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Introduction to random fields

Let (©2,.A,P) be a probability space and for d > 1, T C RY is a set of
indices

A (real) stochastic process indexed by T is just a collection of real
random variables X; : (, A) — (R, B(R)) measurable, Vt € T.

Exples :

m d =1, X;(w) =heart frequency at time t € T C R, with noise
measurement or for an individual w. In practice data are only
available on a discrete finite subset S of T

md=2,T=][0,1]? Xi(w) = grey level of a picture at point t € T.
In practice data are only available on pixels
$=1{0,1/n,...,1}?> C T for an image of size (n+ 1) x (n+ 1).



Introduction to random fields

The distribution of (X;)teT is given by all its finite dimensional
distribution (fdd) ie the distribution of all real random vectors

Xy ooy Xe,) for k> 1,t1,...,tx € T.

Joint distributions are often difficult to compute !

Definition
(Xi)teT is a second order of process if E(X?) < +oc forall t € T.
m Mean function mx :t € T — E(X;) € R

m Covariance function Kx : (t,s) € T x T — Cov(X¢, Xs) € R.



Introduction to random fields

When mx = 0, the process X is centered. Otherwize Y = X — my is
centered and Ky = Kyx.

Proposition

A function K : T x T — R is a covariance function iff

K is symmetric

K is positive definite : ¥k > 1,ty,...,tx € T, A1,..., \x € R,

k
Z )\,‘)\J'K(t,', tj) > 0.
=



Gaussian Processes

(Xt)teT is a Gaussian process if Vk > 1, ty,... .ty € T

(Xty, - -+, Xe,) is a Gaussian vector of R,

K
EQ VA1,..., ¢k € R, the real random variable Z AiXe, is a Gaussian
i=1
variable.

Proposition

When (X¢)teT is a Gaussian process, (X:)teT is a second order process
and its law is determined by its mean function mx : t — E(X;) and its
covariance function Kx : (t,s) — Cov(Xz, Xs).

Theorem (Komogorov)

Let m: T —Rand K: T x T — R, symmetric and positive definite,
then there exists a Gaussian process with mean m and covariance K.



Brownian motion on RT

T = ]RJF and (Xk)k iid ]E(Xk) =0 and Var(Xk) =1

[nt]

Vte T,S,(t) = Zxk

By CLT S,(t) }: N(0, ). Moreover, if tg =0 < t; < ... <t
n o0

(Sa(tr): Salt2) = Sa(tr), -, S(t) = Sulte-1)) =2 Z = (Z1,..., 20,

with Z ~ N(O, Kz) for Kz = diag(tl, to —t1,...,t — l'kfl). Hence
(Sn(tl)a Sn(t2)7 B Sn(tk))
- P(Sn(tl)a 5n(t2) - Sn(tl)a EERE 5n(tk) - Sn(tk—l))
d
— Pz

n——+oo

with PZ ~ N'(0, PKzP*) and PKzP* = (min(t;, t;})); <; ;-

)



Brownian motion on IR

Note that K(t,s) = min(t,s) = 2 (t+s — |t — s|) is a cov. func. on
R* x R*. Let B, = X for t > 0, B, = X® for t < 0 with X() and
X® 2iid K.

Definition

A (standard) Brownian motion on R is a centered Gaussian process
(Bt)ter with covariance function given by
Cov(B:, B;) = 1 (|t| + |s| — |t —s|), Vt,s €R.




Gaussian fields from processes

Proposition

Let K : R x R — R be a continuous covariance function. For all j
positive finite measure on S9=1

(x,y) s K(x-0,y-0)du(0),

is a covariance function on R x RY.
Exple : Note that [, , |x - 0]d0 = cg||x||, with cg = [, |e - 0]d0 for
e=(1,0,...,0). Then,

Cd
[, Kolx- 0.y -0)d0 = S (Ixl+ Iyl = I« = 1)



Lévy Chentsov random field

A (standard) Levy Chentsov field on RY is a centered Gaussian field

(Xx)xere with covariance function given by
Cov(Xy, Xy) = 5 (llxll + llyll = lIx = ¥}, ¥x,y € RY.
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Gaussian fields from processes

Let K1, K>, ..., Ky covariance functions on R x R, then
d

(,y) = [ Kilxi, %),

i=1
is a covariance function on R? x RY.

Exple : Brownian sheet (x,y) — []"_, s(Uxil + lyil = |xi — yil)



Stationarity

X = (X)xerd (strongly) stationary if, ¥xg € RY, (Xyix, )xcre has the
same law than X.

If X = (Xy)xcre Stationary and second order, Vxo € RY,
B mx(x) = mx
m Kx(x,y) = cx(x — y) with cx : R? = R s.t.

cx(0) >0

lex (x)] < ex(0) ¥x € RY

cx Is of positive type ie
Vk>1,x1,...,x €ERI A, ... M ER,

k
Z )\,’)\J'CX(X,' — XJ) Z 0.

ij=1



Stationarity

Theorem (Bochner 1932)

An even continuous function ¢ : RY — R is of positive type if and only if
c(0) > 0 and there exists a symmetric probability measure v on R? such
that

c(x) = <(0) / e dy(x).
Rd
In other words there exists a symmetric random vector Z on R? such that

c(x) = c(0)E(e™4).

Rk : When cx is the covariance of the stationary field X, vx is called the
spectral measure of X.



Ornstein Uhlenbeck process

Let B a Brownian motion on RT, § > 0 and define
X, = e % B a0,
then X is a centered stationary Gaussian process on R with covariance
Cov(Xe, Xs) = e lt=sl vt s e R,

and I/X(dt) = ﬂegifmdt

oA L : I
; WA W . /Ww -
WY N W

=5 h=1 0=1/5




Isotropy

Definition
X = (Xx)xerd isotropic if, VR rotation, (Xrx)xere has the same law than
X.

