Introduction to random fields and scale invariance: Lecture I

Hermine Biermé

4th april 2016, Stochastic Geometry conference, Nantes

Outlines

- 1 Random fields and scale invariance
- Sample paths properties
- 3 Simulation and estimation
- Geometric construction and applications

Lecture 1 :

- 1 Introduction to random fields
 - Definitions and law
 - 2 Gaussian processes
 - Gaussian fields from processes
- Stationarity and Invariances
 - Stationarity and Isotropy
 - 2 Self-similarity or scale invariance
 - 3 Stationary increments
 - Operator scaling Property

Introduction to random fields

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and for $d \geq 1$, $\mathcal{T} \subset \mathbb{R}^d$ is a set of indices

Definition

A (real) stochastic process indexed by T is just a collection of real random variables $X_t: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ measurable, $\forall t \in T$.

Exples:

- d=1, $X_t(\omega)$ =heart frequency at time $t\in T\subset \mathbb{R}$, with noise measurement or for an individual ω . In practice data are only available on a discrete finite subset S of T
- d=2, $T=[0,1]^2$, $X_t(\omega)=$ grey level of a picture at point $t\in T$. In practice data are only available on pixels $S=\{0,1/n,\ldots,1\}^2\subset T$ for an image of size $(n+1)\times (n+1)$.

Introduction to random fields

Definition

The distribution of $(X_t)_{t \in T}$ is given by all its finite dimensional distribution (fdd) ie the distribution of all real random vectors

$$(X_{t_1}...,X_{t_k})$$
 for $k \geq 1, t_1,...,t_k \in T$.

Joint distributions are often difficult to compute!

Definition

 $(X_t)_{t\in \mathcal{T}}$ is a second order of process if $\mathbb{E}(X_t^2)<+\infty$ for all $t\in \mathcal{T}$.

- Mean function $m_X: t \in T \to \mathbb{E}(X_t) \in \mathbb{R}$
- Covariance function $K_X : (t,s) \in T \times T \to Cov(X_t,X_s) \in \mathbb{R}$.

Introduction to random fields

When $m_X = 0$, the process X is centered. Otherwize $Y = X - m_X$ is centered and $K_Y = K_X$.

Proposition

A function $K: T \times T \to \mathbb{R}$ is a covariance function iff

- 1 K is symmetric
- **2** K is positive definite: $\forall k \geq 1, t_1, \ldots, t_k \in T, \lambda_1, \ldots, \lambda_k \in \mathbb{R}$,

$$\sum_{i,j=1}^k \lambda_i \lambda_j K(t_i,t_j) \geq 0.$$

Gaussian Processes

Definition

$$(X_t)_{t\in \mathcal{T}}$$
 is a Gaussian process if $\forall k\geq 1,t_1,\ldots,t_k\in \mathcal{T}$
$$(X_{t_1},\ldots,X_{t_k}) \text{ is a Gaussian vector of } \mathbb{R}^k,$$

 $EQ \ \forall \lambda_1, \ldots, \lambda_k \in \mathbb{R}$, the real random variable $\sum_{i=1}^n \lambda_i X_{t_i}$ is a Gaussian variable.

Proposition

When $(X_t)_{t\in T}$ is a Gaussian process, $(X_t)_{t\in T}$ is a second order process and its law is determined by its mean function $m_X: t\mapsto \mathbb{E}(X_t)$ and its covariance function $K_X: (t,s)\mapsto Cov(X_t,X_s)$.

Theorem (Komogorov)

Let $m: T \to \mathbb{R}$ and $K: T \times T \to \mathbb{R}$, symmetric and positive definite, then there exists a Gaussian process with mean m and covariance K.

Brownian motion on \mathbb{R}^+

$$T=\mathbb{R}^+$$
 and $(X_k)_k$ iid $\mathbb{E}(X_k)=0$ and $\mathrm{Var}(X_k)=1$

$$\forall t \in T, S_n(t) = \frac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor nt \rfloor} X_k.$$

By CLT
$$S_n(t) \xrightarrow[n \to +\infty]{d} \mathcal{N}(0,t)$$
. Moreover, if $t_0 = 0 < t_1 < \ldots < t_k$,

$$(S_n(t_1), S_n(t_2) - S_n(t_1), \ldots, S_n(t_k) - S_n(t_{k-1})) \xrightarrow[n \to +\infty]{d} Z = (Z_1, \ldots, Z_k),$$

with
$$Z \sim \mathcal{N}(0, K_Z)$$
 for $K_Z = \text{diag}(t_1, t_2 - t_1, \dots, t_k - t_{k-1})$. Hence

$$(S_n(t_1), S_n(t_2), \dots, S_n(t_k)) = P(S_n(t_1), S_n(t_2) - S_n(t_1), \dots, S_n(t_k) - S_n(t_{k-1})) \xrightarrow{d} PZ,$$

with $PZ \sim \mathcal{N}(0, PK_ZP^*)$ and $PK_ZP^* = (\min(t_i, t_j))_{1 \leq i,j \leq k}$

Brownian motion on \mathbb{R}

Note that $K(t,s)=\min(t,s)=\frac{1}{2}\left(t+s-|t-s|\right)$ is a cov. func. on $\mathbb{R}^+\times\mathbb{R}^+$. Let $B_t=X_t^{(1)}$ for $t\geq 0$, $B_t=X_{-t}^{(2)}$ for t<0 with $X^{(1)}$ and $X^{(2)}$ 2 iid K.

