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Joint works with

B. Noris and C. Sourdis (CMP 2014)
J. Royo-Letelier (Calculus of Variations and PDE’s 2014)

Motivated from numerical simulations in

Aftalion-Mason (PRA 2012 and PRA 2013).
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A two component Bose Einstein condensate is a mixture of 2 species
describing:

2 different isotopes of the same alkali atom,
or isotopes of different atoms,
or a single isotope in 2 different hyperfine spin states.

Described by 2 wave functions ψ1 and ψ2 with
∫
|ψ1|2 = N1,

∫
|ψ2|2 = N2

minimizing a Gross Pitaevskii energy with a coupling term.

The coupling can be either through the modulus or through the phase (spin
orbit coupling or Rabi coupling).
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Gross Pitaevskii energy for a single condensate

A single Bose Einstein condensate is in a state which minimizes

E(ψ) =

∫
IR2

1

2
|∇ψ|2 +

1

2ε2
r

2|ψ|2 +
g

2ε2
|ψ|4,

under
∫
|ψ|2 = 1. Mathematical limit: ε→ 0.

−
ε2

2
∆ψ +

1

2
r

2
ψ + |ψ|2ψ = λψ

Leading order, inverted parabola profile:
|ψ|2 = λ2 − (1/2)r2. Exponential decay at infinity.

Ignat-Millot Uniqueness and convergence to Thomas Fermi profile

Karali-Sourdis very precise estimates. Painlevé boundary layer. See also
Gallo-Pelinovski. Based on perturbation arguments to construct an
approximate solution, and then use the properties of the linearized operator to
get a true solution. The uniqueness implies that it is the ground state.
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Two component condensates

2 wave functions ψ1 and ψ2 with
∫
|ψ1|2 = N1,

∫
|ψ2|2 = N2

Eg(ψ) =

∫
1

2
|∇ψ|2 +

1

2ε2
r

2|ψ|2 +
g

2ε2
|ψ|4,

E = Eg1(ψ1) + Eg2(ψ2) +
g12

ε2

∫
|ψ1|2|ψ2|2

ε: small parameter

Important parameter Γ12 = 1− g212
g1g2

.

Γ12 > 0: coexistence of the components

Γ12 < 0: segregation (breaking of symmetry)
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Coexistence case: 2 disks or a
disk and an annulus
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We look for positive solutions of

−
1

2
∆ψ1 +

ψ1

ε2
(g1|ψ1|2 + g12|ψ2|2) =

1

ε2
ψ1(λ1 −

1

2
r

2
)

−
1

2
∆ψ2 +

ψ2

ε2
(g12|ψ1|2 + g2|ψ2|2) =

1

ε2
ψ2(λ2 −

1

2
r

2
)

with
∫
|ψ1|2 = N1,

∫
|ψ2|2 = N2. Thomas-Fermi profile given by

g1|ψ1|2 + g12|ψ2|2 = λ1 −
1

2
(1− Ω

2
)r

2

g12|ψ1|2 + g2|ψ2|2 = λ2 −
1

2
(1− Ω

2
)r

2

In the case Γ12 > 0, there is a solution to the reduced limiting system, there
is a unique positive solution and we can analyze the convergence.

In the case Γ12 < 0, there is a Γ convergence to an interface problem.
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Coexistence case, Γ12 > 0

leading order, inverted parabola profile:

g1|ψ1|2 + g12|ψ2|2 = λ1 −
1

2
(1− Ω

2
)r

2

g12|ψ1|2 + g2|ψ2|2 = λ2 −
1

2
(1− Ω

2
)r

2

Either 2 disks with different radii if g12 <
g1+

√
g21+8g1g2

4 (if g1 ≤ g2), or a disk
and an annulus. Convergence in the TF limit. Aftalion-Noris-Sourdis
following Aftalion-Jerrard-Letelier and Karali-Sourdis:

• uniqueness of the ground state and of solutions with decay. We use the
division trick of Lassoued-Mironescu to prove existence. No moving plane
method works to get radial symmetry.

• precise estimate of the convergence to the Thomas-Fermi limit. Proved by
constructing an approximate solution. Then using the linearized operator, we
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perturb it to a genuine solution. By uniqueness, it is the ground state.

Inside the Thomas-Fermi radius: convergence in ε2| log ε|.

Outside: exponentially small.

Size of ε1/3 around the Thomas-Fermi radius.

