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Deep learning - A big hype...?

Google Brain’s image super-resolution Autonomous driving
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Deep learning - A big hype...?

...and sometimes pretty easy to fool

”A young boy is holding a baseball bat” ”Snowpow” 3



Deep learning - A big hype...?

 There is a need of good theory!

”A young boy is holding a baseball bat” ”Snowpow” 4



Why theory?

By far, the greatest danger for artificial intelligence is
that people conclude too early that they understand
it. Eliezer Yudkowsky, AI theorist
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The problem

Explaining the procedure is a highly complex task
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Theory, but how?

Successful applications
...but lack of mathematical understanding
Problem

• Complex data structures ↪→ no available statistical models
• Combination of different network architectures with different regularization

methods in applications
• Fitting a network to data is a non-linear problem in the network parameters
• Non-convex function class

But
• there are some interesting theoretical results

Aim of this course
Summarize current state-of-the-art of deep learning theory and discuss open problem 7



Organization of the course

• Survey on neural networks structures and deep learning
• Theory for shallow networks
• Advantages of additional layers
• Approximation results of deep ReLU networks
• Statistical theory for deep ReLU networks
• Improving neural networks by statistical theory
• Convolutional neural networks in image classification
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Multilayer feedforward neural networks

Activation function σ : R→ R
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(a) Sigmoidal function
σ(x) = 1/(1 + e−x/T )
with different parameters T

-5 0 5

x

-1

-0.5

0

0.5

1

(x
)
(b) Tangens hyperbolicus
σ(x) = tanh(x)
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(c) Rectifier linear unit (ReLU)
σ(x) = max{x , 0}

Famous activation functions
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Multilayer feedforward neural networks

Network architecture (L, k)
• Positive integer L denoting the number of hidden layers
• width vector k = (k1, . . . , kL) ∈ NL

Neural network with network architecture (L, k)

f : Rd → R, x 7→WL+1σvLWLσvL−1 · · ·W2σv1W1x

Network parameters

• Wi is a ki × ki−1 matrix
• vi ∈ Rki
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Graphical equivalence

x1

x2

x3

x4

f (x)

Hidden layers
Input

Output

σ (w tx + w0)

Neural network with network architecture (2,(5,5))
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Multilayer feedforward neural networks

• Feedforward ↪→ Information is passed through the network in one direction
• Each neuron and the whole network are functions, resp.
• Each neuron receives signal from previous neurons, weights it using the weight

vector, shifts the value through the bias and then applies the activation function
to it

• Network architecture is given
• Weights and bias are chosen during the training process
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Multilayer feedforward neural networks

Special cases:

• L = 1 ↪→ Shallow neural networks
• L ≥ 2 ↪→ Deep neural networks
• If parameter s ∈ N bounds the number of weights in the network
↪→ Sparse neural networks

• No restriction by a parameter s ∈ N
↪→ Fully connected neural networks

Other famous network structures:

• Convolutional neural networks
• Recurrent neural networks
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Revolution of depth

Source: http://paddlepaddle.org/
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Network training

• Training ⇔ Optimization of the weights in the network
• Depending on the task: Choose a proper loss function
• Algorithms: (Stochastic) gradient descent
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Loss function

Given

• Data set (Xi ,Yi ) ∈ X × Y, i ∈ {1, . . . , n}
• Function class fc : X → Y, c ∈ C

Loss function calculates the quality of the function fit fc via

L(c) =
n∑

i=1
`(Yi , fc(Xi ))
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Loss function

Choice of the loss function: Distinguish between

• Classification: Neural network is asked which of the k categories an input belongs
to ↪→ i.e., image classification

• Regression: Neural network is asked to predict a numerical value given an input
↪→ Prediction tasks like the expected claim amount an insured person will make
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Loss functions

Regression:
Standard choice is empirical L2-risk

L(c) = 1
n

n∑
i=1

(Yi − fc(Xi ))2.

Classification in k classes:

• i-th output is written as a k-dimensional 0/1-vector Yi

• fc(Xi ) ∈ Rk is vector of probabilities ↪→ Returns the probability for each class to
be the correct one

• Standard choice: Loss induced by log-likelihood (also known as cross entropy)

L(c) = −
n∑

i=1
YT

i log(fc(Xi ))

18



Gradient descent

Aim: Minimize loss function

L(c) =
n∑

i=1
`(Yi , fc(Xi )).

