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Compound Poisson processes

Construction and properties

o Let (Nt)¢>o be a 1-dim. Poisson process with intensity A > 0;
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Compound Poisson processes

Construction and properties

o Let (Nt)¢>o be a 1-dim. Poisson process with intensity A > 0;

@ Let X1, Xa,... be independent and identically distributed (i.i.d))
real-valued random variables with common distribution F;

@ Assume this sequence is independent of the Poisson process.

Then, a 1-dimensional (zero-drift) compound Poisson process with
intensity A and jump size distribution F can be written as

Nt
Ce=) X, t=0
j=1
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Construction and properties

o Let (Nt)¢>o be a 1-dim. Poisson process with intensity A > 0;

@ Let X1, Xa,... be independent and identically distributed (i.i.d))
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Construction and properties

o Let (Nt)¢>o be a 1-dim. Poisson process with intensity A > 0;

@ Let X1, Xa,... be independent and identically distributed (i.i.d))
real-valued random variables with common distribution F;

@ Assume this sequence is independent of the Poisson process.

Then, a 1-dimensional (zero-drift) compound Poisson process with
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N; 0
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e CPPs are Markov and, in particular, Lévy processes (LPs,
more details later):
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Compound Poisson processes

Construction and properties

o Let (Nt)¢>o be a 1-dim. Poisson process with intensity A > 0;

@ Let X1, Xa,... be independent and identically distributed (i.i.d))
real-valued random variables with common distribution F;

@ Assume this sequence is independent of the Poisson process.

Then, a 1-dimensional (zero-drift) compound Poisson process with
intensity A and jump size distribution F can be written as

N; 0
C=>» X, t=>0, > X;=0, so Gg=0as.
j=1 j=1

e CPPs are Markov and, in particular, Lévy processes (LPs,
more details later): Textbook example of pure jump LPs.
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Compound Poisson processes

Applications and literature

e Compound Poisson processes (CPPs): Basic model for
systems with random shocks that come ‘out of the blue'.
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Compound Poisson processes

Applications and literature

e Compound Poisson processes (CPPs): Basic model for
systems with random shocks that come ‘out of the blue'.

e Numerous applications: Seismology, storage theory (natural,
economic and social resources, ecosystems, etc.), queuing and
renewal theory.

e Nonparametric inference on them (discretely observed) has
received much attention lately:
Buchmann and Griibel (2003, 2004), Coca (2015), Comte et
al. (2014, 2015), Duval (2013, 2014), Duval and Hoffmann
(2011), van Es et al. (2007), Gugushvili (2007), Gugushvili et
al. (2015a, 2015b), Nickl and ReiB (2012), Nickl et al.
(2016), Trabs (2014), etc.
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e Estimation of compound Poisson processes
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Continuous observations

Estimation of compound Poisson processes 5 5
Discrete observations

Setting and estimators

Assume throughout X and F are unknown.

Idealised setting:
e for some T > 0 we observe C; = Zsztl Xj for t € [0, T].

Then, we have Nt independent realisations of an exponential
distribution with parameter A and of F.

How to make inference on A and F? Conditioned on N+ = n,

@ \ can be estimated (parametrically) using the maximum
likelihood estimator (asymptotic normality), and

@ F can be estimated (nonparametrically) by the empirical
distribution function Fp(x) := 57, T oo (Xk), x € R.
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Continuous observations

Estimation of compound Poisson processes 5 5
Discrete observations

Properties of Fy(x) := 237 1 T(_wq(X

" n

Left figure: Black: F= N(0,1); Blue: F,,,n =5,10,...,250 and F:I:ma><|/A-_,,—F|
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Estimation of compound Poisson processes 5 5
Discrete observations

Properties of Fy(x) := 237 1 T(_x(Xk)

" n

Left figure: Black: F= N(0,1); Blue: F,,,n =5,10,...,250 and F:I:ma><|/A-_,,—F|
Right figure: \/n(F,—F), n = 5,10, ..., 150, \/n-fluctuations of F, about F

Donsker's theorem:
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Donsker's theorem: /n(F, — F) =P Gf in L®(R) as n— oo,
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. . . Continuous observations
Estimation of compound Poisson processes 5 5
Discrete observations

Properties of Fy(x) := 237 1 T(_x(Xk)

Left figure: Black: F= N(0,1); Blue: F,,,n =5,10,...,250 and F:I:ma><|/A-_,,—F|
Right figure: \/n(F,—F), n = 5,10, ..., 150, \/n-fluctuations of F, about F
Donsker's theorem: /n(F, — F) =P Gf in L®(R) as n— oo,
where G£ is the mean-zero Gaussian process on R with covariance
function E[GF(x)Ge(y)]|=F(x Ay)—F(x)F(y).

