition setting

Input-output modeled by (x , y) ∈ D × R is a random variable of unknown joint law.

We observe independant realizations (x i , y i ) for i = 1, . . . ,m. We search for a function
that best explains y from x .

Applicative context : regression, machine learning, denoising...

The quadratic risk E(|y − v(x)|2) is minimized among all functions v by u(x) := E(y |x)
which is unknown.

For ũ ̸= u, one has

E(|y − ũ(x)|2) = E(|y − u(x)|2) + E(|ũ(x) − u(x)|2) = σ2 +

∫
D
|u(x) − ũ(x)|2dµ,

where dµ is the unknown probability measure of x .

We thus measure performance of a reconstruction ũ by ∥u − ũ∥L2(D,µ).

Inherently noisy setting : y i = u(x i ) + ηi , where ηi is a noise E(η|x) = 0.



Active aquisition setting

We are allowed to query an unknown map x 7→ u(x), typically by running an
experiment or a numerical simulation.

Each (offline) query x i 7→ y i = u(x i ) is costly (and could be noisy).

We want to compute an approximation map x 7→ ũ(x) that is much cheaper to
evaluate (online) than u.

Applicative context : model reduction, data aquisition, inverse problems, design of
computer experiments.

We measure performance in some Banach space norm ∥ · ∥ = ∥ · ∥V of interest, for
example ∥u − ũ∥L2(D,µ) where µ can be chosen by us, for example the Lebesgue
measure.

Is there an optimal choice of the sample (x1, . . . , xm) ? Easy to construct ?

We can invest some offline time designing the sample (prune from a larger sample).

When d >> 1 we want to avoid uniform grids (curse of dimensionality).

The function u may take its value in R, or Rk , or in an infinite dimensional space.



Example 1 : recover a physical phenomenon from pointwise sensing

An acoustic pressure field p(x , t) generated by a source is measured by n microphones
at positions x1, . . . , xm ∈ D ⊂ R2 or R3, for t ∈ [0,T ].

Fourier analysis in time p(x i , t) 7→ p̂(x i , ω) and focus at a frequency ω of interest.

One wants to reconstruct the function u(x) := p̂(x , ω) on Y , from the observed data
u(x i ), i = 1, . . . ,m.



Example 2 : Fast approximate solutions to high dimensional parametric PDE’s

Partial differential equation P(u, y) = 0 depending on a parameter vector y ∈ Y ⊂ Rd ,
with d >> 1. For each y ∈ Y , the PDE is well posed in some Hilbert space V :
parameter to solution map y ∈ Y 7→ u(y) ∈ V (can be queried by a numerical solver).

Example : steady state diffusion equation

−div(a(x)∇u(x)) = f (x), x ∈ D ⊂ R2 or R3 + boundary conditions

where diffusion function a is piecewise constant on subdomains D1, . . . ,Dd , with values
y1, . . . , yd , which define the parameter vector y = (y1, . . . , yd ) ∈ Y = [ymin, ymax]d .

Surrogate/reduced model : from snapshots, i.e. particular instances of solutions u(y i ),
i = 1, . . . ,m computed by the numerical solver, we want to reconstruct an
approximation y 7→ ũ(y) to the parameter to solution map, much cheaper to evaluate.
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Example 3 : inverse problems in parametric PDE’s

Partial differential equation P(u, y) = 0 depending on a parameter vector y ∈ Y ⊂ Rd

with d >> 1.

In certain settings, we know the governing PDE but do not know the parameters y of
the particular solution solution u(y) that we are trying to capture.

For instance, the diffusion properties of the underground could be unknown to us. So
we make some local measurements by “drilling” inside the domain, or on the boundary
of the domain : we are given m measurements

ℓi (u), i = 1, . . . ,m, u = u(y)

where the ℓi are linear forms on V (that could be point evaluation, local averages...).

How can we best combine these measurements with the model to recontruct the state
u (state estimation) or parameter y (parameter estimation) ?

y ∈ Y 7→ u = u(y) ∈ V 7→ ℓ(u) = ℓ(u(y)) = (ℓi (u(y)))i=1,...,m ∈ Rm.



Example 4 : inverse problems in imaging

The 2d Radon transform, a simplified model for tomography.

The unknown function x 7→ u(x) represent the density of tissues in a 2d slice human
body. The detector at angle α and offset r measures

Ru(r , α) =

∫+∞
−∞ u(reα + se⊥α )ds,

the attenuation along the line ray L(r , α) := {reα + se⊥α : s ∈ R}.

These measurements are sampled, so we observe limited data

ℓi (u) = Ru(r i , αi ), i = 1, . . . ,m.

How should we sample / reconstruct ?



Approximation

Error measure : ∥u − ũ∥V , where V := L2(D, µ), or other Banach space of interest.

Most often, the reconstruction ũ takes place within a family Vn ⊂ V that can be
parametrized by n ≤ m numbers.

So it is relevant to compare ∥u − ũ∥V with

en(u)V = min
v∈Vn

∥u − v∥V .

We restrict our attention to linear families : Vn is a linear space with n = dim(Vn).

If V is a Hilbert space, en(u) = ∥u − PVnu∥V with PVn the V -orthogonal projection.

Classical choices : algebraic polynomials, spline spaces, trigonometric polynomials,
piecewise constant functions on a given partition of D.

If our prior information is that u ∈ K where K ⊂ V is a certain class of functions, we
could search for other choices of spaces Vn that are better fitted to the class K.



Kolmogorov linear n-width

We are interested in approximating general functions u ∈ V , where V is a Banach
space, by simpler functions v picked from a linear subspace Vn ⊂ V of finite
dimension n.

Classical Banach spaces : Lebesgue Lp(D), Sobolev Wm,p(D) for D ⊂ Rd .

Classical linear subspaces : algebraic or trigonometric polynomials of some prescribed
degree, splines or finite elements on some given mesh, span of the n first elements
{e1, . . . , en} from a given basis (ek )k≥1 of V .

Model class reflecting the properties the target function : u ∈ K, where K is a
compact set of V . Best choice of approximation spaces for this model class ?

The space Vn approximate K with uniform accuracy

dist(K,Vn)V := max
u∈K

min
v∈Vn

∥u − v∥V

A.N. Kolmogorov (1936) defines the linear n-width of K in the metric V as

dn = dn(K)V := inf
dim(Vn)=n

dist(K,Vn)V



Intuition

The optimal space achieving the infimum in

dn(K)V = inf
dim(Vn)=n

max
u∈K

min
v∈Vn

∥u − v∥V .

may not exist. One often assumes it exists in order to avoid limiting arguments. It is
generally not easy to identify or characterize.

The quantity dn(K)V can be viewed as a benchmark/bottleneck for numerical
methods applied to the elements from K that create approximations from linear
spaces : interpolation, projection, least squares, Galerkin methods for solving PDEs...
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An analog concept in the stochastic framework : PCA

Assume that V is a Hilbert space and u is a random variable taking its value in V .

Optimal spaces in the mean-square sense.

κ2n = κn(u)
2
V := min

dim(Vn)=n
E
(
∥u − PVnu∥

2
V

)
.

The space achieving the minimum is easily characterized by principal component
analysis : consider the covariance operator

v 7→ Rv = E(⟨u, v⟩u),

which is compact, when assuming that E(∥u∥2V ) <∞. Diagonalized in the
Karhunen-Loeve basis (φk )k≥1 with eigenvalues λ1 ≥ λ2 ≥ · · · → 0.

Then Vn := span{φ1, . . . , φn} and κ2n =
∑

k>n λk .

Note that κn(u)2V ≤ dn(K)2V when u is supported in K.



Variants to n-width : realization of the approximation

The best approximation un = argmin{∥u − v∥V : v ∈ Vn} is the orthogonal projection
un = PVnu if V is a Hilbert space.

For a general Banach space, the map u 7→ un is not linear, and may even not be
continuous (non-uniqueness of best approximation).

This motivates alternate definitions of widths where we impose linearity or continuity
of the approximation process.

Approximation numbers are defined as

an(K)V := inf
L

max
u∈K

∥u − Lu∥V ,

with infimum taken over all linear maps L such that rank(L) ≤ n.

In a general Banach space dn ≤ an ≤
√
ndn and right equality may hold.

On the other hand one can prove that

dn(K)V := inf
F

max
u∈K

∥u − F (u)∥V ,

with infimum taken over all continuous maps F such that rank(F ) ≤ n.



Behaviour of n-widths of smoothness classes

Typical compact sets in V = Lp(D) are balls of smoothness spaces. The behaviour of
n-width is well understood for such sets. Example : V = L∞(I ) where I = [0, 1] ⊂ R

and
K = U(Lip(I )) = {u : max{∥u∥L∞ , ∥u ′∥L∞ } ≤ 1},

Then one can prove

dn(K)V =
1

2n
, n ≥ 1, .

More generally when V = W t,p(D) for some bounded Lipschitz domain D ⊂ Rd and
K is the unit ball of W s,p(D) with s > t, one can prove

cn−(s−t)/d ≤ dn(K)V ≤ Cn−(s−t)/d , n ≥ 1.

Curse of dimensionality : exponential growth in d of the needed n to reach accuracy ε.

Proof of upper bound : use a standard approximation method (piecewise polynomials,
finite elements, or splines, on uniform partitions of D)

Proof of lower bound ? Two systematic approaches.



Bernstein width

Lemma : let BW = {u ∈ W : ∥u∥V ≤ 1} be the unit ball of a subspace W ⊂ V of
dimension n + 1, then dn(BW )V = 1.

Proof : trivial if V is a Hilbert space. Follows from Borsuk-Ulam antipodality theorem
in the Banach space case : for any continuous application F from an n-sphere
Sn = ∂BW to an n dimensional space Vn, there exists x ∈ Sn such that F (x) = F (−x).

It follows that dn(K)V ≥ r if K contains the rescaled ball rBW of an n + 1-dimensional
space W . In other words

dn(K)V ≥ bn(K)V , n ≥ 1,

where the Bernstein n-width bn(K)V is defined as the largest r ≥ 0 such that there
exists W ⊂ V of dimension n + 1 with rBW ⊂ K.
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Entropy numbers

Define εn(K)V as the smallest ε such that K can be covered by 2n balls of radius ε :

K ⊂
⋃

i=1,...,2n

B(ui , ε), B(ui , ε) := {u : ∥u − ui∥V ≤ ε}.

Related to lossy coding : Elements of K can be encoded with n bits up to precision εn.

Carl’s inequality : for all s > 0 one has

(n + 1)sεn(K)V ≤ Cs sup
m=0,...,n

(m + 1)sdm(K)V , n ≥ 0

In particular
dn(K)V <∼ n−s , n ≥ 0 =⇒ εn(K)V <∼ n−s , n ≥ 0.



Reduced modeling for parametrized PDEs

Complex problems are often modelled by PDEs involving several physical parameters
y = (y1, . . . , yd ) ∈ Y ⊂ Rd .

P(u, y) = 0,

For each y ∈ Y , we assume well-posedness and therefore existence of a unique
solution u(y) ∈ V .

In certain applications (optimization, inverse problems, uncertainty quantification), we
may need to solve y 7→ u(y) for many instances of y ∈ Y : requires computational
methods that are uniformly cheap and efficient, uniformly over y ∈ Y .

We are interested in well approximating the solution manifold

K := {u(y) : y ∈ Y } ⊂ V ,

which we assume to be compact.

