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Analysis of Large Data

Classical example: Principle Components Analysis
Xnxp - data matrix

Assumption - X = M + E, where M is a low rank matrix
representing the signal and E is a random noise

Goal - recovering M, separating signal from the noise

Purpose - understanding the biological /economical etc phenomena
which generate the data, data compression (few basis vectors

[principal components] may contain most of the information in the
data), missing values imputation

General goal of large data analysis - separating the signal from
noise, identifying the low dimensional structure spanning the noisy
data

Major problem - multiple comparisons, multiple testing (in PCA
selection of nonzero singular values)
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ldentifying genes associated with cancer

Xnyxp - expressions of p genes for ny healthy individuals
Yn,xp - gene expressions of p genes for ny cancer patients
Assumption: Xj for i =1,..., ny are iid with E(Xj;) = p1; and
Var(Xjj) = a%j < 00
Yjj fori=1,...,ny areiid with E(Yj;) = up; and
Var(Yj) = agj < 00
Gene j is associated with cancer if p1; # o)
We test Hy; : 11 = poj with a t-test t; = XY where

rest SRy, Where
S(Xj —Y;) is the estimate of standard deviation of X; — Y/;

If n; and ny are large enough than t; ~ N(u;,1) with

— H1j—H2) C gy —
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Multiple testing (1)

X,'NN([L,',].), iZl,...,p
Ho,':,u,,':O VS ,u,-;éO
Reject Ho; when |X;| > ¢

Multiple comparison problem: if all u;s are equal to zero than

max(|X1|,...,|Xp|) = \/2log p(1 + 0p)

Thus to separate signal from noise we need ¢ = ¢(p) — oo as
p — oc.
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Multiple testing (2)

Significance level: oo = P, (| Xi| > ¢)
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Multiple testing (2)

Significance level: o = Py, (| Xi| > ¢)

Hy accepted | Hp rejected
Hg true U V Po
Hp false T S p1
W R m
FWER = P(V >0), FDR=E (5%)
E( V) = &Po

a = 0.05, pp = 5000 — E(V) = 250
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Multiple testing procedures

Bonferroni correction: Use significance level %.
Reject Hy; if |Xj| >= c(p) = &1 (1 _ %)

c(p) = v/2logp(1+ op)

Benjamini-Hochberg procedure:
(1) [X[)y = X2y = - = [X](p)
(2) Find the largest index i such that

Xlgy > o7 H(1— ), ai=as—, (1)

Call this index isy.
(3) Reject all H(jy's for which i < isy
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Bonferroni correction

< 4
o  Sorted |y|
Bonferroni level
o -
.
N
-
o 4

T T T T T T
0 10 20 30 40 50

M. Bogdan SLOPE



Benjamini and Hochberg correction
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(Benjamini,Hochberg, 1995) If X,

..., Xp are independent then
BH controls FDR:

v Po
FDR=FE |—| =a®® 2
[Rw] a2, @)

where pg is the number of true null hypotheses, po = |{i : uj = 0}

(Benjamini, Yekutieli, 2001) If test statistics are dependent then
BH controls FDR at the level a%’ if |X|(jy is compared with
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FWER and FDR control

For Bonferroni correction FWER < «

(Benjamini,Hochberg, 1995) If X1, ..., X, are independent then
BH controls FDR:

v Po
FDR=FE |—| =a®® 2
[Rw] a2, @)

where pg is the number of true null hypotheses, po = |{i : uj = 0}

(Benjamini, Yekutieli, 2001) If test statistics are dependent then
BH controls FDR at the level a%’ if |X|(jy is compared with

-1 _ i
o (15 )

Detection thresholds:

for Bonferroni pj > (1 + €)+/2log p)

for BH p; > (1 + €)y/2(1 — ) log p, where the number of nonzero
wi is proportional to p? for some 3 < 1
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Asymptotic optimality of BH

e = k/p - fraction of alternatives among all tests, sparsity

e —>0asp—

Abramovich, Benjamini, Donoho and Johnstone, Ann.Statist. 2006
- asymptotic minimax properties with respect to estimation loss :
17—

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 -
classification problem

Bayes risk, 7o - loss for type | error, 4 - loss for type Il error

pj ~ (1 — €)do + eN(0, 72)