Efficient nonparametric inference for discretely observed CPPs
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e Estimation of compound Poisson processes

@ Discrete observations

Alberto J. Coca Cabrero, University of Cambridge Efficient nonparametric inference for discretely observed CPPs



Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

Setting

In most practical situations C := (C¢)¢>0 is not observed
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Estimation of compound Poisson processes " g
Discrete observations

Setting

In most practical situations C := (C¢)¢>0 is not observed
continuously.

@ Instead, we observe Ca,..., C,a for some A > 0 and n € N.

Figure: Ca,...,Con, A=25and n=4 (A =0.5F = N(0,1))
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

Setting

In most practical situations C := (C¢)¢>0 is not observed
continuously.

@ Instead, we observe Ca,..., C,a for some A > 0 and n € N.

Figure: Ca,...,Con, A=25and n=4 (A =0.5F = N(0,1))

How can we infer X\ and F with such incomplete information?
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@ it has independent and stationary increments.
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o In particular, Yx := Cka — C—py)a, k=1,...,n, are
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@ it has independent and stationary increments.
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independent copies of Y := Y; := Cp = ZJN:AI X; (Co=0).
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Question: Is (nonparametric) 1/y/n—consistent and
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

CPPs as LPs and nonlinear inverse problem

(Ct)ter is a Lévy process. Therefore,

@ it has independent and stationary increments.
o In particular, Yx := Cka — C—py)a, k=1,...,n, are
independent copies of Y := Y; := Cp = ZJN:AI X; (Co=0).
This is a nonlinear inverse problem because

@ we are effectively observing a random variable X corrupted by
a sum of a random number of independent copies of itself.

Question: Is (nonparametric) 1/y/n—consistent and
asymptotically efficient estimation of F even possible?
Answer: Yes! We resort to the spectral approach to find a
heuristic reason and to construct such an estimator.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) = FIP|(u) := E[e"Y] = ATINW =) 1 e R,
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Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) = FIP|(u) = E[e"Y] = LN =2) e R
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

p(u) = exp (A(F[dN](v) — A Fldo](v)))
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue
Furthermore, an estimator for A/ can be constructed from it:

%Loggp(u) = exp(A(f[d./\/](U) - )\]:[50](U)))a

where Log is the distinguished logarithm
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Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

% F Log¢l(y) = FIdN](dy) — AF[0](dy),

where Log is the distinguished logarithm
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The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
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Furthermore, an estimator for A can be constructed from it:
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue
Furthermore, an estimator for A/ can be constructed from it:

LR F [Log l(dy) = Kly)(N(dy) — Ado(d) ).

where Log is the distinguished logarithm, f, := 1(_ 1 1r\ {0}
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R.
Due to || F[dN]||L= <A, inlfR|g0(u)| > e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for N/ can be constructed from it:

i/RfX(y)f-l[Logcp](dy)—/fo(y)(N(dy)/\o‘o(dy))—N(X),

where Log is the distinguished logarithm, £, := 1(_ . 1r\ {0}
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

NG =5 [ 07 T Logel(ey).

where Log is the distinguished logarithm, f, := 1(_o « Ir\ {0}
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|<p(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

Nolo) = 5 [ AT Logel(ey),

where Log is the distinguished logarithm, £, := 1(_ 1 Ir\{0}
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|<p(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

Nl = [ ann) Loz (),

where fx,n = ]l(—oo7x] ﬂ[—Hn,Hn]\(—aman)' €n, H;l —0asn—
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

Nolo) = 5 [ Funln) P [Log orl( ).

where fx,n = ]l(—oo7x] ﬂ[—Hn,Hn]\(—aman)' €n, H;l — 0 as n— oo,
on(u) == 137 _, Y is the empirical characteristic function of
the increments
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

Na(x) = i/Rfx,n(y)f_l[Logwanhn](y)dy,

where i n = 1(_co x] L[=Hp,Ho]\(—emen)r Ens H:1 —0asn— oo,
on(u) == 137 _, Y is the empirical characteristic function of
the increments and K}, = hinK (hT) with K a band-limited
kernel function and h, — 0.
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Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

Nolo) = 5 [ Funlr)F [LogonT K )l

where fx,n = ]l(—oo,x] ﬂ[—Hn,Hn]\(—amfn)' hn, €n, H;l — 0 as
n— 00, pn(u) ;=137 ek and Ky := $K (3), with K a
band-limited kernel function.