Gradient descent: Choose initial parameter c0 ∈ RN and learning rate η > 0, move
along the sequence given by

ct+1 = ct − η · ∇cL(ct)

19



Stochastic gradient descent

• For large datasets, gradient descent is computational not feasible
• SGD uses for each update only one observation (Xt(i),Yt(i)),

ct+1 = ct − η · ∇c`(Yt(i), fc(Xt(i)))

• Computationally much faster
• But: Can introduce a lot of noise
• Compromise: Compute the gradient descent based on a small subset
↪→ mini-batch
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Function class of shallow neural networks

Function f : Rd → R of the form

f (x) =
K∑

k=1
αk · σ(wT

k x + vk)

with wk ∈ Rd , αk , vk ∈ R.

x1

x2

x3

x4

f (x)

σ
(
wT

5 x + v5
)

Shallow network with K = 5

Questions

• How large is this class? What functions can we generate?
• How well can we approximate functions of a specific smoothness?
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Universal approximation property

FK ,σ =
{

f (·) =
K∑

k=1
αk · σ(wT

k ·+vk) : wk ∈ Rd , vk , αk ∈ R
}

• Functions in the class FK ,σ have K (d + 2) parameters
• Nested space: FK ,σ ⊆ FK ′,σ for K ≤ K ′

Universal approximation property: Shallow networks with activation function σ have
the universal approximation property if for any ε > 0 and any continuous function f on
[0, 1]d , there exists an integer K = K (f , ε), such that

inf
g∈FK ,σ

‖f − g‖L∞([0,1]d ) ≤ ε.
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Universal approximation property

• One-dimensional case is much easier (e.g. for ReLU)
• Many different proofs for the universal approximation exist using

• Fourier transform
• Radon transform
• Hahn-Banach theorem

Discussion of different approaches gives us insights into how neural networks
approximate functions.
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How to show the universal approximation property

Many proofs first show universal approximation for the one-dimensional case

• Show, that univariate functions {σ(w ·+v) : w , v ∈ R} span the space of
continuous functions

• Scalar product of these functions is not considered here

Afterwards

• Show that the function space spanned by so-called ridge functions

f (·) =
K∑

j=1
gj(wT

j ·)

with gj univariate and continuous has the universal approximation property
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Why the detour via ridge functions?

• More flexible function class than shallow neural networks
• Fitting a ridge function to data is known as projection pursuit
↪→ Then we can also use shallow neural networks for projection pursuit

25



Universal approximation of polynomial activation functions

Activation function is a polynomial of degree r

• Span of {σ(w ·+v),w , v ∈ R} is contained in the space of polynomials with
degree at most r

• Strongly oscillating functions cannot be approximated by polynomials
• Universal approximation does not hold
• Hidden layers help in this case ↪→ Nesting helps to generate polynomials of a

higher degree
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Universal approximation for univariate functions

Theorem: Let σ ∈ C∞ and assume σ is not a polynomial. Then the corresponding
shallow neural network fulfills the univariate universal approximation property.
Proof:

• ∆1
hσ(t) := (σ(t + xh)− σ(t))/h

• ∆k
hσ(t) := ∆1

h(∆k−1
h σ)(t)

• definition of the k-th derivative  ∣∣∣∣∣∆k
hσ(t)
xk − σ(k)(t)

∣∣∣∣∣→ 0, as h→ 0
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Universal approximation for univariate functions

• σ is not a polynomial  there exists for each k a real number tk with σ(k)(tk) 6= 0
• multiplying with xk and division σ(k)(tk) yields∣∣∣∣∣∆k

hσ(tk)
σ(k)(tk) − xk

∣∣∣∣∣→ 0, as h→ 0

• for any h > 0, (σ(k)(tk))−1∆k
hσ(tk) can be realized by a shallow network with

k + 1 units
•  build networks approximating the function x 7→ xk arbitrarily well in sup-norm
• apply Weierstrass approximation theorem
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Universal approximation for univariate functions

Remarks

• Proof provides explicit construction of networks that closely resemble polynomials

• Weights in the network are of different sizes (some are extremely large, others very small)

• Conditions on the activation function are low: Only σ(k)(tk) 6= 0 must hold

↪→ Small perturbations of the activation function can lead to completely different properties

↪→ Linear activation function σ(x) = x resembles the space of linear functions

↪→ Small perturbations span the space of all continuous functions

↪→ Networks can use the local features of activation functions
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Universal approximation for univariate functions

Transfer to continuous activation functions

Theorem: Let σ be a continuous activation function, but no polynomial. Then the
corresponding shallow neural network fulfills the univariate universal property.