Reduced modeling usually involves two steps :

1. In a (costly) offline stage, we search for spaces Vn of dimension n that approximate
as best as possible the set K (benchmark dn(K)V ). These spaces are quite different
from classical finite element spaces.

2. In a (cheap) online stage, for any required y ∈ Y we may compute an accurate
approximation un(y) ∈ Vn of u(y), for example by the Galerkin method.



Estimating n-width of solution manifolds

An instructive example : consider the steady-state diffusion equation

−div(a∇u) = f ,

on a 2d domain D (+ boundary conditions), with piecewise constant diffusion
function a = a(y) having value a + yj on subdomain Dj , where

y = (y1, . . . , yd ) ∈ Y = [−c, c]d .

How large is the n-width of K = {u(y) : y ∈ Y } ⊂ V = H1(D) ?

Solutions u(y) are bounded in Hs iff s < 3/2 and dn(U(Hs ))H1 ∼ n−(s−1)/2>
∼ n−1/4.

In fact dn(K)H1 decreases faster than O(exp(−cn1/d )) : approximate by power series

max
y∈Y

∥∥∥u(y) − ∑
|ν|≤k

uνy
ν
∥∥∥
H1

≤ C exp(−ck), yν = yν11 . . . y
νd
d ,

and use Vn = span{uν : |ν| ≤ k} of dimension n =
(k+d

k

)
.



A general result for infinite dimensional parameter dependence

Theorem (Cohen-DeVore, 2016) : Let V1 and V2 be two complex valued Banach
spaces and K1 ⊂ V1 be a compact set. Let

F : V1 → V2,

be a map that is holomorphic on an open neighbourhood of K1. Then, with
K2 := F (K1), one has for all s > 1

sup
n≥0

nsdn(K1)V1
<∞ =⇒ sup

n≥0
ntdn(K2)V2

<∞, t < s − 1.

Note that if F was a continuous linear map, one would simply have

dn(K2)V2
≤ Cdn(K1)V1

, C = ∥F∥V1→V2
.

The proof goes by expanding a ∈ K1 in a suitable basis a = a(y) =
∑

j≥1 yjψj with

decay properties on the ∥ψj∥V1
and then approximate F (a(y)) by polynomials in y .

This induces a loss of 1 in the rate of decay. Open problem : same rate t = s ?

This result applies to elliptic equations such as −div(a∇u) = f for the map F : a → u
with V1 = L∞ and V2 = H1. Also applies to parabolic equations, nonlinear problems
such as Navier-Stokes equations, and to these problems set on parametrized domains.
It does not apply to hyperbolic equations.



The reduced basis algorithm

Idea : use particular instances ui = u(y i ) ∈ K for generating Vn = span{u1, . . . , un}.

Greedy selection in offline stage : having generated u1, . . . , uk−1, select next instance

∥uk − PVk−1
uk∥V = max

u∈K
∥u − PVk−1

u∥V ,

where PVk−1
is the orthogonal projection. Here we assume V to be a Hilbert space.

In practice, uk and ∥uk −PVk−1
uk∥V approximated by solver and a-posteriori analysis.

Weak selection ∥uk − PVk−1
uk∥V ≥ γmaxu∈K ∥u − PVk−1

u∥V , for fixed γ ∈]0, 1[.

In the maximization, K is often replaced by a large but finite training set K̃.

Variant : POD bases diagonalizing v 7→ #(K̃)−1
∑

u∈K̃⟨u, v⟩u.



Approximation performances

For the greedily generated spaces Vn, we would like to compare

σn(K)V = dist(K,Vn)V = max
u∈K

∥u − PVnu∥V ,

with the n-widths dn(K)V that correspond to the optimal spaces.

Direct comparison is deceiving.

Buffa-Maday-Patera-Turinici (2010) : σn ≤ n2ndn.

For all n ≥ 0 and ε > 0, there exists K such that σn(K)V ≥ (1 − ε)2ndn(K)V .

Comparison is much more favorable in terms of convergence rate.

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2013) : For any s > 0,

sup
n≥1

nsdn(K)V <∞ ⇒ sup
n≥1

nsσn(K)V <∞,
and

sup
n≥1

ecn
s
dn(K)V <∞ ⇒ sup

n≥1
e c̃n

s
σn(K)V <∞,



A matrix reformulation

In order to prove the theorem, we introduce the functions {u∗0 , u
∗
1 , · · · } obtained by

applying Gram-Schmidt orthonormalization algorithm to the sequence {u0, u1, · · · }.
We consider the lower triangular matrix A = (ai,j )i,j≥0 defined by

ui =
i∑

j=0

ai,ju
∗
j .

This matrix satisfies two fundamental properties. Since
an,n = ⟨un, u∗n ⟩ = ∥un − PVnun∥V , we have

γσn ≤ |an,n | ≤ σn (P1),

where σn := σn(M)V . Since for m ≥ n we have ∥um − PVnum∥V ≤ σn, we have

m∑
j=n

a2m,j ≤ σ2n (P2)

Conversly, for any matrix satisfying these two properties with (σn)n≥0 a non-increasing
sequence going to 0, there exists a compact set K in ℓ2(N) (the lines of the matrix)
such that a realization the weak-greedy algorithm exactly leads to this matrix.



A key lemma

Note that since ui ∈ K for all i , there exists a m dimensional space W of ℓ2(N) such
that each row of A is approximated by W with accuracy dm := dm(K)V in ℓ2(N).

The same holds for any submatrix of A by restriction of W .

Lemma : let G = (gi,j ) be a K × K matrix with rows g1, . . . , gK . If W is any m

dimensional subspace of RK for some 0 < m ≤ K , and P is the orthogonal projection
from RK onto W , then

det(G )2 ≤
( 1

m

K∑
i=1

∥Pgi∥2ℓ2
)m( 1

K −m

K∑
i=1

∥gi − Pgi∥2ℓ2
)K−m

.

We apply this lemma to K × K matrix G = (gi,j ) which is formed by the rows and
columns of A with indices N + 1, . . . ,N + K . By Property (P2), we obtain

∥Pgi∥ℓ2 ≤ ∥gi∥ℓ2 ≤ σN+1, i = 1, . . . ,K ,

We also have,
∥gi − Pgi∥ℓ2 ≤ dm, i = 1, . . . ,K .

It follows that

γ2K
K∏
i=1

σ2N+i ≤
K∏
i=1

a2N+i,N+i = det(G )2 ≤
(K

m

)m( K

K −m

)K−m
σ2mN+1d

2K−2m
m .



Application : exponential rates

We take N = 0, K = n and any 1 ≤ m < n. Using the monotonicity of (σn)n≥0 and
σ1 ≤ σ0 ≤ d0, we obtain

σ2nn ≤
n∏

j=1

σ2j ≤ γ−2n
( n

m

)m( n

n −m

)n−m
d2n−2m
m d2m

0 .

Since x−x (1 − x)x−1 ≤ 2 for 0 < x < 1, it follows that

σn ≤
√
2γ−1d

m
n
0 min

1≤m<n
d

n−m
n

m , n ≥ 1,

and particular

σ2n ≤ γ−1
√

2d0dn.

From this, one easily derive

sup
n≥1

ean
s
dn(K)V <∞ ⇒ sup

n≥1
ebn

s
σn(K)V <∞.



Application : algebraic rates

We take N = K = n and any 1 ≤ m < n. Using the monotonicity of (σn)n≥0, we obtain

σ2n2n ≤
2n∏

j=n+1

σ2j ≤ γ−2n
( n

m

)m( n

n −m

)n−m
σ2mn d2n−2m

m .

In the case n = 2k and m = k we have for any positive integer k,

σ4k ≤
√
2γ−1

√
σ2kdk .

Assuming that dn ≤ C0n−s for all n ≥ 1 and d0 ≤ C0, we obtain by induction that for
all j ≥ 0 and n = 2j ,

σn = σ2j ≤ C2−sj ≤ n−s , C := 23s+1γ−2C0.

Indeed, the above obviously holds for j = 0 or 1 since for these values, we have
σ2j ≤ σ0 = d0 ≤ C0 ≤ C2−sj . Assuming its validity for some j ≥ 1, we find that

σ2j+1 ≤
√
2γ−1

√
σ2j d2j−1

≤ γ−12
3s
2
√
2CC02−s(j+1)

=
√
C
√

23s+1C0γ−22−s(j+1) = C2−s(j+1),

where we have used the definition of C . For values 2j < n < 2j+1, we obtain the
general result by writing

σn ≤ σ2j ≤ C2−sj ≤ 2sCn−s = C1n
−s .



Proof of the key lemma

Let G = (gi,j ) be a K × K matrix with rows g1, . . . , gK , and let W be any m

dimensional subspace of RK for some 0 < m ≤ K with projector P. Take φ1, . . . , φm

any orthonormal basis for the space W and complete it into an orthonormal basis
φ1, . . . , φK for RK .

We denote by Φ the K × K orthogonal matrix whose j-th column is φj , then the
matrix C := GΦ has entries ci,j = ⟨gi , φj ⟩. We have

det(G )2 = det(C )2.

With cj the j-th column of C , the arithmetic-geometric mean inequality yields

m∏
j=1

∥cj∥2ℓ2 ≤
( 1

m

m∑
j=1

∥cj∥2ℓ2
)m

=
( 1

m

m∑
j=1

K∑
i=1

⟨gi , φj ⟩2
)m

=
( 1

m

K∑
i=1

∥Pgi∥2ℓ2
)m
.

Likewise, since φj is orthogonal to W when j > m,

K∏
j=m+1

∥cj∥2ℓ2 ≤
( 1

K −m

K∑
j=m+1

∥cj∥2ℓ2
)K−m

=
( 1

K −m

K∑
i=1

∥gi − Pgi∥2ℓ2
)K−m

.

We conclude by using Hadamard’s inequality, which gives

det(C )2 ≤
K∏
j=1

∥cj∥2ℓ2 ≤
( 1

m

K∑
i=1

∥Pgi∥2ℓ2
)m( 1

K −m

K∑
i=1

∥gi − Pgi∥2ℓ2
)K−m

.



Failure of linear reduced modeling

Linear reduced modeling for parametrized hyperbolic PDEs suffers from a slow decay
of Kolmogorov n-width.

Simple example : consider the univariate linear transport equation

∂tu + a∂xu = 0,

with constant velocity a ∈ R and initial condition u0 = u(x , 0) = χ[0,1](x).

Parametrize the solution by the velocity a ∈ [amin, amax] and consider the solution
manifold at final time T = 1,

H = {χ[a,a+1] : a ∈ [amin, amax]}.

It can be proved that for 1 ≤ p <∞,

dn(H)Lp ∼ n−1/p .

In particular, we cannot hope for a good performance of reduced basis methods (not
better than piecewise constant approximation on uniform meshes).



Nonlinear approximation

For such problems, one expects improved performance by nonlinear methods.

Non-linear approximation : the function u is approximated by simpler function v ∈ Σn
that can be described by O(n) parameters, however Σn is not a linear space.

- Rational fractions : Σn =
{

p
q
; p, q ∈ Pn

}
.

- Best n-term / sparse approximation in a basis (ek )k≥1 : pick approximation from the
set Σn = {

∑
k∈E ckek : #(E ) ≤ n}.

- Piecewise polynomials, splines, finite elements on meshes generated after n step of
adaptive refinement (select and split an element in the current partition).