Definition

A (standard) Brownian motion on \mathbb{R} is a centered Gaussian process $(B_t)_{t\in\mathbb{R}}$ with covariance function given by $Cov(B_t,B_s)=\frac{1}{2}\left(|t|+|s|-|t-s|\right),\ \forall t,s\in\mathbb{R}.$

Gaussian fields from processes

Proposition

Let $K: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous covariance function. For all μ positive finite measure on S^{d-1}

$$(x,y) \mapsto \int_{S^{d-1}} K(x \cdot \theta, y \cdot \theta) d\mu(\theta),$$

is a covariance function on $\mathbb{R}^d \times \mathbb{R}^d$.

Exple: Note that $\int_{S^{d-1}} |x \cdot \theta| d\theta = c_d ||x||$, with $c_d = \int_{S^{d-1}} |e \cdot \theta| d\theta$ for $e = (1, 0, \dots, 0)$. Then,

$$\int_{S^{d-1}} K_B(x \cdot \theta, y \cdot \theta) d\theta = \frac{c_d}{2} (\|x\| + \|y\| - \|x - y\|).$$

Lévy Chentsov random field

Definition

A (standard) Levy Chentsov field on \mathbb{R}^d is a centered Gaussian field $(X_x)_{x \in \mathbb{R}^d}$ with covariance function given by $Cov(X_x, X_y) = \frac{1}{2} (\|x\| + \|y\| - \|x - y\|), \ \forall x, y \in \mathbb{R}^d.$

Gaussian fields from processes

Proposition

Let K_1, K_2, \ldots, K_d covariance functions on $\mathbb{R} \times \mathbb{R}$, then

$$(x,y)\mapsto \prod_{i=1}^d K_i(x_i,y_i),$$

is a covariance function on $\mathbb{R}^d \times \mathbb{R}^d$.

Exple: Brownian sheet $(x, y) \mapsto \prod_{i=1}^d \frac{1}{2}(|x_i| + |y_i| - |x_i - y_i|)$

Stationarity

Definition

 $X=(X_x)_{x\in\mathbb{R}^d}$ (strongly) stationary if, $\forall x_0\in\mathbb{R}^d$, $(X_{x+x_0})_{x\in\mathbb{R}^d}$ has the same law than X.

Proposition

If $X=(X_x)_{x\in\mathbb{R}^d}$ stationary and second order, $\forall x_0\in\mathbb{R}^d$,

- $m_X(x) = m_X$
- $K_X(x,y) = c_X(x-y)$ with $c_X : \mathbb{R}^d \to \mathbb{R}$ s.t.
 - 1 $c_X(0) > 0$
 - $|c_X(x)| \leq c_X(0) \ \forall x \in \mathbb{R}^d$
 - 3 c_X is of positive type ie $\forall k \geq 1, x_1, \dots, x_k \in \mathbb{R}^d, \lambda_1, \dots, \lambda_k \in \mathbb{R}$,

$$\sum_{i,j=1}^k \lambda_i \lambda_j c_X(x_i - x_j) \ge 0.$$

Stationarity

Theorem (Bochner 1932)

An even continuous function $c: \mathbb{R}^d \to \mathbb{R}$ is of positive type if and only if c(0) > 0 and there exists a symmetric probability measure ν on \mathbb{R}^d such that

$$c(x) = c(0) \int_{\mathbb{R}^d} e^{it \cdot x} d\nu(x).$$

In other words there exists a symmetric random vector Z on \mathbb{R}^d such that

$$c(x) = c(0)\mathbb{E}(e^{ix\cdot Z}).$$

Rk: When c_X is the covariance of the stationary field X, ν_X is called the spectral measure of X.

Ornstein Uhlenbeck process

Let B a Brownian motion on \mathbb{R}^+ , $\theta > 0$ and define

$$X_t = e^{-\theta t} B_{e^{2\theta t}},$$

then X is a centered stationary Gaussian process on $\mathbb R$ with covariance

$$\mathsf{Cov}(X_t, X_s) = e^{-\theta|t-s|}, \ \forall t, s \in \mathbb{R},$$

and
$$\nu_X(dt) = \frac{\theta^2}{\pi(\theta^2 + t^2)} dt$$
.