Proof:
Proof by contradiction. Assume that x → xk is not in span

⋃
K FK ,σ.

30



Universal approximation in L2

Lemma: Let f ∈ L2([0, 1]d ). Then, there exist w̃j ∈ Rd and cj ∈ R, j ≥ 1, such that

f (x) =
∞∑

j=1
c̃j cos(w̃T

j x)

(convergence in L2).
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Proof of universal approximation in L2

Proof:

• {φj : j ≥ 0} ONB for L2[0, 1]  {⊗d
k=1 φjk : j1, . . . , jd ≥ 0} ONB in L2([0, 1]d )

• any f ∈ L2([0, 1]d ) can be expanded in the cosine basis:

f (x1, . . . , xd ) =
∑

(i1,...,id )∈Nd

ai1,...,id

d∏
j=1

cos(ij · π · xj)

• Addition theorem

cos(u) cos(v) = 1
2(cos(u + v) + cos(u − v))

•  Applying this a lot of time

f (x1, . . . , xd ) =
∑

(i1,...,id )∈Nd

ai1,...,id

d∏
j=1

cos(ij · π · xj) =
∑

j
c̃j · cos(w̃T

j x)

for suitable w̃j ∈ Rd and c̃j ∈ R. 32



Universal approximation via Fourier transform

• Fourier transform F f (ξ) =
∫

e−iξT xf (x)dx
• Inverse Fourier transform F−1f (x) = (2π)−d ∫ eixT ξf (ξ)dξ

↪→ f = F−1F f
• For any complex number z , z = |z |eiφ for some real number φ = φ(z)
↪→ There exists a real valued function φ(w) such that

F f (w) = eiφ(w)|F f (w)|

• Fourier inversion

f (x) = 1
(2π)d Re

∫
eiwT xeiφ(w)|F f (w)|dw

= 1
(2π)d

∫
cos(wT x + φ(w))|F f (w)|dw
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Universal approximation via Fourier transform

f (x) = 1
(2π)d

∫
cos(wT x + φ(w))|F f (w)|dw

• Discretization of the integral gives the structure of a shallow neural network with
activation function cos()

• Barron (1993) used this to show convergence rates of shallow neural networks
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Universal approximation via Fourier transform

Similar approach shows the universal approximation for a broader class of activation
functions. Here the following identity is used.

Lemma: If f ∈ L2(Rd ) and φ ∈ L1(R) with Fφ(1) 6= 0, then

f (x) = 1
(2π)dFφ(1)

∫
Rd+1

φ(wT x + v)F f (w)e−iv dvdw.

Proof: Follows by Fourier inversion

f (x) = 1
(2π)d

∫
eiwT x(F f )(w)dw

and ∫
R
φ(wT x + v)e−iv dv = eiwT x

∫
R
φ(wT x + v)e−i(wT x+v)dv = Fφ(1)eiwT x.

35



Universal approximation via Fourier transform

Problem: Most of the activation functions are not in L1(R).

Remedy

• Sigmoidal activation function σ − σ(·+ ∆) is in L1 for ∆ > 0
• ReLU activation function σ(x)− 2σ(x − 1) + σ(x + 2) is in L1

Lemma shows that fast approximation rates can be obtained if φ are F f smooth and
F f decreases quickly.
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Universal approximation via Radon transform

Radon transform returns all line integrals of a function

Rf (s,w) =
∫
〈x,w〉=s

f (x)dµd−1(x)

Inverse Radon transform (on an appropriate space)

f (x) =
∫
‖w‖=1

k(wT x,w)d µ̃d−1(w).

↪→ Universal approximation property: Show that the integral can be approximated by a
Riemann sum (see Carroll und Dickinson (1989)).
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Approximation rates for shallow neural networks

How well can we approximate functions with a special smoothness by shallow
neural networks?

Result of Mhaskar (1996): Let

• σ be a smooth activation function
• the true function be β-smooth in the L2-Sobolev sense

then a shallow network with m hidden neurons achieves an rate of approximation

m−β/d ,

where d is the dimension of the target function.
Sketch of the proof: Approximate polynomials of ridge functions first ↪→ standard
results of polynomials lead to the rate
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Approximation rates for shallow neural networks

Result of Petrushev (1999): For (in the Sobolev-sense) s-smooth activation
functions, optimal approximation rates are obtained for s + (d −1)/2-smooth functions.