- Neural networks : functions v : Rd → Rm of the form

v = Ak ◦ σ ◦ Ak−1 ◦ σ ◦ Ak−2 ◦ · · · ◦ σ ◦ A1,

where Aj : Rdj → Rdj+1 is affine and σ is a nonlinear (rectifier) function applied
componentwise, for example σ(x) = RELU(x) = max{x , 0}. Here Σn is the set of such
functions when the total number of parameters does not exceed n.

Is there a natural notion of width describing optimal nonlinear approximation ?



Library widths

A library Ln is a finite collection of linear spaces Vn ⊂ V of dimension at most n.

We approximate u by picking a space from Ln, resulting in the error

e(u,Ln)V = min
Vn∈Ln

min
v∈Vn

∥u − v∥V .

Temlyakov (1998) defines the library width

dN,n(K)V := inf
#(Ln)≤N

max
u∈K

e(u,Ln)V .

Note that d1,n = dn.

The interesting regime is when N >> n. Typical choices that have been studied are
N = An or N = nan for some A > 1 or a > 0.

This type of width is well adapted to describe optimality for best n-term approximation
or adaptive refinements, but not for neural networks or rational fractions.



Manifold widths

Naive idea : replace linear spaces Vn of dimension n by smooth manifolds Mn of
dimension n in the definition of dn.

This would lead to the quantity

inf
dim(Mn)=n

max
u∈K

min
v∈V

∥u − v∥V ,

However its value is 0 even for n = 1 : space filling curves !

DeVore-Howard-Michelli (1989) : impose continuous selection by defining

δn(K)V := inf
D,E

max
u∈K

∥u − D(E (u))∥V ,

where infimum is taken on all continuous pairs E : V → Rn and D : Rn → V .
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Estimating nonlinear width

Both library and manifold widths match known rates of nonlinear approximation
(DeVore-Popov, 1980-1990’s) by wavelets or adaptive finite elements : if V = Lp(D)
and K = U(Bs

q,q(D)) for 1
q
< 1

p
+ s

d
, one has

dn,N (K)V ∼ δn(K)V ∼ n−s/d .

Upper bounds obtained by these classical nonlinear approximation results.

Library widths satisfy Carl’s inequality (for the regimes N = An or N = nan).

(n + 1)sεn(K)V ≤ Cs sup
m=0,...,n

(m + 1)sdm,N (K)V , n ≥ 0.

Manifold widths do not satisty Carl’s inequality but are bounded by below by
Bernstein widths (by the Borsuk-Ulam argument).

δn(K)V ≥ bn(K)V .

For example, if V = L∞(I ) and K = U(Lip(I )), one has δn(K)V ∼ n−1.

Yarotzki, Shen-Yang-Zhang (2020) : Neural networks approximation of functions in
Lip(I ) converge in L∞ with rate n−2 ! Parameter selection cannot be stable.



Stable nonlinear widths

Cohen-DeVore-Petrova-Wojtaszczyk (2020) : for some fixed L > 1 define

δn,L(K)V := inf
D,E

max
u∈K

∥u − D(E (u))∥V ,

where the infimum is taken on all pairs E : V → Rn and D : Rn → V , that satisfy

∥D(x) − D(y)∥V ≤ L∥x − y∥n and ∥E (u) − E (v)∥n ≤ L∥u − v∥V , x , y ∈ Rn, u, v ∈ V .

Here ∥ · ∥n is an arbitrary norm on Rn.

This notion of stable width now satisfies Carl’s inequality : for any L > 1,

(n + 1)sεn(K)V ≤ Cs sup
m=0,...,n

(m + 1)sδm,L(K)V , n ≥ 0.

in addition to the lower bound by Gelfand width δn,L(K)V ≥ bn(K)V

Open problem : with V = Lp(D) and K = U(Bs
q,q(D)) for 1

q
< 1

p
+ s

d
, do we have

δn,L(K)V ∼ n−s/d ? Positive answer known only when p = 2.



Stable widths and entropies

When V is a Hilbert space, stable widths are strongly tied to entropy numbers.

Theorem : Let V be a Hilbert space, then for any L > 1, there exists a constant
c = c(L) such that, for any compact set K,

δcn,L(K)V ≤ 3εn(K)V .

With L = 2 one can take c = 26.

Together with Carl’s inequality, this means that

sup
n≥0

nsδn,L(K)V <∞ ⇐⇒ sup
n≥0

nsεn(K)V <∞,
for all s > 0.

We do not know if this result holds for Banach spaces. Proof for Hilbert spaces :

1. Consider N an εn-net of K with #(N ) = 2n.

2. Johnson-Lindenstrauss projection as encoder : E = PW where dim(W ) ≤ cn

L−1∥ui − uj∥V ≤ ∥PW (ui − uj )∥V ≤ ∥ui − uj∥V , ui , uj ∈ N .

3. This gives an exact decoding map that is L-Lipschitz from PWN to N .

4. Extend this map from W ∼ Rcn to V with same Lipschitz constant (Kirszbraun).



Stable width of solution manifolds

For the linear transport equation manifold H =
{
χ[a,a+1] : a ∈ [amin, amax]

}
it is

easily established that entropy numbers in Lp spaces have exponential decay

εn(H)Lp ≤ C exp(−cn), n ≥ 0.

This implies in particular that δn,L(H)L2 ≤ C̃ exp(−c̃n) while dn(H)L2 ∼ n−1/2.

Similar results hold for manifolds resulting from more general hyperbolic equations.

A general result : if F : V1 → V2 is a L-Lipschitz mapping between Banach spaces,
then an ε-net of K1 ⊂ V1 is mapped into an Lε-net of K2 := F (K1) and therefore

εn(K2)V2
≤ Lεn(K1)V1

, n ≥ 0.

This implies in particular that when V2 is a Hilbert space

sup
n≥0

nsδn,L(K1)V1
<∞ =⇒ sup

n≥0
nsδn,L(K2)V2

<∞.
Benchmark : develop concrete stable numerical methods that meet these rates.



Approximation of high-dimensional parametric/stochastic PDEs

We are interested in PDE’s of the general form

P(u, y) = 0,

where P is a partial differential operator, u is the unknown and y = (yj )j=1,...,d is a
parameter vector of dimension d >> 1 or d = ∞ ranging in some domain Y .

We assume well-posedness of the solution in some Banach space V for every y ∈ Y ,

y 7→ u(y)

is the solution map from Y to V .

Solution manifold K := {u(y) : y ∈ Y } ⊂ V .

The parameters may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and quantification, risk assessment). In the second case
the solution u(y) is a V -valued random variable.

Objective : numerical approximation to the parameter to solution map y 7→ u(y).

Related objectives : numerical approximation of scalar quantities of interest
y 7→ Q(y) = Q(u(y)), or of averaged quantities u = E(u(y)) or Q = E(Q(y)).



Guiding example : elliptic PDEs

We consider the steady state diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

set on a domain D ⊂ Rm, where f = f (x) ∈ L2(D) and a ∈ L∞(D)

Lax-Milgram lemma : assuming amin := minx∈D a(x) > 0, unique solution
u ∈ V = H1

0 (D) with

∥u∥V := ∥∇u∥L2(D) ≤
1

amin
∥f ∥V ′ .

Proof of the estimate : multiply equation by u and integrate

amin∥u∥2V ≤
∫
D
a∇u · ∇u = −

∫
D
u div(a∇u) =

∫
D
uf ≤ ∥u∥V ∥f ∥V ′ .

We may extend this theory to the solution of the weak (or variational) formulation∫
D
a∇u · ∇v = ⟨f , v⟩, v ∈ V = H1

0 (D),

if f ∈ V ′ = H−1(D). If f ∈ L2(D) one has ∥f ∥V ′ ≤ CP∥f ∥L2 by Cauchy-Schwarz and
Poincaré inequalities.



Parametrization

Assume diffusion coefficients in the form of an expansion

a = a(y) = a +
∑
j≥1

yjψj , y = (yj )j≥1 ∈ U,

with d >> 1 or d = ∞ terms, where a and (ψj )j≥1 are functions from L∞,

Note that a(y) is a function for each given y . We may also write

a = a(x , y) = a(x) +
∑
j≥1

yjψj (x), x ∈ D, y ∈ Y ,

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x 7→ u(y , x) for each given y . We often
ommit the reference to the spatial variable.

Up to a change of variable, we assume that all yj range in [−1, 1], therefore

y ∈ Y = [−1, 1]d or [−1, 1]N.

Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ Y (equivalently
∥∥∥∑j≥1 |ψj |

a

∥∥∥
L∞ < 1).

Then the solution map is bounded from Y to V := H1
0 (D), that is, u ∈ L∞(Y ,V ) :

∥u(y)∥V ≤ M :=
∥f ∥V ′

r
, y ∈ Y ,



Example of parametrization : piecewise constant coefficients

Assume that a is piecewise constant over a partition {D1, . . . ,Dd } of D, and such that
on each Dj the value of a varies on [c − cj , c + cj ] for some c > 0 and 0 < cj < c.

Then a natural parametrization is

a(y) = a +

d∑
j=1

yjψj , a = c, ψj = cjχDj
,

with y = (yj )j=1,...,d ∈ Y = [−1, 1]d .



How to defeat the curse of dimensionality ?

The map y 7→ u(y) is high dimensional, or even infinite dimensional y = (yj )j≥1.

We are thus facing the curse of dimensionality when trying to approximate it with
conventional discretization tools in the y variable (Fourier series, finite elements).

A general function of d variable with m bounded derivatives cannot be approximated
in L∞ with rate better than n−m/d where n is the number of degrees of freedom.

A possible way out : exploit anisotropic features in the function y 7→ u(y).

The PDE is parametrized by a function a (diffusion coefficient, velocity, domain
boundary) and yj are the coordinates of a in a certain basis representation
a = a +

∑
j≥1 yjψj .

If the ψj decays as j → +∞ (for instance if a has some smoothness) then the variable
yj are less active for large j .

We shall see that in certain relevant instances, this mechanism allows to break the
curse of dimensionality by using suitable expansions : we obtain approximation rates
O(n−s ) that are independent of d in the sense that they hold when d = ∞.

One key tool for obtaining such result is the concept of sparse approximation.



Sparse approximation of sequences : Stechkin’s lemma

Let F be a countable set and u = (uν)ν∈F be sequence. The best n-sparse
approximation of u in ℓq norm is the sequence un obtained by keeping the n largest uν
and setting to 0 all others entries.

∥u − un∥ℓq =
(∑
k>n

(u∗k )
q
)1/q

where (u∗k )k≥1 is the decreasing rearrangement of the sequence (|uν|)

Theorem (Stechkin’s lemma) : if 0 < p < q and u = (uλ) ∈ ℓp(F), one has

∥u − un∥ℓq ≤ Cn−s , s =
1

p
−

1

q
,

and C = ∥u∥ℓp .

Proof : we combine

∥u − un∥ℓq = (
∑
k>n

|u∗k |
q)

1
q = (

∑
k>n

|u∗k |
q−p |u∗k |

p)
1
q ≤ |u∗n+1|

1− p
q ∥u∥

p
q

ℓp

and

(n + 1)|u∗n+1|
p ≤

n+1∑
k=1

|u∗k |
p ≤ ∥u∥pℓp .



Sparse polynomial approximations by Taylor series

We consider the expansion of u(y) =
∑
ν∈F uνyν, where

yν :=
∏
j≥1

y
νj
j and uν :=

1

ν!
∂νu|y=0 ∈ V with ν! :=

∏
j≥1

νj ! and 0! := 1.

where F is the set of all finitely supported sequences of integers (finitely many
νj ̸= 0). The sequence (tν)ν∈F is indexed by countably many integers.