- . L fA()<J) Yo 1—e¢
Bayes oracle — Bayes classifier, reject Hy; if BX) ~ 9a e where

fA() = ¢(7 0, 1) and fO() = ¢(7 0,1+ 7—2)
The rule is Asymptotically Bayes Optimal under Sparsity (ABOS) if
lim % — 1, where R is the expected value of the loss (as p — )

Bonferroni correction is ABOS if € ~ %
BH is ABOS if ¢ — 0 and k = pe — C € (0, o]
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Efficiency of BH with respect to misclassification probability
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Finding predictors in Large Data Bases - Multiple Regression
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Finding predictors in Large Data Bases - Multiple Regression
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with large variance of 3
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Finding predictors in Large Data Bases - Multiple Regression

Yox1 = anpﬁpxl + Zpx1, zZ~ N(0702/)

least squares estimator - 3 = (X'X)"1X'Y ~ N(3,02(X'X)~1)

DeCide |f Bj == 0 based on Zj == # ~ N <(X/)fj)1’ 1>
i g i g

If pis large we need to deal with the multiple testing problem and
with large variance of 3

Solution - Model Selection Criteria
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Penalizing the model size

Classical model selection criteria

Miminimize

I|Y — XB||?> + 20°Penalty - ky

Examples: AIC, BIC, RIC, Mallows Cp, etc.

AIC ... Penalty = 1, , BIC ... Penalty = 1/2log n, RIC
... Penalty= log p

Problem - combinatorial search, heuristic search procedures.

Solution - Convex optimization framework
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DNA structure




Genetic variability

About 99,9% of genetic information is the same for all people.

A polymorphism is a difference in DNA structure, which is
present in at least 1% of population

A Single Nucleotide Polymorphism(SNP) is a
polymorphism with the difference in the single base:

o A typical SNP: a position in DNA in which
- 85% of population has Cytosine(C)
- 15% has a Thymine(T).

There are usually two forms of a SNP at a given locus

three genotypes : AA, Aa, aa.
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MAIN PURPOSE: finding the mutations in DNA sequence, that
influence the trait of interest.
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MAIN PURPOSE: finding the mutations in DNA sequence, that
influence the trait of interest.

Y - quantitative trait

Examples: blood pressure, cholesterol level, gene expression level
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Data structure

Y =(Y1,...,Yn)T - wektor of trait values for n individuals
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Data structure

Y =(Y1,...,Yn)T - wektor of trait values for n individuals

Xnxp - matrix of SNP genotypes

Usually n = k x 100 or k x 1000, p =~ k x 10,000 or
p ~ k x 100,000
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Statistical model

Yox1 = anpﬂpxl + Znx1, Z~ N(O, /)
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Statistical model

Yox1 = anpﬂpxl + Znx1, Z~ N(O, /)

Goals:
1. ldentification of nonzero elements in vector of regression
coefficients 3.
2. Building a good predictive model - minimizing \5’ - B
Generalizations:
a) adding nonlinear terms and interactions
b) Generalized Linear Models

E(Y)= G }(XB), G - link function
E.g. Binary Y - logistic regression (e.g. identification of factors
influencing the credit risk or the risk of developing some disease)

General class of problems - identifying important factors when
looking through large data bases

M. Bogdan SLOPE



No noise case - linear program

Y = X8
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No noise case - linear program

Y = X8

If p> n minimize ||3||1 = >.7_; |3i| subject to Y = X3.
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Transition curve, Donoho and Tanner (2005), X is Gaussian

Phase Transition: (l 1./ 0) equivalence

Combinatorial Search! -

p — k ,"J N es
0.4
0.3
E solves F
0.2 1 0
01
L : —
0 (8] L3 03 o4 05 06 o7 ne 08 1
o=nlp
H Vicloria Stodden Depariment of Statistics, Stanford Universiy
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Columns in general position

Points Xi,..., X, € R" are said to be in general position provided
that the affine span of any k + 1 points 51X, ..., sk11X,,,, for
any any signs si,...,sk+1 € {—1,1}, does not contain any element
of the set {:EX;, i #in,..., I.k+1}.
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Transition curve (2)

Cross-polytope:

P
CP = {BERP:ZW,-|<1}

i=1
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Transition curve (2)

Cross-polytope:

P
CP = {BERP:Z|[3;|<1}

i=1

Theorem

Let X be a fixed matrix with p columns in general position in R".
Consider vectors yg with a sparse solution yy = Xy, where By has
k nonzeros. The fraction of systems (yo, X) where the convex
program has that underlying 3y as its unique solution is
f(XCP)/f(CP), where fi(-) is the number of k dimensional faces
of the polytope.
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Transition curve (2)

Cross-polytope:

P
CP = {BERP:Z|[3;|<1}

i=1

Theorem

Let X be a fixed matrix with p columns in general position in R".
Consider vectors yg with a sparse solution yy = Xy, where By has
k nonzeros. The fraction of systems (yo, X) where the convex
program has that underlying 3y as its unique solution is
f(XCP)/f(CP), where fi(-) is the number of k dimensional faces
of the polytope.

Let's denote p = k/p and 6 = n/p. For the Gaussian matrix X
limp—y00 fi(XCP)/f(CP) = 1if p < p(d) and 0 if p > p(9).
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Noisy case - statistical problem

Yox1 = anpﬂpxl + Zpx1, Z~ N(an'/)
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Noisy case - statistical problem

Yox1 = anpﬁpxl + Zpx1, Z~ N(an'/)

Convex program: Minimize ||b|[1 subject to ||Y — Xb||5 < €

Or alternatively: minpege ||y — Xb|3 + Ac||bl|1
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Noisy case - statistical problem

Yox1 = anpﬁpxl + Zpx1, Z~ N(an'/)

Convex program: Minimize ||b|[1 subject to ||Y — Xb||5 < €
Or alternatively: minpege ||y — Xb|3 + Ac||bl|1

In statistics this procedure is called LASSO (Tibshirani, 1996)
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Some theoretical results: Candes, Plan (2008)

Assumption, notation:
a) forevery i€ {1,...,p} || Xi]2=1
b) We denote 11(X) = sup;<jcj<p | < Xi, Xj > |
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Some theoretical results: Candes, Plan (2008)

Assumption, notation:
a) forevery i€ {1,...,p} || Xi]2=1
b) We denote 11(X) = sup;<jcj<p | < Xi, Xj > |

A matrix X is said to obey the coherence property if

p(X) < Ao(logp) ! .

Eg. if xj ~ N(0,1/n) then p(X) ~ +/2logp/n
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Asymptotically optimal prediction

Theorem

Suppose that X obeys the coherence property and assume that
[18llo < S < cop/[||X|[?logp]. Then the lasso estimate computed
with A = 2./2 log p obeys

IXB — XB|3 < Go(2log p)So?

with probability at least 1 — 6p=2'°82 — p~1(2x log p)~1/2. The
constant Co may be taken as 8(1 + /2).

For Gaussian design || X||2 ~ \/p/nso S < con/ log p.
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Exact model recovery

Let | be the support of 8 and suppose that
min |;| > 80/2log p
IS

. Then under the above assumption the lasso estimate with
A =2+/2log p obeys

supp(B) = supp(B) and

sgn(B3;) = sgn(B;) forall icl

with probability at least
1—2p~Y((2rlog p)~ Y2 + |l|p~1) — O(p—2'82.
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Goal - Construction of the procedure with the finite sample
statistical guarantees like e.g. control of the false discovery rate
(FDR)
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LASSO, (Tibshirani, 1996)

bmm( ly = XbIIZ, + X|blley)- (3)
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LASSO, (Tibshirani, 1996)

bmm( ly = XbIIZ, + X|blley)- (3)

LASSO solution
B=m(B—X(XB-y))=m(B-XX(B-B)+Xz),

where 7y (t) = sgn(t)(|t| — A), applied componentwise
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LASSO, (Tibshirani, 1996)

bmm( ly = XbIIZ, + X|blley)- (3)

LASSO solution
B=m(B—X(XB-y))=m(B-XX(B-B)+Xz),

where 1y (t) = sgn(t)(|t| — A)+, applied componentwise
When X'X =1 and z ~ N(0,0)

Bi = m(Bi + Z), (4)
where Z; ~ N(0, o).
If 8=0then (8 >0if |Z;] > ))
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LASSO, (Tibshirani, 1996)

brgm( ly = XbIIZ, + X|blley)- (3)

LASSO solution
B=m(B—X(XB-y))=m(B-XX(B-B)+Xz),

where 1y (t) = sgn(t)(|t| — A)+, applied componentwise
When X'X =1 and z ~ N(0,0)