Isotropy

Definition

 $X=(X_{\mathsf{x}})_{\mathsf{x}\in\mathbb{R}^d}$ isotropic if, $\forall R$ rotation, $(X_{\mathsf{R}\mathsf{x}})_{\mathsf{x}\in\mathbb{R}^d}$ has the same law than X.

Exple: the Lévy Chentsov field is isotropic since

$$Cov(X_{Rx}, X_{Ry}) = \frac{1}{2} (\|Rx\| + \|Ry\| - \|Rx - Ry\|)$$

= Cov(X_x, X_y)

Exple: If $g(t) = e^{-t^2/2}$ then k(t,s) = g(t-s) covariance and

$$K(x,y) = e^{-\|x-y\|^2/2} = \prod_{i=1}^d k(x_i, y_i),$$

allows to define a stationary isotropic Gaussian field.

Gaussian covariance

$$K(x,y) = e^{-100\|x-y\|^2}$$

$$K(x,y) = e^{-1000||x-y||^2}$$

[Powell, LNS, 2014]

Self-similarity

Definition

 $X=(X_x)_{x\in\mathbb{R}^d}$ self-similar of order H>0 if, $\forall c>0$, $(X_{cx})_{x\in\mathbb{R}^d}$ has the same law than c^HX .

Exple: the Lévy Chentsov field is self-similar of order H=1/2 since

$$Cov(X_{cx}, X_{cy}) = \frac{1}{2} (\|cx\| + \|cy\| - \|cx - cy\|)$$

= $cCov(X_x, X_y) = Cov(c^{1/2}X_x, c^{1/2}X_y)$

Corollary

There does not exist a (non-trivial) stationary self-similar field.

Stationary increments

Definition

 $X = (X_x)_{x \in \mathbb{R}^d}$ has (strongly) stationary increments if, $\forall x_0 \in \mathbb{R}^d$, $(X_{x+x_0} - X_{x_0})_{x \in \mathbb{R}^d}$ has the same law than $(X_x - X_0)_{x \in \mathbb{R}^d}$.

Proposition

If $X=(X_x)_{x\in\mathbb{R}^d}$ second order centered with s.i. and $X_0=0$ a.s.,

•
$$K_X(x,y) = \frac{1}{2} (v_X(x) + v_X(y) - v_X(x-y)), \forall x,y \in \mathbb{R}^d$$

•
$$v_X(x) = Var(X_{x+x_0} - X_{x_0}) = Var(X_x)$$
 called variogram s.t.

- 1 $v_X(0) = 0$
- 2 $v_X(x) \ge 0$ and $v_X(-x) = v_X(x)$
- 3 v_X is conditionally of negative type ie $\forall k \geq 1, x_1, \dots, x_k \in \mathbb{R}^d, \lambda_1, \dots, \lambda_k \in \mathbb{R}$,

$$\sum_{i=1}^k \lambda_i = 0 \Rightarrow \sum_{i,j=1}^k \lambda_i \lambda_j v_X(x_i - x_j) \leq 0.$$

Stationary increments

Theorem (Schoenberg)

Let $v: \mathbb{R}^d \to \mathbb{R}$ be an even continuous function. EQU

- i) v is conditionally of negative type
- ii) $K: (x,y) \mapsto \frac{1}{2} (v(x) + v(y) v(x-y))$ is a covariance function
- iii) $\forall \lambda > 0$, $e^{-\lambda v}$ is of positive type

Corollary (Istas, 2006)

If v is a variogram then v^H is a variogram $\forall H \in (0,1]$.

Fractional Brownian fields

Definition

A (standard) Fractional Brownian field on \mathbb{R}^d , with Hurst parameter $H \in (0,1)$, is a centered Gaussian field $(B_H)_{x \in \mathbb{R}^d}$ with covariance function given by

$$Cov(B_H(x), B_H(y)) = \frac{1}{2} (\|x\|^{2H} + \|y\|^{2H} - \|x - y\|^{2H}), \ \forall x, y \in \mathbb{R}^d.$$

$$H = 0.2$$

$$H = 0.4$$

$$H = 0.6$$

Fractional Brownian fields

Main Properties:

- stationary increments : $\forall x_0 \in \mathbb{R}^d$, $B_H(x_0 + \cdot) B_H(x_0) \stackrel{fdd}{=} B_H(\cdot)$
- H self-similarity : $\forall c > 0$, $B_H(c \cdot) \stackrel{fdd}{=} c^H B_H(\cdot)$
- Isotropy : $\forall R$ rotation $B_H(R \cdot) \stackrel{fdd}{=} B_H(\cdot)$

■Uniqueness up to a constant

Remarks:

- for d=1 called fractional Brownian motion [Kolmogorov, 1940], [Mandelbrot and Van Ness, 1968]
- \blacksquare sssi implies that $H \leq 1$
- (isotropic) sssi for H=1 corresponds to $(Z \cdot x)_{x \in \mathbb{R}^d}$ with Z (isotropic) Gaussian vector on \mathbb{R}^d .