ν

1

ν3

2

ν

Objective : identify a set Λ ⊂ F with #(Λ) = n such that u is well approximated by
the polynomial partial expansion

uΛ(y) :=
∑
ν∈Λ

tνy
ν.



Best n-term approximation

A-priori choices for Λ have been proposed, e.g. (anisotropic) sparse grid defined by
restrictions of the type

∑
j αjνj ≤ A(n) or

∏
j (1 + βjνj ) ≤ B(n).

Instead we want to choose Λ optimally adapted to u. By triangle inequality we have

∥u − uΛ∥L∞(Y ,V ) = sup
y∈Y

∥u(y) − uΛ(y)∥V ≤ sup
y∈Y

∑
ν/∈Λ

∥uνyν∥V =
∑
ν/∈Λ

∥uν∥V

Best n-term approximation in ℓ1(F) norm : use Λ = Λn index set of n largest ∥uν∥V .

Stechkin lemma : if (∥uν∥V )ν∈F ∈ ℓp(F) for some p < 1, then for this Λn,∑
ν/∈Λn

∥uν∥V ≤ Cn−s , s :=
1

p
− 1, C := ∥(∥uν∥V )∥ℓp .

Question : do we have (∥uν∥V )ν∈F ∈ ℓp(F) for some p < 1 ?



One main result

Theorem (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UEA), then for any p < 1,

(∥ψj∥L∞ )j>0 ∈ ℓp(N) =⇒ (∥uν∥V )ν∈F ∈ ℓp(F).

(i) The Taylor expansion of u(y) inherits the sparsity properties of the expansion of
a(y) into the ψj .

(ii) We approximate u(y) in L∞(U,V ) with algebraic rate O(n−s ) despite the curse of
(infinite) dimensionality, due to the fact that yj is less influencial as j gets large.

(iii) The solution manifold M := {u(y) ; y ∈ U} is uniformly well approximated by the
n-dimensional space Vn := span{tν : ν ∈ Λn}. Its n-width satisfies the bound

dn(M)V ≤ max
y∈U

dist(u(y),Vn)V ≤ max
y∈U

∥u(y) − uΛn (y)∥V ≤ Cn−s .

Such approximation rates cannot be proved for the usual a-priori choices of Λ.

Same result for more general linear equations Au = f with affine operator dependance
A = A +

∑
j≥1 yjAj uniformly invertible over y ∈ U, and (∥Aj∥V→W )j≥1 ∈ ℓp(N).

Similar results for other models : parabolic evolution, saddle-point problems, some
nonlinear problems, but not hyperbolic problems.



Idea of proof : extension to complex variable

Estimates on ∥uν∥V by complex analysis : extend u(y) to u(z) with z = (zj ) ∈ CN.

Uniform ellipticity
∑

j≥1 |ψj | ≤ a − r implies that with a(z) = a +
∑

j≥1 zjψj ,

0 < r ≤ ℜ(a(x , z)) ≤ |a(x , z)| ≤ 2R, x ∈ D,

for all z ∈ U := {|z | ≤ 1}N = ⊗j≥1{|zj | ≤ 1}.

Lax-Milgram theory applies : ∥u(z)∥V ≤ M =
∥f ∥V∗

r
for all z ∈ U .

The function z 7→ u(z) is holomorphic in each variable zj at any z ∈ U : its first
derivative ∂zj u(z) is the unique solution to∫

D
a(z)∇∂zj u(z) · ∇v = −

∫
D
ψj∇u(z) · ∇v , v ∈ V .

Note that ∇ is with respect to spatial variable x ∈ D.

Extended domains of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that
for some δ > 0 ∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

then u is holomorphic with uniform bound ∥u(z)∥ ≤ Cδ =
∥f ∥V∗
δ

in the polydisc

Uρ := ⊗j≥1{|zj | ≤ ρj },

If δ < r , we can take ρj > 1.



Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫
|z ′|=b

u(z ′)

z − z ′ dz
′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

This yields exponential convergence rate b−n = exp(−cn) of Taylor series for 1-d
holomorphic functions. Curse of dimensionality : in d dimension, this yields
sub-exponential rate exp(−cn1/d ) where n is the number of retained terms.

Recursive application of this to all variables zj such that νj ̸= 0, with b = ρj gives

∥∂νu|z=0∥V ≤ 2Mν!
∏
j≥1

ρ
−νj
j ,

and thus
∥uν∥V ≤ Cδ

∏
j≥1

ρ
−νj
j = 2Mρ−ν,

for any sequence ρ = (ρj )j≥1 such that∑
j≥1

ρj |ψj (x)| ≤ a(x) −
r

2
.



Optimization

Since ρ is not fixed we have

∥uν∥V ≤ 2M inf
{
ρ−ν : ρ s.t.

∑
j≥1

ρj |ψj (x)| ≤ a(x) −
r

2
, x ∈ D

}
.

We do not know the general solution to this problem, except in particular case, for
example when the ψj have disjoint supports.

Instead design a particular choice ρ = ρ(ν) satisfying the constraint, for which we
prove that

(∥ψj∥L∞ )j≥1 ∈ ℓp(N) =⇒ (ρ(ν)−ν)ν∈F ∈ ℓp(F),

therefore proving the main theorem.



A simple case

Assume that the ψj have disjoint supports. Then we maximize separately the ρj so that∑
j≥1

ρj |ψj (x)| ≤ a(x) −
r

2
, x ∈ D,

which leads to

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
.

We have,
∥uν∥V ≤ 2Mρ−ν = 2Mbν,

where b = (bj ) and

bj := ρ
−1
j = max

x∈D

|ψj (x)|

a(x) − r
2

≤
∥ψj∥L∞
R − r

2

.

Therefore b ∈ ℓp(N). From (UEA), we have |ψj (x)| ≤ a(x) − r and thus ∥b∥ℓ∞ < 1.

We finally observe that

b ∈ ℓp(N) and ∥b∥ℓ∞ < 1 ⇐⇒ (bν)ν∈F ∈ ℓp(F).

Proof : factorize ∑
ν∈F

bpν =
∏
j≥1

∑
n≥0

bpnj =
∏
j≥1

1

1 − bpj
.



Recursive computation of Taylor coefficients

By differentiating with respect to the yj in the variational formulation, we find a
recursive formula for the Taylor coefficients : with ej = (0, . . . , 0, 1, 0, . . . ) the
Kroeneker sequence of index j , the coefficient uν is solution to∫

D
ā∇uν∇v = −

∑
j : νj ̸=0

∫
D
ψj∇uν−ej∇v , v ∈ V .

This will lead to improved estimates. We introduce the quantities

dν :=

∫
D
a|∇uν|

2 and dν,j :=

∫
D
|ψj | |∇uν|

2.

Recall that (UEA) implies that

∥∥∥∥∑
j≥1 |ψj |

a

∥∥∥∥
L∞(D)

≤ θ < 1. In particular

∑
j≥1

dν,j ≤ θdν.

We use here the equivalent norm ∥v∥2V :=
∫
D a|∇v |2.

Lemma : under (UEA), one has
∑
ν∈F dν =

∑
ν∈F ∥uν∥2V <∞.



Proof

Taking v = uν in the recursion gives

dν =

∫
D
a|∇uν|

2 = −
∑

j : νj ̸=0

∫
D
ψj∇uν−ej∇uν.

Apply Young’s inequality on the right side gives

dν ≤
∑

j : νj ̸=0

(1

2

∫
D
|ψj | |∇uν|

2 +
1

2

∫
D
|ψj | |∇uν−ej |

2
)
=

1

2

∑
j : νj ̸=0

dν,j +
1

2

∑
j : νj ̸=0

dν−ej ,j .

The first sum is bounded by θdν, therefore(
1 −

θ

2

)
dν ≤

1

2

∑
j : νj ̸=0

dν−ej ,j .

Now summing over all |ν| = k gives(
1 −

θ

2

) ∑
|ν|=k

dν ≤
1

2

∑
|ν|=k

∑
j : νj ̸=0

dν−ej ,j =
1

2

∑
|ν|=k−1

∑
j≥1

dν,j ≤
θ

2

∑
|ν|=k−1

dν.

Therefore
∑

|ν|=k dν ≤ κ
∑

|ν|=k−1 dν with κ := θ
2−θ

< 1, and thus
∑
ν∈F dν <∞.



Rescaling

Now let ρ = (ρj )j≥1 be any sequence with ρj > 1 such that
∑

j≥1 ρj |ψj | ≤ a − δ for

some δ > 0, or equivalently such that

∥∥∥∥∑
j≥1 ρj |ψj |

a

∥∥∥∥
L∞(D)

≤ θ < 1.

Consider the rescaled solution map ũ(y) = u(ρy) where ρy := (ρjyj )j≥1 which is the
solution of the same problem as u with ψj replaced by ρjψj .

Since (UEA) holds for for these rescaled functions, the previous lemma shows that∑
ν∈F

∥ũν∥2V <∞,
where

ũν :=
1

ν!
∂νũ(0) =

1

ν!
ρν∂νu(0) = ρνuν.

This therefore gives the weighted ℓ2 estimate∑
ν∈F

(ρν∥uν∥V )2 ≤ C <∞.
In particular, we retrieve the estimate ∥uν∥V ≤ Cρ−ν that can be obtained more
directly by the complex variable approach, using Cauchy formula, however the above
estimate is stronger.



A summability result

Applying Hölder’s inequality gives∑
ν∈F

∥uν∥pV ≤
(∑
ν∈F

(ρν∥uν∥V )2
)p/2(∑

ν∈F
ρ−qν

)1−p/2
,

with q = 2p
2−p

> p, or equivalently 1
q
= 1

p
− 1

2
.

The sum in second factor is finite provided that (ρ−1
j )j≥1 ∈ ℓq . Therefore, the

following result holds.

Theorem : Let p and q be such that 1
q
= 1

p
− 1

2
. Assume that there exists a sequence

ρ = (ρj )j≥1 of numbers larger than 1 such that∑
j≥1

ρj |ψj | ≤ a − δ,

for some δ > 0 and
(ρ−1

j )j≥1 ∈ ℓq .

Then (∥uν∥V )ν∈F ∈ ℓp(F).



Disjoint supports

Assume that the ψj have disjoint supports.

Then with δ = r
2
, we choose

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
> 1.

so that
∑

j≥1 ρj |ψj | ≤ a − δ holds.

We have

bj := ρ
−1
j =

|ψj (x)|

a(x) − r
2

≤
∥ψj∥L∞
R − r

2

.

Thus in this case, the new result gives for any 0 < q <∞,

(∥ψj∥L∞ )j≥1 ∈ ℓq(N) =⇒ (∥uν∥V )ν∈F ∈ ℓp(F),

with 1
q
= 1

p
− 1

2
.



Sparse polynomial approximation by Legendre expansions

Instead of Taylor, we may consider the tensorized Legendre expansion

u(y) =
∑
ν∈F

vνLν(y),

where Lν(y) :=
∏

j≥1 Lνj (yj ) and (Lk )k≥0 are the Legendre polynomials normalized

in L2
(
[−1, 1], dt

2

)
. Thus (Lν)ν∈F is an orthonormal basis for L2(Y , µ) with

µ := ⊗j≥1
dyj
2

the uniform probability measure and we have vν =
∫
Y u(y)Lν(y)dµ(y)

Theorem : Let p and q be such that 1
q
= 1

p
− 1

2
. Assume that there exists a sequence

ρ = (ρj )j≥1 of numbers larger than 1 such that∑
j≥1

ρj |ψj | ≤ a − δ,

for some δ > 0 and
(ρ−1

j )j≥1 ∈ ℓq .