Bi = m(Bi+ Zi), (4)
where Z; ~ N(0, o).
If 8=0then (8 >0if |Z;] > ))

A=ocd1 (1 — 2 ) ~ o+/2log p - Bonferroni correction
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LASSO, (Tibshirani, 1996)

bmm( ly = XbIIZ, + X|blley)- (3)

LASSO solution
B=m(B-X(XB—y)=m(B—XX(B~-pB)+X'z),
where 1y (t) = sgn(t)(|t| — A)+, applied componentwise

When X'X =1 and z ~ N(0,0)

Bi = m(Bi + Z), (4)
where Z; ~ N(0, o).
If =0 then (3> 0if |Z;] > \)
A=ocd1 (1 — %) A 0\/@ - Bonferroni correction

Nonadaptive - relatively low power
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Sorted L-One Penalized Estimation: SLOPE
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Sorted L-One Penalized Estimation: SLOPE

Sorted L1 norm:
J,\(b):)\1|b‘(1)+)\2|b‘(2)+...+/\p’b‘(p) . (6)

Jr(b) is convex because by the Hardy-Littlewood-Pélya inequality

p

J)\(b) = mﬁxZ)\ﬂ(;)]b,-\ s
i=1

where the maximum is over all permutations of the elements of b.
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Sorted L-One Penalized Estimation: SLOPE

Sorted L1 norm:
J,\(b):)\1|b‘(1)+)\2|b‘(2)+...+/\p’b‘(p) . (6)

Jr(b) is convex because by the Hardy-Littlewood-Pélya inequality

P
In(b) = mgXZAW(;)!bi\ ,
i=1
where the maximum is over all permutations of the elements of b.
SLOPE:

. 1 2
jnin_ 3lly = Xblz, + o Ix(b)- (7)
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FDR of SLOPE

Assume an orthogonal design with iid N'(0,0?) errors, and set
Mgy (i) = ®71(1 — ig/2p). Then the FDR of SLOPE obeys

4 mo
—E|—| <qg=2.
FDR [va}_qm (8)
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FDR Orthogonal design
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Multiple testing - ANOVA (1)

1000 tests in 5 different laboratories

TP~ N(0703)7 Zij ™~ N(07U§)
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Multiple testing - ANOVA (1)

1000 tests in 5 different laboratories

TP~ N(0703)7 Zij ™~ N(07U§)

Vi=pi+7+2, 1<i<1000.
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Multiple testing - ANOVA (1)

1000 tests in 5 different laboratories

TP~ N(0703)7 Zij ™~ N(07U§)

Vi=pi+7+2, 1<i<1000.

When 02 = 62 = 2.5 then
Y ~ N(N’ Z)

Yi=o0=1and X; =0.5for i # .
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Multiple testing - ANOVA (1)

1000 tests in 5 different laboratories

TP~ N(0703)7 Zij ™~ N(07U§)

Vi=pi+7+2, 1<i<1000.

When 02 = 62 = 2.5 then
Y ~ N(N’ Z)

Yi=o0=1and X; =0.5for i # .

Goal - testing Hp; : pj =0, i=1,...,1000 vs_Ha; : pi # 0.



Multiple testing (2)

Marginal tests with BH: Compare [y|(;y with oo (1 - 13(;0)
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Multiple testing (2)

Marginal tests with BH: Compare [y|(;y with oo (1 - 13(;0)

Alternatively:
Y =312y =572 4, (9)

where € ~ N(0, lpxp)

U = ¥~12 has a dominating diagonal
U(i,i) = 1.4128 and U(i,j) = —0.0014.
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Multiple testing (2)

Marginal tests with BH: Compare |y](;y with c®~1(1 — o)
Alternatively:

Y =512y =512 4,
where € ~ N(0, lpxp)
U = ¥~12 has a dominating diagonal
U(i,i) = 1.4128 and U(i,j) = —0.0014.

Use SLOPE with A\gy to identify nonzero elements of u
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Multiple testing (2)

Marginal tests with BH: Compare [y|(;y with oo (1 - 13(;0)

Alternatively:
Y =312y =572 4, (9)

where € ~ N(0, lpxp)

U = ¥~12 has a dominating diagonal

U(i, i) = 1.4128 and U(i,j) = —0.0014.