As in Aftalion, Jerrard, Royo-Letelier, we can prove that the solution remains
real valued (no vortex in the small density region) until the critical rotational
value for nucleation of the 1st vortex in the bulk.
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Segregation case

If Γ12 = 1− g212
g1g2

< 0, phase separation is expected: asymptotic limit
Γ12 → −∞, or g12 →∞. The coexistence region gets asymptotically small.
Two droplets are expected.

We define ρT = |ψ1|2 + |ψ2|2, ψk =
√
ρTχk, χk = |χk|eiθk so that

|χ1|2 + |χ2|2 = 1 and Sz = |χ1|2 − |χ2|2. We have Sz = 1 when only
component 1 is present, Sz = −1, when only component 2 is present.

• Γ12 → −∞, g1 = g2: Thomas Fermi regime with inverted parabola profile
for ρT = |ψ1|2 + |ψ2|2. Gamma convergence to a De Giorgi type problem
(Aftalion- Royo-Letelier). Write Sz = cosφ, then the energy becomes∫
|∇√ρT |

2
+
ρT

2
|∇φ|2 +

1

2ε2
r

2
ρT + g12

ρ2
T

4ε2
(1− cos

2
φ) + g1

ρ2
T

4ε2
(1 + cos

2
φ)

If g12 is large, then cos2 φ ∼ 1 almost everywhere, except on a boundary
layer.
ρT is almost TF, and vanishes at interface.
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We go back to the GP energy for a single condensate:

Eε(η) =

∫
1

2
|∇η|2 +

1

2
r

2|η|2 +
g1

2ε2
|η|4.

under
∫
η2 = N1 +N2. We call η the ground state. Let ρT = ηv. Then the

energy splits into
Eε(η) + Fε(v) +Gε(φ)

with
Fε(v) =

∫
1

2
η

2|∇v|2 +
g1

2ε2
η

4
(1− |v|2)2

Gε(φ) =

∫
1

2
η

2
v

2|∇φ|2 +
g

2ε2
(1−

g1

g
)η

4
v

4
(1− cos

2
φ)

Fε is a Modica Mortola type energy with weight.

|v| is 1 almost everywhere, but goes to zero on the interface region between
the two components. Note that g →∞, so that ε/

√
g << ε.

We prove that Gε converges to 0 and Fε converges to c∗
∫
interface

η3.
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Slicing device of Ambrosio-Tortorelli

Limiting problem

defined by the inverted parabola η2 = (λ− 1
2r

2)+, where D is the disk of
radius

√
λ/2 and

∫
D
η2 = N1 +N2.

Find the optimal D1 and D2 such that

D = D1 ∪D2,
∫
D1
η2 = N1,

∫
D2
η2 = N2 and they minimize∫

∂D1∩∂D2
η3.

Better to have half spaces than disk+annulus to minimize this interface
integral, if N1, N2 are not too small.

In the case of no trapping, results about the limiting problem:
Sternberg-Zumbrum and recently Alikakos-Faliagas.

Related results of Berestycki-Lin-Wei-Zhao (no trapping potential). See also
for bounded domains Caffarelli-Lin, Dancer et al,
Noris-Tavares-Terracini-Verzini.

full screen quit



13

If g is of order 1, then the 2 functionals interplay in the limit and v goes down
to m instead of 0 (recent result of Goldman, Royo-Letelier).

If g1 6= g2, then the limiting problem is on the Thomas Fermi profile: the two
radii are not the same.
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Spin orbit coupling
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Spin orbit coupled condensates∫ ∑
k=1,2

(
1

2
|∇ψk|2 +

1

2
r

2|ψk|2 +
gk

2
|ψk|4

)
+ g12|ψ1|2|ψ2|2

−κψ∗1
(
i
∂ψ2

∂x
+
∂ψ2

∂y

)
− κψ∗2

(
i
∂ψ1

∂x
−
∂ψ1

∂y

)
under the constraint

∫
|ψ1|2 + |ψ2|2 = 1.

We assume g1 = g2 = g and define δ = g12/g.

Aftalion-Mason, PRA 2013

We define ρT = |ψ1|2 + |ψ2|2, ψk =
√
ρTχk, χk = |χk|eiθk so that

|χ1|2 + |χ2|2 = 1 and Sz = |χ1|2 − |χ2|2, Sx = χ∗1χ2 + χ∗2χ1,
Sy = −i(χ∗1χ2 − χ∗2χ1).