Then (∥vν∥V )ν∈F ∈ ℓp(F).

Implies best n-term approximation error ∥u − un∥L2(Y ,V ,µ) ≤ Cn−s with s = 1
p
− 1

2
.

If yi are i.i.d. uniform, this implies κn(u)2V = min
dim(Vn)=n

E(∥u − PVnu∥2V ) ≤ Cn−2s .
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An ubiquitous numerical problem

Reconstruct an unknown multivariate function

u : x 7→ u(x), x = (x1, . . . , xd ) ∈ D ⊂ Rd ,

from (possibly noisy) observations y i ≈ ℓi (u) ∈ R for i = 1, . . . ,m.

Here the ℓi are linear forms.

An important case : evaluation y i ≈ u(x i ) at sample points x i ∈ D for i = 1, . . . ,m.

Distinction between two data acquisition settings :

Passive setting : we do not choose the x i (or the ℓi ).

Active setting : we choose the x i (or the ℓi ).



Optimal recovery

Let V be a general Banach space of functions defined on D, and let K ⊂ V a class
that describes the prior information on u (for example smoothness).

We define the deterministic optimal recovery numbers

rdetm (K)V := inf
x,Φx

max
u∈K

∥u −Φx(u(x
1), . . . , u(xm))∥V ,

where infimum is taken on all x = (x1, . . . , xm) ∈ Dm and maps Φx : Rm → V .

Randomized setting (random sampling) :

r randm (K)2V := inf
x,Φx

max
u∈K

Ex(∥u −Φx(u(x
1), . . . , u(xm))∥2V ),

where infimum is taken on all random variable x ∈ Dm and linear Φx : Rm → V .

Linear recovery : define ρdetm (K)V and ρrandm (K)V similarly but with Φx linear.

Obviously : rdetm (K)V ≤ ρdetm (K)V and r randm (K)V ≤ ρdetm (K)V .

Also : r randm (K)V ≤ rdetm (K)V and ρrandm (K)V ≤ ρdetm (K)V .



Approximation

Error measure : ∥u − ũ∥V , where V := L2(D, µ), or other Banach space of interest.

Most often, the reconstruction ũ takes place within a family Vn ⊂ V that can be
parametrized by n ≤ m numbers.

So it is relevant to compare ∥u − ũ∥V with

en(u)V = min
v∈Vn

∥u − v∥V .

We restrict our attention to linear families : Vn is a linear space with n = dim(Vn).

If V is a Hilbert space, en(u) = ∥u − PVnu∥V with PVn the V -orthogonal projection.

Classical choices : algebraic polynomials, spline spaces, trigonometric polynomials,
piecewise constant functions on a given partition of D.

Optimized choices : if our prior information is that u ∈ K where K ⊂ V is some
compact class we are interested in spaces Vn that perform close to the Kolmogorov
n-width, that is defined for a general Banach space V by

dn(K)V := inf
dim(Vn)=n

max
u∈K

en(u)V .



Kolmogorov n-widths

An optimal space achieving the infimum is not easy to construct.

It can be emulated by reduced basis spaces Vn = span{u1, . . . , un}, with ui ∈ K.

Greedy selection : given Vk−1 pick next uk such that

∥uk − PVk−1
uk∥ = max

u∈K
∥u − PVk−1

u∥V ,

or in practice ∥uk − PVk−1
uk∥ ≥ γmaxu∈K ∥u − PVk−1

u∥V for fixed γ ∈]0, 1[.

Such algorithms have been proposed in the particular context of reduced order
modeling, where the class K consists of solutions u to a PDE as we vary certain
physical parameters (solution manifold). The reduced basis spaces are proved to
perform as good as the optimal n-width spaces in terms of convergence rate.



Kolmogorov n-widths

An optimal space achieving the infimum is not easy to construct.

It can be emulated by reduced basis spaces Vn = span{u1, . . . , un}, with ui ∈ K.

Greedy selection : given Vk−1 pick next uk such that

∥uk − PVk−1
uk∥ = max

u∈K
∥u − PVk−1

u∥V ,

or in practice ∥uk − PVk−1
uk∥ ≥ γmaxu∈K ∥u − PVk−1

u∥V for fixed γ ∈]0, 1[.

Such algorithms have been proposed in the particular context of reduced order
modeling, where the class K consists of solutions u to a PDE as we vary certain
physical parameters (solution manifold). The reduced basis spaces are proved to
perform as good as the optimal n-width spaces in terms of convergence rate.



General objectives

Ideally we would like to combine

Instance optimality : achieve ∥u − ũ∥V ≤ Cen(u)V for any u, for some fixed C .

Budget optimality : use m ∼ n samples (up to log factors).

Progressivity : when using V1 ⊂ V2 ⊂ . . .Vn cumulated budget stays m ∼ n.

In recent years, significant progresses have been made on randomized sampling and
least-squares reconstruction strategies from various angles, allowing to reach the
above (and other related) objectives.

Information based complexity : Wozniakowski, Wasilkowski, Kuo, Krieg, M. Ullrich,
Kämmerer, Volkmer, Potts, T. Ullrich, Oettershagen, ...

Uncertainty quantification and model reduction : Doostan, Hampton, Narayan,
Jakeman, Zhou, Nobile, Tempone, Chkifa, Webster, Harberstisch, Nouy, Perrin...

Approximation theory : Cohen, Davenport, Leviatan, Migliorati, Bachmayr, Arras,
Adcock, Huybrechs, Temlyakov...

These results lead to natural comparison between sampling numbers and n-widths.



A simple example : interpolation by univariate polynomials

Consider D = [−1, 1] and V = C(D) equipped with the max norm ∥ · ∥V = ∥ · ∥L∞ .

Take Vn = Pn−1 univariate polynomials of degree n − 1.

With (x1, . . . , xn) ∈ [−1, 1] pairwise distincts, reconstruct by the interpolation operator

ũ = Inu ∈ Pn−1, s.t. Inu(x
i ) = u(x i ), i = 1, . . . , n.

Budget is optimal : m = n points have been used.

Instance optimality : governed by Lebesgue constant Cn = maxu ̸=0
∥Inu∥L∞
∥u∥L∞ , since

∥u − Inu∥L∞ ≤ ∥u − v∥L∞ + ∥Inv − Inu∥L∞ ≤ (1 + Cn)∥u − v∥L∞ , v ∈ Vn,

thus bounded by (1 + Cn)en(u)L∞ .

Equispaced points are known to yield Cn ∼ 2n.

Chebychev points
{
cos

(
2kπ
2n+1

)
: k = 1, . . . , n

}
yield optimal value Cn ∼ ln(n).



Limitations

Multivariate case : no general theory for optimal points on a general domain D ⊂ Rd .

What about other types of spaces Vn ?

Fekete points : if Vn is a linear space with basis (ϕ1, . . . , ϕn), then the points

(x1, . . . , xn) = argmax
{
det(ϕi (zj ))i,j=1,...,n : (z1, . . . , zn) ∈ Dn

}
,

yields Cn ≤ n but are not simply computable : non-convex optimization in Rdn.

For univariate polynomials these points maximizes
∏

j ̸=i |x
i − x j |.

Progessivity : the Chebychev and Fekete points are not nested as n → n + 1 !

The Clenshaw-Curtis points Gn =
{
cos

(
kπ
n−1

)
: k = 0, . . . , n−1

}
are partially nested :

G3 ⊂ G5 ⊂ G9 ⊂ · · · ⊂ G2j+1 ⊂ G2j+1+1 ⊂ · · ·

How to fill-in by intermediate points and preserve a well-behaved Lebesgue constant ?



Lebesgue constant for nested sets
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Sequential

Clunshaw−curtis
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Leja 

R−Leja

Left : fill-in by increasing order.

Right (blue) : fill-in by Van der Corput enumeration Cn ≤ n2 (Chkifa, 2013).

Right (red) : greedy Fekete (Leja) max
∏k−1

j=1 |x − x j | → xk . Open problem : Cn ∼ n ?

The behaviour Cn ∼ ln(n) does not seem achievable with nested sets.



Least-squares reconstruction

From now on, V = L2(D, µ). Notation : ∥v∥ = ∥v∥L2(D,µ), and en(u) = ∥u − PVnu∥.

The L2(D, µ)-projection

PVnu := argmin
{ ∫

D
|u(x) − v(x)|2dµ : v ∈ Vn

}
,

is out of reach =⇒ replace the integrals by a discrete sum∫
D
v(x)dµ ≈

1

m

m∑
i=1

w(x i )v(x i ).

where w is a weight function. This is the (weighted) least-squares method

un := argmin
{ 1

m

m∑
i=1

w(x i )|y i − v(x i )|2 : v ∈ Vn

}
.

In the noiseless case y i = u(x i ), the solution is the orthogonal projection of u onto Vn

for the discrete (semi)-norm

∥v∥2m :=
1

m

m∑
i=1

w(x i )|v(x i )|2,

that should in some sense be close to ∥v∥2.



Randomized sampling

Draw (x1, . . . , xm) i.i.d. according to a sampling probability measure σ.

Use a weight w such that
w(x)dσ(x) = dµ(x).

The random norm ∥v∥2m = 1
m

∑m
i=1 w(x i )|v(x i )|2 then satisfies, for any function v ,

E
(
∥v∥2m

)
= Eσ(w(x)|v(x)|2) =

∫
D
w(x)|v(x)|2dσ =

∫
D
|v(x)|2dµ = ∥v∥2.

Unweighted choice : w = µ and dσ = dµ may lead to suboptimal results

Optimality results will be achieved by appropriate choices of w and σ.

The weighted least-squares approximation un is now a random object. Its accuracy
should be studied in some probabilistic sense, for instance E(∥u − un∥2).



Accuracy analysis

General strategy : study the probabilistic event Eδ of the equivalence

(1 − δ)∥v∥2 ≤ ∥v∥2m ≤ (1 + δ)∥v∥2, v ∈ Vn,

for some 0 < δ < 1, for example δ = 1
2
.

This is an instance (p = 2 and wi = m−1w(x i )) of a Marcinkiewicz-Zygmund
inequality :

(1 − δ)

∫
D
|v(x)|pdµ ≤

m∑
i=1

wi |v(x
i )|p ≤ (1 − δ)

∫
D
|v(x)|pdµ, v ∈ Vn.

Let (L1, . . . , Ln) be an L2(D, µ)-orthonormal basis of Vn and consider the random
Gramian matrix

G = (Gk,j )k,j=1,...,n, Gk,j :=
1

m

m∑
i=1

w(x i )Lk (x
i )Lj (x

i ) = ⟨Lk , Lj ⟩m.

Then
Eδ ⇐⇒ (1 − δ)I ≤ G ≤ (1 + δ)I ⇐⇒ ∥G − I∥2 ≤ δ.

Note that G = 1
m

∑m
j=1 X

i , where Xi are i.i.d. realizations of

X = (w(x)Lk (x)Lj (x))k,j , x ∼ σ, so E(G) = I



A first accuracy bound

Under the event E1/2, one has 1
2
∥v∥2 ≤ ∥v∥2m ≤ 3

2
∥v∥2 for all v ∈ Vn, and so

∥u − un∥2 = en(u)
2 + ∥Pnu − un∥2 ≤ en(u)

2 + 2∥Pnu − un∥2m.