Use SLOPE with A\gy to identify nonzero elements of u

Unknown variance components: o2 and o2 are estimated using
classical unweighted means method

M. Bogdan SLOPE



FDR
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Distribution of FDP for marginal tests, k = 50
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Distribution of FDP for SLOPE, k = 50
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Distribution of TPP for marginal tests, k = 50
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Distribution of TPP for SLOPE, k = 50
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FDR Nonorthogonal design - SLOPE
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Explanation

Bi = m\(Bi + Zi + vi),
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Explanation

Bi = m\(Bi + Zi + vi),

vi = (X0, > Xi(B; = B;),
JF#i
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Explanation

Bi = m\(Bi + Zi + vi),

vi = (X, D X85 = 5)),
JF#i
S - support of the true model, |S| = k
Assume that all signals are strong enough so they are detected by
SLOPE. Then the respective regression coefficients

M. Bogdan SLOPE



Explanation

Bi = m\(Bi + Zi + vi),

vi = (X, D X85 = 5)),
JF#i
S - support of the true model, |S| = k
Assume that all signals are strong enough so they are detected by
SLOPE. Then the respective regression coefficients

Bs ~ (XsXs) H(Xsy — As) = Bors — (X6Xs) ! As,
where s = ()‘(1)7 ) )‘(k))/
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Explanation

Bi = m\(Bi + Zi + vi),

vi = (X, D X85 = 5)),
JF#i
S - support of the true model, |S| = k
Assume that all signals are strong enough so they are detected by
SLOPE. Then the respective regression coefficients

Bs ~ (XsXs) H(Xsy — As) = Bors — (X6Xs) ! As,
where )\5 = ()‘(1)7 ) )‘(k))/
vi ~ EX! Xs(XEXs) ™ As
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Explanation

Bi = m\(Bi + Zi + vi),

vi = (X, D X85 = 5)),
JF#i
S - support of the true model, |S| = k
Assume that all signals are strong enough so they are detected by
SLOPE. Then the respective regression coefficients

Bs ~ (X6Xs) "1 (X6y — As) = Bors — (X6Xs) s,
where As = (A(1),...,A(k))".
vi = EX!Xs(XXs) M s .
For gaussian matrices x;; ~ N(0,1/n)

_ 1
E(X;Xs(XsXs)"As)* = w(|S]) - [ AsllE,,  w(k) = Py—]
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c(i) = Aau(i )\/1+w,—1 > xe())?

J<i
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Corrected version

Ag(i) = ABH(i)\/l +w(i—1)) Ae(i)?

J<i

For other designs we estimate E(X/Xs(X:Xs) tAs)? by randomly
drawing columns of the design matrix

M. Bogdan SLOPE
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Unkown o - scaled SLOPE

Algorithm 1 Iterative SLOPE fitting when o is unknown

1: input: y, X and initial sequence \°
(computed for o = 1)

2: initialize: S, =)

3: repeat

4: S= S_|_

5. compute the RSS obtained by regressing y onto variables in S

6: set 62 =RSS/(n—|S|—1)

7. compute the solution A to SLOPE with parameter sequence
&-\°

8 setS, = supp(,@)

o until S, = S
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Simulation example

For n = p = 5000 we simulate 5000 genotypes of p independent
Single Nucleotide Polymorphisms (SNPs)
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Simulation example

For n = p = 5000 we simulate 5000 genotypes of p independent
Single Nucleotide Polymorphisms (SNPs)

Scenario 1: Y = X3 + z - ideal linear model, only additive effects
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Simulation example

For n = p = 5000 we simulate 5000 genotypes of p independent
Single Nucleotide Polymorphisms (SNPs)

Scenario 1: Y = X3 + z - ideal linear model, only additive effects

Nonlinearity, dominance effects:

. {—1 for aa, AA (10)

2= 1 for aA ’

y =X, Z][Bx, B7] +e

The search is performed only over X matrix.
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Simulation example

For n = p = 5000 we simulate 5000 genotypes of p independent
Single Nucleotide Polymorphisms (SNPs)

Scenario 1: Y = X3 + z - ideal linear model, only additive effects

Nonlinearity, dominance effects:

. {—1 for aa, AA (10)

2= 1 for aA ’

y =X, Z][Bx, B7] + €
The search is performed only over X matrix.