Due to limy_s0o N (x) = A, Ay := Np(0)
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: No ill-posedness and estimators

Let N := \F be the Lévy distribution of C, denote the Fourier
transform operator by F and let P be the law Y.
Then, the characteristic function of each increment (~ the noise) is

o(u) := FIP|(u) := E[e"Y] = AN =2) e R
Due to || F[dN]||1ee <A, infR|g0(u)| >e 22X >0 so no ill-posedness!
ue

Furthermore, an estimator for A can be constructed from it:

Nolo) = 5 [ Funl) 7 [Log 0n (),

where fx,n = ]l(—oo,x] ﬂ[—Hn,Hn]\(—amfn)' hn, €n, H;l — 0 as
n— 00, pn(u) ;=137 ek and Ky := $K (3), with K a
band-limited kernel function.

Due t0 limy_oo N(x) = A, Ap = Np(00) and Fpp = N/ An.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: /l-:,7 = N,/ \n

How does ﬁn and its y/n-fluctuations about F look?
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

The spectral approach: /l-:n = N,/ \n

How does ﬁn and its y/n-fluctuations about F look?

Left figure: Black: F= N(0,1); Blue: F,,,n =10,20,...,500 and F-=max|F,—F|
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Discrete observations

The spectral approach: /l-:n = N,/ \n

How does ﬁn and its y/n-fluctuations about F look?

Left figure: Black: F= N(0,1); Blue: F,,,n =10,20,...,500 and F-=max|F,—F|
Right figure: \/n(Fo—F), n = 10,20,...,500 (A =3,A = 1)
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Continuous observations
Discrete observations

Estimation of compound Poisson processes

The spectral approach: /l-:n = N,/ \n

How does ﬁn and its y/n-fluctuations about F look?

Left figure: Black: F= N(0,1); Blue: F,,,n =10,20,...,500 and F-=max|F,—F|
Right figure: \/n(Fo—F), n = 10,20,...,500 (A =3,A = 1)

Can we show an analogue of Donsker's theorem for F,?
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

We make no assumptions on A > 0 and on F we assume

@ it has a density,
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

We make no assumptions on A > 0 and on F we assume
@ it has a density,
o |F(x)—F(y)|S|x—yl|* for all x,y €R and some a€(0, 1],
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. . . Continuous observations
Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

We make no assumptions on A > 0 and on F we assume
@ it has a density,
o |F(x)—F(y)|<|x—yl|* for all x,y €R and some a€(0, 1], and
o [plog” (max{|x|,e}) F(dx) < oo for some 3 > 2.
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. . . Continuous observations
Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

We make no assumptions on A > 0 and on F we assume
@ it has a density,

o |F(x)—F(y)|<|x—yl|* for all x,y €R and some a€(0, 1], and
o [plog” (max{|x|,e}) F(dx) < oo for some 3 > 2.

On K suppose
o [p K(x)dx=1,
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

We make no assumptions on A > 0 and on F we assume
@ it has a density,
o |F(x)—F(y)|<|x—yl|* for all x,y €R and some a€(0, 1], and
o [plog” (max{|x|,e}) F(dx) < oo for some 3 > 2.

On K suppose
o [p K(x)dx=1,
e supp(FK) C [-1,1],
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

We make no assumptions on A > 0 and on F we assume
@ it has a density,
o |F(x)—F(y)|<|x—yl|* for all x,y €R and some a€(0, 1], and
o [plog” (max{|x|,e}) F(dx) < oo for some 3 > 2.