In addition ∥Pnu − u∥2m = ∥u − un∥2m + ∥Pnu − un∥2m, and so

∥u − un∥2 ≤ en(u)
2 + 2∥u − Pnu∥2m.

Since E(∥u − Pnu∥2m) = en(u)2, we reach

E(∥u − un∥2χE1/2
) ≤ 3en(u)

2.

We can test the validity of E1/2 by checking if ∥G − I∥2 ≤ 1
2
.

First choice : define ũ = un if E1/2 holds and ũ = 0 gives the estimate

E(∥u − ũ∥2) ≤ 3en(u)
2 + δ∥u∥2, δ := Pr(E c

1/2).

Is δ small with m ∼ n ?

Key tools : Christoffel functions and matrix concentration.



Boosting

Haberstisch-Nouy-Perrin (2019) : redraw {x1, . . . , xm} until E1/2 holds and take ũ = un

If δ = Pr(E c
1/2

) then the number of needed redraws k∗ follows a Poisson law : one has

k∗ > k with probability δk and E(k∗) = 1
1−δ

.

The resulting sample x1, . . . , xm follows the law ⊗mσ conditionned to E1/2 and
therefore, by Bayes rule

E(∥u − ũ∥2) = E(∥u − un∥2 |E1/2) = Pr(E1/2)
−1E(∥u − un∥2χE1/2

),

which gives for all u ∈ V (non uniform result : first fix u, then draw sample),

E(∥u − ũ∥2) ≤ Cen(u)
2, C :=

3

1 − δ
.

Assume Vn contains constants and that M := µ(D) =
∫
|1|2dµ <∞. Then under E1/2,

we have 1
m

∑m
i=1 w(x i ) = ∥1∥2m ≤ 3M

2
, so both ∥ · ∥ and ∥ · ∥m dominated by ∥ · ∥L∞ .

Therefore, for the boosted sample x1, . . . , xm, we are ensured that for all u ∈ C(D),

∥u−un∥ ≤ ∥u−v∥+∥v−un∥m ≤ ∥u−v∥+∥u−v∥m ≤ C∥u−v∥L∞ , C :=
√
M(1+

√
3/2),

and therefore (uniform result : first fix a deterministic sample, then pick any u)

∥u − ũ∥ ≤ Cen(u)L∞ .



Christoffel functions

With L1, . . . , Ln an L2(D, µ)-orthonormal basis of Vn, define

kn(x) :=
n∑

j=1

|Lj (x)|
2,

the inverse of the Christoffel function, also defined as

kn(x) = max
v∈Vn

|v(x)|2

∥v∥2
.

We use the notation

Kn := ∥kn∥L∞ := sup
x∈D

n∑
j=1

|Lj (x)|
2 = max

v∈Vn

∥v∥2L∞
∥v∥2

.

These quantities only depends on Vn and µ.

For the given weight w , we introduce

kn,w (x) := w(x)kn(x),

and Kn,w := ∥kn,w∥L∞ , which only depends on (Vn, µ,w).

Since
∫
D kn,wdσ =

∑n
j=1

∫
D |Lj |

2dρ = n, one has

Kn,w ≥ n.



Matrix concentration inequalities

Matrix Chernoff bound (Ahlswede-Winter 2000, Tropp 2011) : let G = 1
m

∑m
i=1 X

i

where Xi are i.i.d. copies of an n × n symmetric matrix X such that E(X) = I and
∥X∥ ≤ K a.s. Then

Pr
{
∥G − I∥ ≥ δ

}
≤ 2n exp

(
−
mcδ

K

)
,

where cδ := (1 + δ) ln(1 + δ) − δ > 0.

In our case of interest,

X = w(x)(Lk (x)Lj (x))j,k=1,...,n = xxT , x = (w(x)1/2Lk (x))k=1,...,n,

with x distributed according to σ, which has expectation E(X) = I, and

K = sup ∥X∥ = sup |x|2 = sup
x∈D

w(x)
n∑

j=1

|Lj (x)|
2 = Kn,w .

This gives the sampling budget condition

m ≥ cKn,w ln(2n/ε) =⇒ Pr(E c
1/2) = Pr

{
∥G − I∥ ≥

1

2

}
≤ ε,

with c = c−1
1/2

≤ 10. For the boosted sample, take ε = 1
2
, and so m ≥ 10Kn,w ln(4n).



Optimal estimation and sampling budget

Using the boosted sample, we achieve near optimal non-uniform estimate

E(∥u − ũ∥2) ≤ Cen(u)
2

as well as uniform estimate (assuming µ(D) <∞ and 1
m

∑m
i=1 w(x i ) <∞)

∥u − ũ∥ ≤ Cen(u)L∞
under a sampling budget m ∼ Kn,w ≥ n up to multiplicative logarithmic factor.

In the presence of noise of variance κ(x)2, the estimation bound has an additional term

en(u)
2 +

n

m
κ2, κ2 =

∫
D
|κ(x)|2dµ.

Unweighted least-squares : w = 1 and σ = µ requires m ∼ Kn = maxx∈D
∑n

j=1 |Lj (x)|
2

Sometimes Kn >> n. leading to an excessive sampling budget.



Illustration on univariate polynomials Vn = Pn−1

Regime of stability : probability that ∥G − I∥ ≤ 1
2
, white if 1, black if 0.

Unweighted case requires at least m ∼ Kn.

Left : D = [−1, 1] with dµ = dx

π
√

1−x2
(Chebychev polynomials Kn = 2n + 1 ∼ n).

Center : D = [−1, 1] with dµ = dx
2

(Legendre polynomials Kn = n2)

Right : D = R with dµ = 1√
2π

e−
x2

2 dx (Hermite polynomials Kn = ∞).

For the gaussian case, a more ad-hoc analysis shows that stability holds if m>∼ exp(cn)



Parametric PDE’s and multivariate polynomials

Prototype example : elliptic PDE’s on some domain D ⊂ R2 or R3 with affine
parametrization of the diffusion function by x = (x1, . . . , xd ) ∈ X = [−1, 1]d

−div(a∇u) = f , a = ā +

d∑
j=1

xjψj ,

with ellipticity assumption 0 < r < a < R for all x ∈ X , so x 7→ u(x) ∈ V = H1
0 (D).

With Λ ⊂ Nd , approximation by multivariate polynomial space

VΛ :=

∑
ν∈Λ

vνx
ν, vν ∈ V

 = V ⊗ PΛ,

where xν = xν11 · · · xνdd .

We only consider downward closed index sets : ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ.

Basis of PΛ : tensorized orthogonal polynomials Lν(x) =
∏d

j=1 Lνj (xj ) for ν ∈ Λ.



Downward closed multivariate polynomials

ν
2

ν
1



Breaking the curse of dimensionality

Cohen-DeVore-Schwab (2011) + Bachmayr-Migliorati (2016) : approximation results.

Under suitable summability conditions on (|ψj |)j≥1, there exists a sequence of
downward closed sets Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn . . . , with n := #(Λn) such that

inf
v∈Vn

∥u − v∥L2(X ,V ,µ) ≤ Cn−s ,

with Vn := VΛn = PΛn ⊗ V , where µ is any tensorized Jacobi measure. The exponent
s > 0 is robust with respect to the dimension d .

Chkifa-Cohen-Nobile-Tempone (M2AN, 2014) : estimate Kn for PΛn .

With ρ = ⊗d ( dx
2
) the uniform distribution over X , one has Kn ≤ n2 for all downward

closed sets Λn such that #(Λn) = n. Up to log factor, the stability regime is m>∼ n2.

With the tensor-product Chebychev measure, improvement Kn ≤ nα with α := log 3
log 2

.

The theory and least-square method is not capable of handling lognormal diffusions :

a = exp(b), b =

d∑
i=1

xjψj , xi ∼ N (0, 1) i.i.d.

which corresponds to the tensor product Gaussian measure over X = Rd .



Optimal sampling measure

Narayan-Jakeman (2015), Doostan-Hampton (2015), Cohen-Migliorati (2017) : use
sampling measure

dσ :=
kn

n
dµ =

1

n

( n∑
j=1

|Lj |
2
)
dµ =⇒ w(x) =

n

kn(x)
.

σ is a probability measure and we have kn,w (x) = w(x)kn(x) = n, thus Kn,w = n.

With this sampling strategy, optimal error bounds can be achieved with near optimal
sampling budget m ∼ n up to logarithmic factors.

Observation by T. Ullrich (2020) : if µ has finite mass µ(D) = M <∞, one can also

use d σ̃ := ( 1
2M

+ kn
2n
)dµ ensuring both Kn,w ≤ 2n and 1

m

∑m
i=1 w(xi ) ≤ 2M.
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Narayan-Jakeman (2015), Doostan-Hampton (2015), Cohen-Migliorati (2017) : use
sampling measure

dσ :=
kn

n
dµ =

1

n

( n∑
j=1

|Lj |
2
)
dµ =⇒ w(x) =

n

kn(x)
.

σ is a probability measure and we have kn,w (x) = w(x)kn(x) = n, thus Kn,w = n.

With this sampling strategy, optimal error bounds can be achieved with near optimal
sampling budget m ∼ n up to logarithmic factors.
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σ is a probability measure and we have kn,w (x) = w(x)kn(x) = n, thus Kn,w = n.

With this sampling strategy, optimal error bounds can be achieved with near optimal
sampling budget m ∼ n up to logarithmic factors.
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Observation by T. Ullrich (2020) : if µ has finite mass µ(D) = M <∞, one can also

use d σ̃ := ( 1
2M

+ kn
2n
)dµ ensuring both Kn,w ≤ 2n and 1

m
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i=1 w(xi ) ≤ 2M.



A first comparison between sampling number and n-width

By optimizing the choice of Vn in the estimate

E(∥u − ũ∥2) ≤ Cen(u)
2,

and using the optimal sampling measure, one find that

ρrandcn ln(n)(K)L2 ≤ Cdn(K)L2 ,

for any compact set K of L2(D, µ).

Likewise, optimizing the choice of Vn in the estimate

∥u − ũ∥ ≤ Cen(u)L∞ ,
one finds that

ρdetcn ln(n)(K)L2 ≤ Cdn(K)L∞ ,
for any compact set K of C(D).

Questions : remove logarithmic surplus ? deterministic sampling numbers vs. dn(K)L2 ?



The optimal density is not fixed

When using a sequence (Vn)n≥1 of approximation spaces

dσ = dσn :=
kn

n
dµ.

Illustration : sampling densities σn for n = 5, 10, 20.
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Left : Polynomials of degrees 0, . . . ,m − 1 and µ Gaussian.

Right : Piecewise constant functions on locally refined partitions and µ uniform.



Dependence on the domain geometry

Consider the space Vn = Pk of polynomials of total degree k on a multivariate domain
D ⊂ Rd , so that

n =
(k + d

d

)
and use the uniform probability measure dµ = |D |−1dx .

The local behaviour of kn and thus of σn depends on closeness to the boundary of D
and on the smoothness of this boundary.

Cohen-Dolbeault (2020) : For smooth domains kn(x) = O(n
d+1
d ) on boundary, for

Lipschitz domains kn(x) = O(n2) on exiting corners, for domains with cusps
kn(x) = O(nr ) at exiting cusps where r depends on the order of cuspitality.
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Dependence on the domain geometry

Consider the space Vn = Pk of polynomials of total degree k on a multivariate domain
D ⊂ Rd , so that

n =
(k + d

d

)
and use the uniform probability measure dµ = |D |−1dx .