Errors from Laplace distribution and with some proportion of
outliers

M. Bogdan SLOPE



|deal model

(i)

M. Bogdan SLOPE
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Violations of model assumptions

SLOPE Marginal tests
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Real data analysis

Y- fasting blood HDL levels
X - genotypes of 777 SNPs in interesting genome regions

n = 5375 individuals
maximal pairwise correlation between SNPs = 0.3
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Results

I I I I I I L I I I L I I I
FullBH UnivBH BICf BICb SLOPEg | SLOPEmc |LASSObonf| LASSOcv

152308790
155883 | BN | | | | | | | | | | |
rs7946766 | [l ] ] | | | | | | | |
rs2575875 | Ml ] | | | | ] |
rs2066715 | @ ] L ] L ] L ] L) L) L]
v_c9_107555001
15611229 | [l | | | | | ] |
rssgo1 | [ | | | | HE |
rs12314392 | [l | | | | | | BN | | |
rs11988 | [l | 3R | | | | | | 3§ | |
162136410 | [l ] | | BN | | | |
v_c16_57095439
1509360 | [l ] ] | BR | | | | | |
15149470424
V_c2_44223117
v_cl_ 109817524
rss5802 | Ml | BN | | | | | |
No s No s No  Yes No  Yes No Y No s No  Yes No ves
Selection
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Compressed sensing examples

Xnxp - selection of n rows from the one-dimensional discrete cosine
transformation matrix, n = p/2, p = 262,144
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Compressed sensing examples

Xnxp - selection of n rows from the one-dimensional discrete cosine
transformation matrix, n = p/2, p = 262,144

Signals:

o
o
o
o
o
7

Random Gaussian entries: (3; ~ (0, 02) with o = 2,/2log p.
Random Gaussian entries: (3; ~ (0, 02) with o = 3,/2log p.
Constant values: f3; = 1.2%.

Linearly decreasing from 1.2% to O.@/@.

Linearly decreasing from 1.5@ to O.&/@.

Linearly decreasing from 4.5% to 1.5@.

Exponentially decaying entries: v; = 1.24/2 |ogp(i/k)71'2.
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FDR of SLOPE, k =10
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FDR of SLOPE, k = 50
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FDR of SLOPE, k = 500
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FDR of SLOPE, k = 2621
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MSE, linearly decaying (5.3), k = 10
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y

MSE, linearly decaying (5.7), k = 1000
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MSE, SLOPE, linearly decaying
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MSE, SLOPE, exponentially decaying

M. Bogdan SLOPE



Many open problems

1. Proof of FDR control for random designs - possibly better
choice of the regularizing sequence.

2. Asymptotic minimaxity of SLOPE
3. Universality of gaussian weights

4. |dentification of the class of the covariance matrices for which
SLOPE might be useful in the context of multiple testing.

5. Application for full GWAS studies.
6. Group SLOPE and Ordered Dantzig selector.

7. Other goals, e.g. see OSCAR (Biometrics, 2008) - clustering
of correlated predictors to enhance predictive performance.
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Properties of LASSO estimators (1)

Function ¢ : R? — R is said to be pseudo-Lipschitz if there is a
numerical constant L such that for all x,y € R?,

lo(x) = (W)l < L+ [[xlle, + Iy lle)lIx = ylle,-
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Properties of LASSO estimators (1)

Function ¢ : R? — R is said to be pseudo-Lipschitz if there is a
numerical constant L such that for all x,y € R?,

lo(x) = (W)l < L+ [[xlle, + Iy lle)lIx = ylle,-

For any ¢ > 0, amin = amin(0) is the unique solution to
2(1 4 a?)d(—a) — 2a¢(a) —6 =0

if 6§ <1, and 0 otherwise.
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Properties of LASSO estimators (2)

Theorem (Theorem 1.5 of Bayatti and Montanari, 2012)

Consider the linear model with i.i.d. N'(0, 1) errors in which X is an
n x p matrix with i.i.d. N'(0,1/n) entries. Suppose that the (3;'s
are i.i.d. random variables, independent of X, and with positive
variance (below, © is a random variable distributed as [3;).