δ > 1: segregation: at κ = 0, one component is empty. As κ increases, to a
giant skyrmion (disk+ thin annulus circulation 1), to multiple annuli and
eventually stripes.

full screen quit



16

 

 

−5 0 5

−5

0

5

1

2

3(I)

(a)

 

 

−5 0 5

−5

0

5

1

2

3

(I)

(b)

 

 

−5 0 5

−5

0

5

1

2

3

(II)

 

 

−5 0 5

−5

0

5

1

2

3

(II)

Figure 1: Left column (a): (δ, κ) = (1.5, 1.25) and right column
(b): (δ, κ) = (1.5, 1.5). Density plots (frame (I), component-1, and
(II), component-2).
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Question: understand the Gamma limit of the spin orbit term in the
segregation case?

−κψ∗2
(
i
∂ψ1

∂x
−
∂ψ1

∂y

)
and how it competes with the term

∫
interface

η3.

Formally in the case disk+annulus, we find that the circulation in each
annulus is 1.
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Two component condensates with rotation
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2 component condensate: 2 wave functions, new phases and defects.
V. Schweikhard, I. Coddington, P. Engels, S. Tung, and E. A. Cornell (2004): a
square lattice is stabilized in a two component condensate.
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Two component condensates with rotation

(Aftalion-Mason) 2 wave functions ψ1 and ψ2 with
∫
|ψ1|2 = N1,∫

|ψ2|2 = N2

EΩ,g(ψ) =

∫
1

2
|∇ψ − iΩ× rψ|2 +

1

2
r

2|ψ|2(1− Ω
2
) +

1

2
g|ψ|4,

E = EΩ,g1
(ψ1) + EΩ,g2

(ψ2) + g12

∫
|ψ1|2|ψ2|2

• g12 small: 2 components are disk-shaped with vortex lattices. a vortex in
component 1 corresponds to a peak in component 2. Square lattice.

• g12 large: phase separation and breaking of symmetry: rotating droplets

• intermediate regime: phase separation but no breaking of symmetry, one
component is a disk, the other is an annulus. Skyrmion in the boundary layer

• vortex sheets
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Vortex sheets

Add rotation. This requires to understand the equation for Sz (or φ) at leading
order.
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Case with rotation

• until the first vortex, the minimizer is unique and real valued. Done by
division of the ground state at Ω, by the ground state at Ω = 0 and with
jacobian estimates, we prove that the ratio is 1. It means that the ground state
stays real valued until the first vortex. (Aftalion-Noris-Sourdis).

− computation of the critical velocity for the 1st vortex, called Ωc (in
component with larger radius). (Aftalion-Mason-Wei)

− vortex peak interaction. The equation of the vortex core has to be replaced
by a system of vortex/spike (f(r)eiθ, S(r)) where (f(r), S(r)) satisfies

(rf ′)′

r
−
f

r2
+ α1f(1− f2

) + α12S
2
f = 0,

(rS′)′

r
+ α2S(1− S2

) + α12f
2
S = 0.

Related results by Eto, Kasamatsu, Nitta, Takeuchi, Tsubota, in the case of a
homogeneous condensate.
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Existence of a non degenerate solution, upper bound for the full problem
(Aftalion-Wei). Related results: Alama-Bronsard-Mironescu.

−
∑
i,j

(log |pi − pj|+ log |qi − qj|) +
∑
i

(|pi|2 + |qi|2) +
∑
i,j

cΩ

|pi − qj|2

where pi are the vortices for component 1, qj are the vortices for component

2 and cΩ =
π(1−Γ12)| log g1|

2

8Γ2
12N1g1

(2 Ω
Ωc
− 1). At some critical value of cΩ, the lattice

goes from triangular to square: relation between Γ12 and Ω.
From Kasamatsu-Tsubota-Ueda, vortex lattices:
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Work in progress on Rabi coupling (with P.Mason)

The coupling is ∫
ψ
∗
1ψ2 + ψ1ψ

∗
2.

In the rotation case, different geometries on the vortex patterns for which we
can get an asymptotic analysis
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Open Questions

In the segregation case, prove properties of the limiting problem.

In the spin orbit coupling segregation case, get the Γ convergence to
understand the disk+annuli and stripes configurations.

In the rotation segregation case, get the Γ convergence to understand the
stripes

In the rotating coexistence case, get more precise energy estimates for the
vortex/spike problem.

In the rotating coexistence case, analyze the lattice using Theta functions
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