The local behaviour of kn and thus of σn depends on closeness to the boundary of D
and on the smoothness of this boundary.

Cohen-Dolbeault (2020) : For smooth domains kn(x) = O(n
d+1
d ) on boundary, for

Lipschitz domains kn(x) = O(n2) on exiting corners, for domains with cusps
kn(x) = O(nr ) at exiting cusps where r depends on the order of cuspitality.

Inverse Christoffel function kn(x) for n = 231 (total degree k = 20)



Examples of draw according to optimal sample distribution



Sampling the optimal density

Problem : generate efficiently i.i.d. samples according to the optimal sampling measure

dσ = dσn =
kn

n
dµ =

1

n

( n∑
j=1

|Lj |
2
)
dµ.

This problem might be non-trivial in a multivariate setting D ⊂ Rd .

In many relevant instances µ is a product measure (such as uniform, gaussian) and
thus easy to sample, but dσn is not. Sampling strategies :

(i) Rejection sampling : draw x i according to µ and a uniform random variable z i in

[0,M] where M ≥ ∥kn∥L∞
n

. Reject x i if z i > kn(x
i )

n
.

(ii) Conditional sampling : obtains first component by sampling the marginal dσ1(y1),
then the second component by sampling the conditional marginal probability dσy1 (y2)
for this choice of the first component, etc...

Strategy (ii) is more efficient in cases where the Lj have tensor product structure.

(iii) Mixture sampling : draw uniform variable j ∈ {1, . . . , n}, then sample with
probability |Lj |

2dµ.

Migliorati (2018) : one can also split the sample into n batches of size O(ln(n)) each
of them sampled according to dνj = |Lj |

2dµ, with same final estimation bounds.



Sampling on general domains

Optimal sampling may become unfeasible when D ⊂ Rd is a domain with a general
geometry : the L1, . . . , Ln have no simple expression and cannot be computed exactly.

General assumptions : χD is easily computable ⇒ sampling according to the uniform
measure µ is easy (sample uniformly on a bounding box, reject if x /∈ D).

Migliorati, Adcock-Cardenas (2019), Cohen-Dolbeault (2020) : two-step strategies

1. With M ∼ Kn ln(n) sample z1, . . . , zM according to the uniform measure, and define

µ̃ :=
1

M

M∑
i=1

δz i .

Construct an orthonormal basis L̃1, . . . , L̃n of Vn for the L2(X , µ̃) inner product and
define k̃n =

∑n
j=1 |L̃j |

2.

2. With m ∼ n ln(n) sample x1, . . . , xm according to

d σ̃ =
k̃n

n
d µ̃,

that is, select z i with probability pi =
k̃n(z

i )
Mn

.



Adaptivity

Update adaptively the polynomial space Λn−1 → Λn, while increasing the amount of
sample necessary for stability m = m(n) ∼ n log n.

ν
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ν
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Problem : the optimal measure µ = µm changes as we vary m. How should we recycle
the previous samples ?
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Sequencial sampling

For a given hierarchy V1 ⊂ V2 ⊂ · · · ⊂ Vn, note that

dσn =
1

n

( n∑
j=1

|Lj |
2
)
dµ =

(
1 −

1

n

)
dσn−1 +

1

n
dνn where dνn = |Ln |

2dµ.

We use this mixture property to generate the sample in an incremental manner.

Assume that the sample Sn−1 = {x1, . . . , xm} has been generated by independent draw
according to the distribution dσn−1 with m = m(n − 1) sampling budget

Then we generate a new sample Sn = {x1, . . . , xm(n)} as follows :

For each i = 1, . . . ,m(n), pick Bernoulli variable bi ∈ {0, 1} with probability { 1
n
, 1− 1

n
}.

If bi = 0, generate new x i according to dνn.

If bi = 1, recycle x i incrementally from Sn−1.

Arras-Bachmayr-Cohen (2018) : the cumulated number of sample Cn used at stage n
satisfies Cn ∼ n up to logarithmic factors with high probability for all values of n.

With high probability, the matrix G satisfies ∥G − I∥ ≤ 1
2
for all values of n.

Adaptive selection strategies ?



Sparsification

Reducing further sampling budget to O(n) : logarithmic factors removable ?

Batson-Spielman-Srivastava (2014) : let x1, . . . , xm be m ≥ n be vectors of Rn such
that

(1 − δ)I ≤
m∑
i=1

xix
T
i ≤ (1 + δ)I.

For any c > 1 there exists S ⊂ {1, . . . ,m} with #(S) ≤ cn and weights si such that(
1 −

1
√
c

)2
(1 − δ)I ≤

∑
i∈S

sixix
T
i ≤ (1 + δ)

(
1 +

1
√
c

)2
I

Apply this to xi =
(√

w(x i )
m

Lj (x
i )
)
j=1,...m

with {x1, . . . , xm} a boosted sample.

Leads to a sample (x1, . . . , x2n) and weights wi = si
w(x i )
m

such that

α∥v∥2 ≤ ∥v∥22n ≤ β∥v∥2, v ∈ Vn,

where ∥v∥22n =
∑2n

i=1 wi |v(x
i )|2 and α = 1

2

(
1 − 1√

2

)2
, β = 3

2

(
1 + 1√

2

)2
.



Sparsified weighted least-squares

Based on these new samples and weights, we define a weighted least-squares estimate

ũ := argmin
{ 1

2n

2n∑
i=1

wi |u(x
i ) − v(x i )|2

}
.

for which we have for all u ∈ C(D)

∥u − ũ∥ ≤ Cen(u)L∞ ,
assuming that µ is a finite measure.

The sparsification strategy of Batson-Spielman-Srivastava is performed by a
deterministic greedy algorithm of total complexity O(mn3) : additional offline cost.

Temlyakov (2019) : comparison between deterministic linear optimal recovery numbers
in L2 and Kolmogorov n-width in L∞ for any compact class K of C(D).

By optimizing the choice of Vn, one obtains

ρdet2n (K)L2 ≤ Cdn(K)L∞ .



Randomized sparsification

We cannot prove E(∥u − ũ∥2) ≤ Cen(u)2 with the above strategy.

We miss the averaging property E(∥v∥22n) = ∥v∥2 for any v ∈ V .

Use a variant result : solution to the Weaver and Kadison-Singer conjectures.

Marcus-Spielman-Srivastava (2015) : if x1, . . . , xm are m vectors from Rn of norm
|xi |

2 ≤ δ and such that

αI ≤
m∑
i=1

xix
T
i ≤ βI

then there exists a partition S1 ∪ S2 = {1, . . . ,m} such that

1 − 5
√
δ/α

2
αI ≤

∑
i∈Sj

xix
T
i ≤

1 + 5
√
δ/α

2
βI, j = 1, 2.

Nitzan-Olevskii-Ulanovskii (2016) apply this process recursively in order to identify a
J ⊂ {1, . . . ,m} such that |J | ≤ cn and

C−1αI ≤
∑
i∈J

xix
T
i ≤ CβI.

for some universal constant C > 1.



Randomized sparsified weighted least-squares

Cohen-Dolbeault (2021) : if the xi have equal norms |xi |
2 = n

m
, then iterative splitting

delivers for some L = O(ln(m/n)) a partition J1 ∪ J2 ∪ · · · ∪ J2L = {1, . . . ,m} such that

c0I ≤
∑
i∈Jk

xix
T
i ≤ C0I, k = 1, . . . , 2L,

with (c0,C0) universal constants and |Jk | ≤ C0n for all k.

Apply to xi =
(√

w(x i )
m

Lj (x
i )
)
j=1,...m

with Y = {x1, . . . , xm} the random boosted

sample with m ≥ 10n ln(4n).

Let κ be the random variable taking value k ∈ {1, . . . , 2L} with probability pk =
|Jk |
m

.

Define weighted least-square estimate ũ with random sample X = {x i ∈ Y : i ∈ Jκ}.

EX

( 1

#(X )

∑
x i∈X

w(x i )|v(x i )|2
)
= EY

( 1

m

m∑
i=1

w(x i )|v(x i )|2
)
≤ 2∥v∥2, v ∈ V .

This allows us to prove E(∥u − ũ∥2) ≤ Cen(u)2, with sample size |X | ≤ C0n.

Consequence : for any compact K ⊂ L2,

ρrandC0n
(K)L2 ≤ Cdn(K)L2 .



The RKHS setting (Krieg-M.Ullrich, Nagel-Schäffer-T.Ullrich)

Favorable comparison between deterministic sampling numbers and dn(K)L2 can be
achieved under additional assumption : K is a unit ball of a Reproducing Kernel Hilbert
Space H ⊂ L2(D, µ) (that is, point evaluation is continuous on H, as opposed to L2).

Assuming compact embedding of H into L2, the n-widths dn = dn(K)L2 coincide with
the decreasing eigenvalues of this embedding, associated to an L2 orthonormal basis of
eigenvectors (Lj )j≥1. Optimal n-width spaces are Vn := span{L1, . . . , Ln}.

Assume that
∑

n≥1 d
2
n <∞ and introduce the modified optimal measure

dσn :=
1

2

( 1

n

n∑
j=1

|Lj |
2 +

∑
j>n d

2
j |Lj |

2∑
j>n d

2
j

)
dµ.

Draw x1, . . . , xm according to σn and reconstruct by weighted least-squares on Vn,

If m ∼ n ln(n), then with high probability, one has the estimate

∥u − ũ∥2
L2

≤ C
ln(n)

n

∑
j≥n

d2
j , u ∈ K.

Dolbeault, Krieg, M. Ullrich (2022) : with additional Kadison-Singer sparisfication
improved bound n−1

∑
j≥n d

2
j and budget m = cn. In turn

ρdetC0n
(K)L2 ≤ C

(
n−1

∑
k≥n

dk (K)2
L2

)−1/2
.



Summary

We can improve sparsity of the sample up to near-optimality m ∼ n.

This comes at the prize of computational feasability of the offline sample generation.

sampling
complexity

sample
cardinality m

offline
complexity

E(∥u − ũ∥2)
≤ Cen(u)2

∥u − ũ∥2
≤ Cen(u)2∞

conditionned
ρ⊗m |E

10n ln(4n) O(n3 ln(n)) ✓ ✓

+ deterministic
sparsification

(1 + ε)n O(n4 ln(n)) ✗ ✓

+ randomized
sparsification

C0n O(ncn) → O(nr ) ? ✓ ✓

Conflict between reducing sampling budget and limiting offline computational cost.

Haberstisch-Nouy-Perrin : cheap greedy sparsification but no theoretical guarantee.

Sparsification strategies do not seem to combine well with hierarchical sampling.



More general measurement models

Can we develop a similar sampling theory for other types of measurements

y i = ℓi (u), i = 1, . . . ,m,

where ℓi are linear forms of some particular type ? Examples :

- Local averages ℓi (u) =
∫
Rd u(x)φ(x − x i ),

- Fourier samples ℓi (u) =
∫
Rd u(x) exp(−iωi · x)

- Radon samples ℓi (u) =
∫
Li u(s)ds where Li are lines in R2,...

In all these examples, the linear forms are picked in a certain dictionnary where we
want to make an optimal selection.

This may be viewed as applying point evaluation after a certain transformation.

y i = ℓi (u) = Ru(x i ), x1, . . . , xm ∈ D,

where D is now the transformed domain. For example D = [0, π[×R for the Radon
transform on R2.



Optimal measurement selection in transformed space

We assume u 7→ Ru to be a “stable” representation of u for a Hilbert space V of
interest, in the sense that for a certain measure µ

∥u∥2V =

∫
D
|Ru(x)|2dµ = ∥Ru∥2

L2(D,µ)
.