On K suppose
o [p K(x)dx=1,
e supp(FK) C [-1,1], and
o |K(x)| < (1+|x|)~" for some n > 2.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

Theorem (Coca (2015))

Take h,~exp(—n"h), e,~exp(—n’) and H,~exp(n’H) with
0< §5,19H < Iy < 1/4.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

Theorem (Coca (2015))

Take h,~exp(—n"h), e,~exp(—n’) and H,~exp(n’H) with
0 < e,y <9y <1/4. Then, as n — oo,

Vn(An — ) =9 N(0,0?),

where o2 = G(]lR\{o}, ]lR\{O})r
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations

Theorem (Coca (2015))

Take h,~exp(—n"h), e,~exp(—n’) and H,~exp(n’H) with
0 < e,y <9y <1/4. Then, as n — oo,

\/E()‘n - )‘) _>d N(0702)7
where o2 = G(1r\{0}; Lr\{0}), and
Vi (Fa—F) =P By in L=(R),

where @N is a zero-mean Gaussian process on R with covariance
function nyy = G(f;(, fy), with f:= A1 (ﬂ(_m7X]—F(X)) ]IIR\{O}-
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. . . Continuous observations
Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Covariance

The covariances are defined through

Gle )= g3 [ 6+ F 1/ 0 g2 =7 [1/6(=NC)P(e).

where * denotes the convolution operation, F~! [«p‘l(—-)] is a
finite signed measure on R satisfying

o0
P ] = e 3o
with 7(A) := v(—A) for all A C R Borel measurable, 7* is the

k-fold convolution of 7 and 7*C = &y, and the probabillity measure
P has the well-known representation (see Remark 27.3 in Sato

(1999))
fA)\ i k= A
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Discrete observations

nsker theorem for discrete observations: Conclusions

Conclusions:
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A Donsker theorem for discrete observations: Conclusions

Conclusions:

@ The covariance function attains the Cramér-Rao bound of the
model (F with regular density), as shown by Trabs (2014);
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Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Conclusions

Conclusions:
@ The covariance function attains the Cramér-Rao bound of the
model (F with regular density), as shown by Trabs (2014);

o Therefore F,, is 1/+/n-consistent under the sup-norm and
asymptotically efficient;
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Discrete observations

A Donsker theorem for discrete observations: Conclusions

Conclusions:

@ The covariance function attains the Cramér-Rao bound of the
model (F with regular density), as shown by Trabs (2014);

o Therefore F,, is 1/+/n-consistent under the sup-norm and
asymptotically efficient; and

o (Optimal) confidence bands and goodness-of-fit tests for F
can be constructed boostrap techniques such as substituting
f, F, o and P by their empirical counterparts in G;
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A Donsker theorem for discrete observations: Conclusions

Conclusions:

@ The covariance function attains the Cramér-Rao bound of the
model (F with regular density), as shown by Trabs (2014);

o Therefore F,, is 1/+/n-consistent under the sup-norm and
asymptotically efficient; and

o (Optimal) confidence bands and goodness-of-fit tests for F
can be constructed boostrap techniques such as substituting
f, F, o and P by their empirical counterparts in G;

e ANY,, = F(xAy)— F(x)F(y) + O(A)) so when A\ is
small classical Donsker's theorem is recovered and these

procedures can be approximated by analogues independent of
F, ¢ and P.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Proof

o Write /i (F — F) = At v/n (N = N) + F (A = Ap)).
Therefore we need joint convergence of A\, and NV, and, in
particular, convergence of the latter:
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Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Proof

o Write /i (F — F) = At v/n (N = N) + F (A = Ap)).
Therefore we need joint convergence of A\, and NV, and, in
particular, convergence of the latter:

@ Decompose /n (N, — N) into a stochastic and a bias term
and show uniform negligibility of the latter;
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Proof

o Write /i (F — F) = At v/n (N = N) + F (A = Ap)).
Therefore we need joint convergence of A\, and NV, and, in
particular, convergence of the latter:

@ Decompose /n (N, — N) into a stochastic and a bias term
and show uniform negligibility of the latter;

@ Split the stochastic term into its linear (in (P, — P),
Pn:=1%"%_16v,) and nonlinear part and show uniform

negligibility of the latter by controlling sup ) lon(u) — p(u)l;
|ul<hs
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Proof

o Write /i (F — F) = At v/n (N = N) + F (A = Ap)).
Therefore we need joint convergence of A\, and NV, and, in
particular, convergence of the latter:

@ Decompose /n (N, — N) into a stochastic and a bias term
and show uniform negligibility of the latter;

