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Introduction Malliavin derivative Stein estimator

Back to the initial ideas of Charles Stein

Considered as the father of different problems related to
optimal estimation, stochastic calculus,. . .

Everything started in the following context

• Let X ∼ N(θ, σ2Id )
where Id is the d -dimensional identity matrix.

• Objective : estimate θ based on a single (for

simplicity) observation X .

• θ̂mle = X min. MSE(̂θ) = E
(
‖̂θ − θ‖2

)
among unbiased estimators.

• e.g. Stein (1956), James-Stein (1961)

θ̂JS = X (1 − (d − 2)/‖X ‖2)⇒ MSE(̂θJS ) ≤ MSE(̂θmle) when d ≥ 3

• Stein (1981) key-ingredients for the class : θ̂ = X + g(X ),
g : Rd → Rd .
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MSE of θ̂ = X + g(X ) (X ∼ N(θ, σ2Id , σ2 known)

MSE(̂θ) =

E‖X − θ‖2 + E‖g(X )‖2 + 2
d∑
i=1

E ((Xi − θi )gi (X ))

1. Using E[Zh(Z )] = E[h ′(Z )], Z ∼ N (0, 1)

MSE(̂θ) = MSE(̂θmle ) + E‖g(X )‖2 + 2σ2
d∑
i=1

E∇gi (X )

2. Now choose g = σ2∇ log f . Then using the well-known fact
that

for h : R→ R, 2(log h)′′ + (log(h)′)2 = 4
(
√
h)′′
√
h

we get

MSE(̂θ) = MSE(̂θmle )+4σ2E

∇∇√
f (X )√

f (X )

 ≤ MSE(̂θmle ) if ∇∇
√
f ≤ 0.
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Introduction Malliavin derivative Stein estimator

• X : homogeneous Poisson point process on Rd with
intensity parameter θ.

• Assume X is observed on W = B (0, 1),

θ̂mle = N (W )/|W |

(here θ = 20, θ̂ = 67/π ' 21.3).
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Objectives :

• Mimic Stein’s technique, derive a Stein estimator of θ.
[extension Privault-Réveillac (2009), d = 1]

• Example of Stein estimator :

θ̂ =
N (W )
π

−
8

π
(1 − d2

k ),

where dk is the distance of the kth closest point of X
to 0. (ex : • is the 15th closest point)
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Introduction Malliavin derivative Stein estimator

What do we need ?

Theorem [F ”point process functional”]

Let θ̂ = θ̂mle + 1
|W |
∇ log(F) is such that ∇ log(F) ∈ Dom(D

π
) then

MSE(̂θ) = MSE(̂θmle) +
4

|W |2
E

∇∇√F√
F

 . (1)

Proof :

MSE(̂θ) = E

(̂θmle +
1

|W |
∇ logF − θ

)2
= MSE(̂θmle ) +

1

|W |2

(
E[(∇ logF )2] + 2E[(∇ logF)(N(W) − θ|W|)]

)
= MSE(̂θmle ) +

1

|W |2

(
E[(∇ logF )2] + 2E[∇∇ logF]

)
[IbP]

= (1) [Chain Rule]
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(Malliavin) Derivatives of Poisson functionals

• Given N (W ) = n, we denote X1, . . . ,Xn the n points in W .

• S : space of Poisson functionals F defined on Ω by

F = f01(N (W ) = 0) +
∑
n≥1

1(N (W ) = n)fn (X1, . . . ,Xn ) ,

f0 ∈ R, fn ∈ L
1(W n ) is a symmetric function.

• Let S′ =

{
F ∈ S : ∃C > 0 s.t. ∀n ≥ 1, fn ∈ C

1(W n ,R)

and ‖fn‖L∞(W n ,R) +
∑n

i=1 ‖∇xi fn‖L∞(W n ,Rd ) ≤ C n
}
⊂ S

• Differential operator : let F ∈ S′ and π : W 2 → Rd

Dπ
xF = −

∑
n≥1

1(N (W ) = n)
n∑
i=1

(∇xi fn )(X1, . . . ,Xn )π(Xi , x ) ,

where ∇xi fn gradient of xi 7→ fn (. . . , xi , . . .)
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Malliavin derivatives (2)

Lemma [chain rules]

For any x ∈W , for all F ,G ∈ S′, g ∈ C1b(R) we have

Dπ
x (FG) = (Dπ

xF )G + F (Dπ
xG) and Dπ

xg(F ) = g ′(F )Dπ
xF .

To get an IbP type formula, we need to introduce Dom(Dπ) of S′ as

Dom(Dπ) =

{
F ∈ S′ : ∀n ≥ 1 and z1, . . . , zn ∈ R

d

fn+1
∣∣∣zn+1∈∂W

(z1, . . . , zn+1) = fn(z1, . . . , zn ), f1∣∣∣z∈∂W(z ) = 0
}
,

(2)

Remark : compatibility conditions important to derive a correct

Stein estimator.