This is the case in all above examples.

For picking the approximation un ∈ Vn ⊂ V , we now solve

min
v∈Vn

m∑
i=1

w(x i )|y i − Rv(x i )|2.

The optimal sampling measure on the transformed domain is again defined by

dσ =
kn

n
dµ, kn(x) =

n∑
j=1

|Lj (x)|
2,

however with {L1, . . . , Ln} now an orthonormal basis of Wn := R(Vn).

With {x1, . . . , xm} picked according to this sampling measure and m ∼ n, we retrieve

E(∥u − un∥2V ) ≤ Cen(u)
2
V , en(u)V = min

v∈Vn

∥u − vn∥V .



Choosing the error norm

Several possible choices of (V , µ) lead to different sampling strategies.

For the Fourier transform : V = Hs (Rd ) ⇐⇒ dµ(ω) = (1 + |ω|2s )dω.

For the Radon transform : taking dµ the Lebesgue measure,∫
D
|Ru(x)|2dµ =

∫
R

∫π
0
|Ru(t, θ)|2dtdθ =

∫π
0

∫
R
|û(teθ)|

2dsdθ ∼

∫
R2

|ω|−1|û(ω)|2dω.

This leads to a very weak error norm V = H−1/2(R2).

If we want to control the error in V = L2(R2), we have

∥u∥2V ∼

∫π
0
|R(θ, ·)|2

H1/2(R)dθ.

Sobolev semi-norms may be viewed as weighted L2 norms after applying the finite
difference operator : for 0 < s < 1

|v |2Hs (R) =

∫
R×R

|v(t) − v(t ′)|2

|t − t ′|1+2s
dtdt ′ =

∫
R2

|V |2dµ, V (t, t ′) = v(t) − v(t ′).

Similar definitions for s ≥ 1 using higher-order finite differences.



General measurements : the PBDW method

Developed by Maday and Patera in the context of parametric PDEs P(u, y) = 0.

We observe linear measurements of the solution u(y) with unknown parameter y .
Here, we work in a Hilbert space V and assume that the ℓi are given continuous linear
functionals, that is ℓi ∈ V ′.

State estimation : recover u = u(y) from measurements ℓi (u).

We may write
ℓi (u) = ⟨u, ωi ⟩, i = 1, . . . ,m,

and define the measurement space

W := span{ω1, . . . , ωm}.

The measurement data determine

w = PW u ∈ W .

So we retain a low dimensional information on the complex manifold M.

A solution algorithm is a computable map A : w 7→ A(w).

Optimal recovery : choose A to make the error ∥u − A(PW u)∥ uniformly small over M.



Reduced modeling

Our prior information is that u lies in the solution manifold M := {u(y) : y ∈ Y }.

The solution manifold is complex and its exact description is numerically out of reach.

M

V

Reduced modeling methods allow us to construct (nested) linear finite dimensional
spaces Vn which approximate M up to certified tolerances εn.

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · , dim(Vn) = n, ε0 ≥ ε1 ≥ · · · ≥ εn ≥ · · · ≥ 0,

such that

dist(u,Vn) := min
w∈Vn

∥u − w∥ ≤ εn, n ≥ 1, u ∈ M,

Sparse polynomial methods : u(y) ≈
∑
ν∈Λ

uνy
ν ∈ Vn := span{uν : ν ∈ Λ}.

Reduced basis methods : Vn := span{ui : i = 1, . . . , n} with ui = u(ai ) snapshots.



Reduced model prior

Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk (SIAM UQ, 2017) : replace the
assumption u ∈ M by these simpler assumptions on approximability.

K

ε Vn n

M

One space model : u ∈ K := K(Vn, εn) := {u ∈ V : dist(u,Vn) ≤ εn}.

Remark : affine spaces u + Vn may often be more relevant, and our discussion also
applies to this case.



Model meets data

Our knowledge about the function u is thus that it belongs to

Kw := {u ∈ V : PW u = w } = K ∩ Vw , Vw := {u : PW u = w } = w +W⊥.

which is an ellipsoid : intersection of the cylinder K with affine space Vw .

w ε Vn n

Vw
W

K

Kw

Ambiguity : all elements u ∈ Kw are assigned the same approximation A(w).

Optimal recovery algorithm over K : take A(w) to be the center of the ellipsoid Kw .

This is the “one space method”, a.k.a. PBDW (Maday-Patera-Penn-Yano, 2015)

A(w) = Argmin{dist(u,Vn) : u ∈ Vw }.

Can be computed by a linear system, does not require the knowledge of εn.



Error analysis

Based on the inf-sup constant

βn := inf
v∈Vn

sup
w∈W

⟨v ,w⟩
∥v∥ ∥w∥

= inf
v∈Vn

∥PW v∥
∥v∥

.

or its inverse

µn := sup
v∈Vn

∥v∥
∥PW v∥

.

also introduced by Adcock-Hansen (JFAA, 2012).

The error of the optimal recovery algorithm for any u ∈ V is

∥u − A(PW u)∥ ≤ µnen(u)V , en(u)V = ∥u − PVnu∥,

therefore instance optimal if we can control µn. On the set K,

sup
u∈K

∥u − A(PW u)∥ = µnεn.

Remarks :

µn ≥ 1 and βn ≤ 1, with equality if and only if Vn ⊂ W .

µn = +∞ means that Vn ∩W⊥ ̸= {0}. This happens if n > m = dim(W ).

µn grows as n grows, while εn decreases.



Example : elliptic equation with piecewise constant diffusion field

−div(a∇u) = 1 on [0, 1]2, a = a(y) = 1 + 0.9
∑16

j=1 yjχDj
, y = (yj ) ∈ [−1, 1]16.
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Active data aquisition setting : optimized measurements ?

Given a reduced model space Vn we want to select the measurement functions ωi out
of a dictionnary D (a set of norm 1 functions, complete in V ).

Objective : control µ(Vn,W ), that is, guarantee a lower bound β(Vn,W ) > γ > 0 (for
example γ = 1

2
) for W = span{ω1, . . . , ωm}, with m ≥ n as small as possible.

Benchmark : m∗(γ) the smallest value of m ≥ n such that such a selection exists.

Evaluation of β(Vn,W ) requires SVD of an n ×m matrix and its maximization over
all possible choices of {ω1, . . . , ωm} is computationally intensive.

Recall that
β(Vn,W ) := inf

v∈Vn,∥v∥=1
∥PW v∥.

Therefore β(Vn,W ) ≥ γ > 0 if and only if

sup
v∈Vn,∥v∥=1

∥v − PW v∥ ≤ δ :=
√

1 − γ2 < 1,

that is, all element of Vn should have a fixed portion of their energy captured in W .



Greedy selection : orthonormal matching pursuit

Binev-Cohen-Mula-Nichols 2017 : introduce OMP-type algorithms for selecting
dictionnary elements ωi for the collective approximation of the elements of Vn.

Collective OMP : let Φ = (ϕ1, . . . , ϕn) be an orthonormal basis of Vn.

Having selected {ω1, . . . , ωk } and with Wk = span{ω1, . . . , ωk }, we define

ωk+1 := argmax
{ n∑

j=1

|⟨ϕj − PWk
ϕj , ω⟩|2 : ω ∈ D

}
.

Convergence results : if D is complete we always have

lim
k→∞ sup

v∈Vn,∥v∥=1
∥v − PWk

v∥ → 0

Convergence rate k−1/2 holds if Φ =
∑
ω∈D cωω with

∑
ω∈D ∥cω∥2 <∞.

Analysis uses similar ideas as for standard OMP (DeVore-Temlyakov 1998,
Barron-Cohen-Dahmen-DeVore 2007).



Example

With V = H1
0 (]0, 1[), consider the dictionnary D of (the Riesz representers of) point

evaluation functionals ℓx (u) = u(x) for x ∈]0, 1[.

Take Vn := span{s1, . . . , sn} with sk (x) = sin(πkx). In this case we can prove that a
uniform sampling gives β(Vn,Wm) > γ > 0 with m ∼ n.
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Open problem : can a greedy algorithm achieve some fixed lower bound γ with a
number of measurements m(γ) of comparable size as m∗(γ) ? When can we ensure
budget optimality m(γ) ∼ O(n) ?



Limitations of the PBDW / one space method

The one space method replaces M by the simpler containement set K for which
optimal recovery can be performed by simple algorithms.

1. It is a linear (or affine method). Its performance is therefore limited by below by the
Kolmogorov width

dm(M) = dm(M)V := min
dim(E)=m

max
u∈M

dist(u,E )V .

2. The containement set K is convex, and therefore fails to capture the subtle
geometry of M.

Objective : break this limitation by nonlinear algorithms associated to non-convex
reduced models.



Benchmark for optimal recovery of M

We define the diameter of M from W by

σ0 = σ0(M,W ) = max{∥u − v∥ : u, v ∈ M, u − v ∈ W⊥}.

Any reconstruction algorithm A cannot achieve performance better than 1
2
σ0.

This benchmark is not achievable by practical algorithms.

For algorithms based on a model that approximates M with accuracy ε, a more
reasonable benchmark is

σε = σε(M,W ) := max{∥u − v∥ : u, v ∈ Mε, u − v ∈ W⊥},

where Mε := M + B(0, ε) is the ε-offset of M.

These quantities could be much smaller than the Kolmogorov width dm(M).



A non-linear algorithm : local reduced models

By splitting the parameter domain

A = A1 ∪ · · · ∪ AK

we may construct a family of reduced models V 1, · · · ,VK each of them of dimension

nk = n(V k ) ≤ m,

such that each of them approximates the corresponding portion Mk of the manifold
with accuracy

max
u∈Mk

dist(u,V k ) ≤ εk .

and has bounded inverse inf-sup constant

µ(V k ,W ) ≤ µk <∞.
For any prescribed ε > 0 and µ > 1, by taking K large enough, we may impose that

max
k=1,...,K

εk ≤ ε

and
max

k=1,...,K
µk ≤ µ



An oracle estimate

To each V k corresponds a one space algorithm Ak .

From the given data w = PW u, we need to select between the reconstructions

uk = Ak (w), k = 0, . . . ,K .

Note that since u ∈ M there exist k = k(u) such that u ∈ Mk . Therefore, for this
particular k,

∥u − Aku∥ ≤ µkεk ≤ µε.

This is an oracle estimate, not feasible, since it uses the knowledge of k(u).

Instead, we only know the data w and want to use it for selecting a k = k(w).



Reduced model selection

Ideally we would like to select the reconstruction that is closest to the solution
manifold

k∗ = k(w) = argmink=1,...,Kdist(Ak (w),M),

but
dist(Ak (w),M) := min

a∈A
∥u(a) − Ak (w)∥

is not exactly computable.

Instead, we use the minimized residual of the parametrized PDE in the dual norm

δ(Ak (w),M) := min
a∈A

∥P(a,Ak (w))∥V ′ ,

which is an equivalent quantity to dist(Ak (w),M) for uniformly coercive problems.
Then for k∗ = k(w) minimizing δ(Ak (w),M), one has

dist(Ak∗ (w),M) ≤ C min
1,...,K

dist(Ak (w),M).

for some fixed C > 1.

Theorem (Cohen, Dahmen, DeVore, Mula, Nichols, 2019) : for the above selection
k∗ = k(w), one has the estimate

∥u − Ak∗ (u)∥ ≤ σCµε
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