M. Bogdan SLOPE



Properties of LASSO estimators (3)

Then for any pseudo-Lipschitz function , the lasso solution B to
(3) with fixed X\ obeys

p

;Zwﬁi,ﬁ;) s Ep(naer(0+72),0),  (11)

i=1

where the convergence holds in probability as p,n — oo in such a
way that n/p — 6. Above, Z ~ N(0,1) independent of ©, and
7> 0, > amin(d) are the unique solutions to

=1+ %E(nm(@—i-TZ) - @)2,

A= (1 - %]P’ﬂ@ +7Z| > aT))aT. 12

M. Bogdan SLOPE



Multiple testing notions in multiple regression

ev(x,y) =1(x # 0)1(y = 0), r(x,y) = 1(x #0),
eF(x,y) =1y #0)
so that the number V of false discoveries is equal to

V= ZQOV(BIHBI')’
the number R of discoveries is equal to
R=> ¢r(BiB)

and the number F of true regressors is equal to

F=> ¢r(Bi )

M. Bogdan SLOPE



Multiple testing notions in multiple regression

ev(x,y) =1(x # 0)1(y = 0), r(x,y) = 1(x #0),
eF(x,y) =1y #0)
so that the number V of false discoveries is equal to

V=> ov(BiB)
the number R of discoveries is equal to

R=>or(Bi Bi).
and the number F of true regressors is equal to

F=> ¢r(Bi )

FDP= V/R
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Multiple testing notions in multiple regression

ev(x,y) =1(x # 0)1(y = 0), r(x,y) = 1(x #0),
eF(x,y) =1y #0)
so that the number V of false discoveries is equal to

V=> ov(BiB)
the number R of discoveries is equal to

R=>or(Bi Bi).
and the number F of true regressors is equal to

F=> ¢r(Bi )

FDP= V/R
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FDR for LASSO, Su, Bogdan, Candés (2014)

Theorem

Consider the regression model where X is an n x p Gaussian design
matrix with iid entries following N(0, 1), 8;'s are iid random
variables with bounded second moment, z ~ N(0,1) and X, 5 and
z are independent. We denote by ©, a random variable with the
same distribution as B;'s. Then it holds that in the limit p — oo
and & — ~

2P(© = 0)P(—«)

P(|© +7Z| > ar) ’

Power — P P(|© + 7Z| > at|© # 0).

FDR —

=1 +7E(nm(@+72) - @)2

A= (1 —vP(|© +7Z| > aT))aT,




FDR - illustration
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Power - illustration
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minimax FDR (1)

What we believe in
lim inf  sup FDRpsso(3,A) = (€, 9), (13)
P00 A 3116l <k

where in the limit, n/p - d > 0 and k/p — ¢ >0
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minimax FDR (1)

What we believe in
lim inf  sup FDRpsso(8,\) = g*(¢,0), (13)
P00 A B Blleg <k
where in the limit, n/p - d > 0 and k/p — ¢ >0
What we have

For any ¢ >0 and € < e, if v > 1, we have

inf lim FDR ©.)\) = FDR .
;goggﬁgpgmm (n,p,©,A) m(7, €)

F¢ is the family of all distributions satisfying
@ O # 0 with probability e.
e If © #0, then [©]| > c as.
@ © has finite second moment.
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minimax FDR (2), A = 300, M = 300000

FDR
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Limit on power (1)

Let e* = €*(§) denote the point on the transition curve. Let us
define a function

(1=8)(e—¢")

Mesy el e s d<lande>e
1, otherwise.
It holds
()
lim sup Power(\, 7, p,8) = (¢, )

P20 X€(0,00),m€Q(€)

(b) for any constants Ao > 0 and v > 0, with probability tending
to one,

sup < 7*(€,9) + .
Ao <A<0o0
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Limit on power (2)

1.0

Maximal Power
0.6

0.4
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Trade off between Power and FDR

Given Power larger than or equal to 5 € (0, min{1,d}), the
minimum of FDR is given as

2(1 — €)P(—amax)
(1 — €)P(—amax) +€8°

FDRmin = >

(1 - 6) [2(1 =+ O‘%ax)q)(_amax) - 2Oémax¢(amax)] + 6(1 =+ O‘%\ax) =9 .
e[(1 + 020 )(1 = 20(~mar)) + 20max(aimax)]

1-p
1—2®(—amax)
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FDP-TPP tradeoff
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FDP-TPP tradeoff
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FDP-TPP tradeoff
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