↪→ Good approximation rates for functions that are smoother than the activation
function

↪→ Effect becomes better as input dimension increases

Sketch of the proof:

• Univariate universal approximation and reduction to ridge functions
• Approach via Radon transform ↪→ Has polynomial eigenbasis
• Standard results for approximation via multivariate polynomials
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Criticism

• Proofs always relate shallow networks to polynomials
• Would obtain same approximation rates by directly using polynomials
• Does not help to identify problems where neural networks perform better than

other methods
↪→ Barron’s result
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Barron’s result

Approach uses Maurey’s theorem:
Theorem Let (H, ‖ · ‖) be a separable Hilbert space and G ⊂ H. Denote by conv(G)
the closure of the convex hull of G. For any f ∈ conv(G) there exist g1, . . . , gm ∈ G
such that ∥∥∥∥∥∥f − 1

m

m∑
j=1

gj

∥∥∥∥∥∥ ≤ supg∈G‖g‖√
m .
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Barron’s result

Fourier representation:

f (x)− f (0) = 1
(2π)d

∫ (
cos(wT x + φ(w))− cos(φ(w))

)
|F f (w)|dw

=
∫

g(x,w, φ(w))dΛ(w), (1)

with

• ‖w‖1 = ∑d
j=1 |wj |

• Cf =
∫
‖w‖1|F f (w)|dw

• dΛ(w) = C−1
f ‖w‖1|F f (w)|dw

• g(x,w, v) = Cf (2π)−d (cos(wT x + v)− cos(v))/‖w‖1
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Barron’s result

f (x)− f (0) =
∫

g(x,w, φ(w))dΛ(w)

• Λ is a probability measure
• f (·)− f (0) lies in the closure of the convex hull of the class

Gcos := {g(·,w, v) : w ∈ Rd , v ∈ [0, 2π]}

• It can be shown that conv Gcos lies in

conv {γσ(wT ·+v) : |γ| ≤ 2Cf /(2π)d ,w ∈ Rd , v ∈ R}

for any sigmoidal activation function σ
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Barron’s approximation theorem

Application of Maurey’s theorem ↪→

• for any sigmoidal activation function,
• any m ≥ 1,
• any function f

exist a shallow neural network with∥∥∥∥∥∥f (·)− f (0)−
m∑

j=1
cjσ(wT

j ·+vj)

∥∥∥∥∥∥ ≤ 2Cf
(2π)d√m .

↪→ Rate is independent of the dimension d
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On Barron’s rate

• Cf =
∫
‖w‖1|F f (w)|dw

• Candes (2002) shows, that truncated Fourier series achieve an even faster
approximation rate

m−1/2−1/d

for the same function class {f : Cf <∞}
↪→ Shallow networks do not outperform
↪→ Summarizing: Approximation properties for shallow neural networks can also be

shown for Fourier series or polynomial approximation
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Statistical model

How perform shallow neural networks on unknown new data sets?

Nonparametric regression problem

• (X,Y ) is Rd × R-valued random variable with E{Y 2} <∞
• i.i.d. copies of (X,Y ) of size n ↪→ Dn = {(X1,Y1), . . . , (Xn,Yn)}
• Aim: Construct an estimator mn(·) = mn(·,Dn) : Rd → R for the regression

function m : Rd → R, m(x) = E{Y |X = x} such that∫
|mn(x)−m(x)|2PX(dx)

is small
↪→ Covers binary classification problem: Choose Y ∈ {0, 1} and m(x) = P{Y |X = x}
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Oracle inequality

• mn minimizes empirical risk:

mn ∈ argminθ∈Θ

n∑
i=1

(Yi −mθ(Xi ))2

• Standard results of empirical process theory: In case that Θ is a discrete set with
cardinality |Θ| we have

E
∫
|mn(x)−m(x)|2PX(dx) ≤ C · inf

θ∈Θ
|m −mθ|2 + C · log |Θ|

n
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Statistical bound for shallow networks

Barron’s result (1994):

• Neural networks of FK ,σ have K (d + 2) parameters
↪→ Discretize network parameters

log |Θ| ≤ K (d + 2) log n

• Oracle inequality + approximation theory:

E
∫
|mn(x)−m(x)|2PX(dx) ≤ const ·

( 1
K + K · log n

n

)
falls Cf =

∫
‖w‖1|F f (w)|dw <∞.

• Bias variance trade-off: K =
√

n/ log n
• Yields the rate √

log n
n
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Summary

Shallow neural networks:

• Universal approximation property
• Approximation rates
• Convergence rates

No advantages over Fourier series or polynomials

Next topic: Advantages of several hidden layers
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