@ Split the stochastic term into its linear (in (P, — P),
Pn:=1%"%_16v,) and nonlinear part and show uniform
negligibility of the latter by controlling sup |pn(u) — @(u)l;

|u|<hy?*

e The linear term is (P, — P) 4y n, where Q) = [ 1) dQ and
Ysn = Fenx FH1/@o(—)] * Kp,. This is an empirical
process indexed by a class of functions changing with n so, to
show it is P-Donsker, we use the following theorem.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Proof

Theorem (Theorem 2.11.23 in van der Vaart and Wellner (1996))

For each n, let ¥, := {1y : x € R} be a class of measurable
functions indexed by a totally bounded semimetric space (R, p).
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Proof

Theorem (Theorem 2.11.23 in van der Vaart and Wellner (1996))

For each n, let ¥, := {1y : x € R} be a class of measurable
functions indexed by a totally bounded semimetric space (R, p).
Given envelope functions W, assume P*W2 = O(1) and

P Wil y, > /my — O for every k > 0,
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Proof

Theorem (Theorem 2.11.23 in van der Vaart and Wellner (1996))

For each n, let ¥, := {1y : x € R} be a class of measurable
functions indexed by a totally bounded semimetric space (R, p).
Given envelope functions W, assume P*W2 = O(1) and
P*W%]l{\u,,mﬁ} — 0 for every k > 0, and, for every §, | 0,

n
/ /I8 Ny(elVall iy, T 2(P)) de, stup Plubn—tty.0)? = 0
0 p(X’y)<6n

where H?/)HB(P) = (fR WJ|2P)1/2-
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Estimation of compound Poisson processes " g
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A Donsker theorem for discrete observations: Proof

Theorem (Theorem 2.11.23 in van der Vaart and Wellner (1996))

For each n, let ¥, := {1y : x € R} be a class of measurable
functions indexed by a totally bounded semimetric space (R, p).
Given envelope functions W, assume P*W2 = O(1) and
P*W%]l{\u,,mﬁ} — 0 for every k > 0, and, for every §, | 0,

n
/ /I8 Ny(elVall iy, T 2(P)) de, stup Plubn—tty.0)? = 0
0 p(X’y)<6n

where [l 2(p) = (Ji [¥1>P)Y/2. Then (v/n(Pn = P)¥xn) cq is
asymptotically tight in L°°(R) and converges in distribution to a
tight Gaussian process provided the sequence of covariance
functions P niby n — Py nP1, n converges pointwise on R x R.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Extensions

In Coca (2015) we also show

@ a Donsker theorem for . The limit process, of Brownian
motion-type, is different from that of F, of Brownian
bridge-type. The former provides optimal inference procedures
for the CPP as a whole and gives insight into efficiency issues;
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A Donsker theorem for discrete observations: Extensions

In Coca (2015) we also show

@ a Donsker theorem for . The limit process, of Brownian
motion-type, is different from that of F, of Brownian
bridge-type. The former provides optimal inference procedures
for the CPP as a whole and gives insight into efficiency issues;

@ Joint convergence of all the estimators;
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A Donsker theorem for discrete observations: Extensions

In Coca (2015) we also show

@ a Donsker theorem for . The limit process, of Brownian
motion-type, is different from that of F, of Brownian
bridge-type. The former provides optimal inference procedures
for the CPP as a whole and gives insight into efficiency issues;

@ Joint convergence of all the estimators;

@ F having a discrete component;
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Extensions

In Coca (2015) we also show

@ a Donsker theorem for . The limit process, of Brownian
motion-type, is different from that of F, of Brownian
bridge-type. The former provides optimal inference procedures
for the CPP as a whole and gives insight into efficiency issues;

@ Joint convergence of all the estimators;
@ F having a discrete component; and

@ non-zero drift -, for which we find an estimator 4, such that

Vit (3 —7) 577 0.
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Continuous observations

Estimation of compound Poisson processes " g
Discrete observations

A Donsker theorem for discrete observations: Extensions

In Coca (2015) we also show
@ a Donsker theorem for . The limit process, of Brownian
motion-type, is different from that of F, of Brownian
bridge-type. The former provides optimal inference procedures
for the CPP as a whole and gives insight into efficiency issues;
@ Joint convergence of all the estimators;
@ F having a discrete component; and

@ non-zero drift -, for which we find an estimator 4, such that
Vnh YA — ) =Fro.
Furthermore, the results can be extended to X being
multidimensional and to noisy (unknown but observed noise) and
nonequispaced discrete observations. Future manuscript?
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