Exple : the Lévy Chentsov field is isotropic since

1
Cov(Xre, Xry) = 5 ([IRx]l + [[Ryll = [|Rx — Ry[)
= Cov(Xy, X,)

Exple : If g(t) = e~*'/2 then k(t,s) = g(t — s) covariance and

d
—Ix—yll?
K(x,y) = e 172 = T k(xiv0),
i=1

allows to define a stationary isotropic Gaussian field.



Isotropy

Gaussian covariance
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[Powell, LNS, 2014]



Self-similarity

Definition
X = (Xx)xerd Self-similar of order H > 0 if, Vc > 0, (X )xerd has the
same law than cM'X.

Exple : the Lévy Chentsov field is self-similar of order H = 1/2 since

1
Cov(Xex, Xoy) 5 Ulexll +lleyll = flex = exll)

= cCov(Xy, X,) = Cov(c'/2X,, c'/2X,)

Corollary

There does not exist a (non-trivial) stationary self-similar field.



Stationary increments

X = (Xy)xere has (strongly) stationary increments if, Vxo € RY,
(Xxtxo — Xxo )xecre has the same law than (Xy — Xo)xcRre-

Proposition

If X = (Xx)xere second order centered with s.i. and Xo =0 a.s.,
m Kx(x,y) = 3 (vx(x) + vx(y) — vx(x = y)), Vx,y € R
B vx(x) = Var(Xitx — Xs) = Var(X) called variogram s.t.
vx(0) =0
vx(x) > 0 and vx(—x) = vx(x)

vx is conditionally of negative type ie
Vk > 1,x3,...,x¢ € Rd,)\l,...,)\k € R,



Stationary increments

Theorem (Schoenberg)
Let v : RY — R be an even continuous function. EQU

i) v is conditionally of negative type

i) K:(x,y)— 3 (v(x)+ v(y) — v(x — y)) is a covariance function

i) VA >0, e v is of positive type

Corollary (Istas, 2006)

H

If v is a variogram then v" is a variogram YH € (0, 1].



Fractional Brownian fields

Definition

A (standard) Fractional Brownian field on RY, with Hurst parameter
H € (0,1), is a centered Gaussian field (By)ycre with covariance
function given by

Cov(BH(x), Bu(y)) =

N

(1[I + [y 127 = [lx = y[27) , ¥x,y € RY.




Fractional Brownian fields

Main Properties :

m stationary increments : Vxp € RY, By(xo + ) — Bu(x0) = Bnu(")

m H self-similarity : Vc > 0, By(c-) o c"By(+)

m Isotropy : VR rotation By(R-) o Bu(+)

w Uniqueness up to a constant
Remarks :

m for d =1 called fractional Brownian motion [Kolmogorov, 1940],
[Mandelbrot and Van Ness, 1968]

m sssi implies that H <1

m (isotropic) sssi for H =1 corresponds to (Z - x)epe With Z
(isotropic) Gaussian vector on RY.



Anisotropic generalizations

Let H € (0,1) and vy : t € R~ |t|?F, conditionally of negative type. If
s a finite positive measure on S971,

) = [ (o) = [ oo ua) = e (25 ) I6IP7.

is conditionally of negative type function on RY.

Let Xu,,, = (X#,u(X))xecre be a centered Gaussian random field with s.i.
and variogram vy, it is still H s.s. but may not be isotropic

= ¢y, is called topothesy function

Exple : Let d =2 and for a € (0,7/2], u(d0) = 1(_4,4)(0)d0



Elementary anisotropic fractional Brownian fields

Then cy o is a 7 periodic function defined on (—7/2,7/2] by

BH lfsinéafe) +BH 1+sin§o¢+9) if —a<6+ % <a
CH,a(‘g) — 92H BH 1+sin§a—9) + 5H 1—sin2(a+9) if —a<6O-— % <a
/8H 1—sin§a—6) _ /BH 1+sin§a+9) ‘ otherwise

with 3, (t) = [ uf=1/2(1 — u)"=/2du is a Beta incomplete function.

EFBF a=x3 Topothesy EFBF H=0.5
1 11
—— 08

k=02

[HB, Moisan, Richard, 2015]



Elementary anisotropic fractional Brownian fields

H=02 oa=n/3 H=08, a=7/3

a=w/3, H=0.5 a=m/6, H=0.5



Operator scaling random fields

Let E be a d x d diagonalizable matrix with eigenvalues
a;t,...,azt € [1,+00) and 64, .., 0, be such that E*0; = a;'0;.
For H € (0, 1], we define the variogram

d H d H
vi,e(x) = 7e(x)*" = <Z|<X’ 9i>|2“i> = (Z Ve ((x,9;>)>

Let Xy,e = (XH,e(x))xere be a centered Gaussian random field with s.i.
and variogram vy g. Then, it is (E, H) operator scaling :

Ve > 0, Xpue(cF) e Xy e().

[HB, Meerschaert, Scheffler, 2007] & [HB, Lacaux, in preparation]



SS Operator scaling random fields

When oy = ... =ag = a € (0,1], Xy, is aH self-similar.

Tapothesy OSSS o=075 Topothesy 0SSS o H=0.5
1.18 T T T T T T T 15
o H=0.7
1.18 o He05
o H=02 T4
114 =
1.12 1 13
1.1 1
12
1.08 1
1.08 1 11
1.04 ]
1
1.02 1
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SS Operator scaling random fields

Self-similar of order Hayy = Hay = 0.5
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