Anisotropic generalizations

Let $H \in (0,1)$ and $v_H : t \in \mathbb{R} \mapsto |t|^{2H}$, conditionally of negative type. If μ is a finite positive measure on S^{d-1} ,

$$v_{H,\mu}(x) = \int_{S^{d-1}} v_H(x \cdot \theta) \mu(d\theta) = \int_{S^{d-1}} |x \cdot \theta|^{2H} \mu(d\theta) = c_{H,\mu} \left(\frac{x}{\|x\|}\right) \|x\|^{2H},$$

is conditionally of negative type function on \mathbb{R}^d .

Let $X_{H,\mu}=(X_{H,\mu}(x))_{x\in\mathbb{R}^d}$ be a centered Gaussian random field with s.i. and variogram $v_{H,\mu}$, it is still H s.s. but may not be isotropic

 $ightharpoonup c_{H,\mu}$ is called topothesy function

Exple: Let d=2 and for $\alpha\in(0,\pi/2]$, $\mu(d\theta)=\mathbf{1}_{(-\alpha,\alpha)}(\theta)d\theta$

Elementary anisotropic fractional Brownian fields

Then $c_{H,\alpha}$ is a π periodic function defined on $(-\pi/2,\pi/2]$ by

$$c_{H,\alpha}(\theta) = 2^{2H} \left\{ \begin{array}{ll} \beta_{_H} \left(\frac{1-\sin(\alpha-\theta)}{2} \right) + \beta_{_H} \left(\frac{1+\sin(\alpha+\theta)}{2} \right) & \text{if} \quad -\alpha \leq \theta + \frac{\pi}{2} \leq \alpha \\ \beta_{_H} \left(\frac{1+\sin(\alpha-\theta)}{2} \right) + \beta_{_H} \left(\frac{1-\sin(\alpha+\theta)}{2} \right) & \text{if} \quad -\alpha \leq \theta - \frac{\pi}{2} \leq \alpha \\ \left| \beta_{_H} \left(\frac{1-\sin(\alpha-\theta)}{2} \right) - \beta_{_H} \left(\frac{1+\sin(\alpha+\theta)}{2} \right) \right| & \text{otherwise} \end{array} \right.$$

with $\beta_H(t) = \int_0^t u^{H-1/2} (1-u)^{H-1/2} du$ is a Beta incomplete function.

Elementary anisotropic fractional Brownian fields

Operator scaling random fields

Let E be a $d \times d$ diagonalizable matrix with eigenvalues $\alpha_1^{-1}, \ldots, \alpha_d^{-1} \in [1, +\infty)$ and $\theta_1, \ldots, \theta_d$ be such that $E^t \theta_i = \alpha_i^{-1} \theta_i$. For $H \in (0, 1]$, we define the variogram

$$v_{H,E}(x) = \tau_{E}(x)^{2H} = \left(\sum_{i=1}^{d} |\langle x, \theta_{i} \rangle|^{2\alpha_{i}}\right)^{H} = \left(\sum_{i=1}^{d} v_{\alpha_{i}}(\langle x, \theta_{i} \rangle)\right)^{H}.$$

Let $X_{H,E} = (X_{H,E}(x))_{x \in \mathbb{R}^d}$ be a centered Gaussian random field with s.i. and variogram $v_{H,E}$. Then, it is (E,H) operator scaling :

$$\forall c > 0, X_{H,E}(c^{E} \cdot) \stackrel{fdd}{=} c^{H} X_{H,E}(\cdot).$$

[HB, Meerschaert, Scheffler, 2007] & [HB, Lacaux, in preparation]

SS Operator scaling random fields

When $\alpha_1 = \ldots = \alpha_d = \alpha \in (0,1]$, $X_{H,E}$ is αH self-similar.

SS Operator scaling random fields

Self-similar of order $H\alpha_1 = H\alpha_2 = 0.5$

Operator scaling with $H\alpha_1=0.3$ and $H\alpha_2=0.4$

H = 0.8

References

- R. Adler (1981): The Geometry of Random Fields. John Wiley & Sons
- A. Benassi, S. Cohen and J. Istas (2013): Fractional Fields and Applications. *Springer*
- A. Bonami and A. Estrade (2003): Anisotropic analysis of some Gaussian Models. J. Fourier Anal. Appl., 9, 215–236
- Davies and Hall (1999): Fractal Analysis of surface roughness by using spatial data J. R. Stat. Soc. Ser. B, 61, 3–37