Introduction Malliavin derivative Stein estimator

Malliavin derivatives (2)

Lemma [chain rules]

For any x ∈W , for all F ,G ∈ S′, g ∈ C1b(R) we have

Dπ
x (FG) = (Dπ

xF )G + F (Dπ
xG) and Dπ

xg(F ) = g ′(F )Dπ
xF .

To get an IbP type formula, we need to introduce Dom(Dπ) of S′ as

Dom(Dπ) =

{
F ∈ S′ : ∀n ≥ 1 and z1, . . . , zn ∈ R

d

fn+1
∣∣∣zn+1∈∂W

(z1, . . . , zn+1) = fn(z1, . . . , zn ), f1∣∣∣z∈∂W(z ) = 0
}
,

(2)

Remark : compatibility conditions important to derive a correct

Stein estimator.



Introduction Malliavin derivative Stein estimator

Integration by parts formula

Theorem
Let F ∈ Dom(D

π
), V : Rd → R, V ∈ C1(W ,Rd )

E

[∫
W

Dπ
xF ·V (x )dx

]
︸                     ︷︷                     ︸

:=∇π,VF

= E

F
 ∑
u∈XW

∇ · V(u) − θ
∫
W

∇ · V(u)du




where V : W → Rd is defined by V(u) =
∫
W

V (x )π(u , x )dx .

Main application : let π(u , x ) = u>V (x ), we can find some V ( omit

details ) such that V(u) = u/d and ∇ · V(u) = 1. Then

∇F = ∇π,VF = −
1

d

∑
n≥1

1(N (W ) = n)
n∑
i=1

∇xi fn (X1, . . . ,Xn ) ·Xi

⇒ E[∇F ] = E [F (N (W ) − θ|W |)] .
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Non-uniqueness of the integration by parts formula

It is natural and easier to define a Stein estimator which is isotropic .
With

∇ logF = −
1

d

∑
n≥1

1(N (W ) = n)
n∑
i=1

∇xi (log fn )(X1, . . . ,Xn ) ·Xi

logF is isotropic ⇒ ∇ logF is isotropic (and so will be θ̂).

If we consider V (x ) = (d |W |)−1/21(x ∈W )1> and π(y , x ) = y>V (x )
then divV(y) = 1. In that case, the gradient operator reduces to

∇ logF = −
∑
n≥1

1(N (W ) = n)
n∑
i=1

(div xi log fn )(X1, . . . ,Xn ) ×Xi

and we still have

E[∇ logF ] = E [logF (N (W ) − θ|W |)]

1. but we lose the isotropic characteristic.

2. this can induce some discontinuity problems when computing
∇ logF and ∇∇ logF . . .
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Example for W = Bd (0, 1)

• For 1 ≤ k ≤ n, x(k ),n kth closest (wrt ‖ · ‖) point of {x1, . . . , xn } to 0

• X(k ) kth closest point to 0 of the PPP X (defined on Rd)

• Let ϕ : R+ → R, ϕ > 0, ϕ′(1) = 0

Fk = 1(N (W ) < k ) +
∑
n≥k

1(N (W ) = n)ϕ(‖X(k ),n‖
2)2.

Gain (̂θk ) = 1 −MSE(̂θk )/MSE(̂θmle)

Theorem
ζk = ∇ log(Fk ) ∈ Dom(D

π
) and

θ̂k = θ̂mle −
4d

|W |

ϕ′(‖X(k )‖
2)

ϕ(‖X(k )‖
2)

and Gain (̂θk ) = E[ G(‖X(k )‖
2) ]

where

G(t) = −
16

d2θ|W |

t (ϕ′(t) + tϕ′′(t))
ϕ(t)
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Two specific examples . . .

• ”Linear” function : 0 < γ < 1, κ > 0

ϕ(t) = (1 − t)(χ[0,1−γ] ∗ ψ)(t) + κ,

where χ= characteristic function, ψ Schwarz function given by

ψ(t) = ce−1/(1−|t |) with c such that

∫ 1

0

ψ(t)t. = 1.

• Exponential function : γ ∈ R, κ ≥ 2

ϕ(t) = eγ(1−t)κ 1(t ≤ 1).
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Linear function : Plots of ϕ, ϕ′, ϕ′′,G
(κ = 0.1 ; γ = 0.05)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3 ϕ

ϕ′
ϕ′′

0.0 0.2 0.4 0.6 0.8 1.0

−
50

−
40

−
30

−
20

−
10

0
10

ga
in

Gain (%)

Interesting choice, since for t < 1 − 2γ :
ϕ(t) ' 1 − t + κ, ϕ′(t) ' −1, ϕ′′(t) ' 0, G(t) ' ct/(1 + κ − t) > 0

Seems encouraging, but the ”interesting” positive values of G are too
close to strong negative values ! (too dangerous)
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Exp. function : Plots of ϕ, ϕ′, ϕ′′,G (κ = 3 ; γ = −3)

θ̂stein = θ̂mle − 4d
|W |

{
γκ

(
1 − ‖X(k )‖

2
)κ−1}

1(‖X(k )‖ ≤ 1)
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⇒ G(t) is not positive everywhere but when t is large (i.e. when

‖X(k )‖ is large, i.e. when k is large), then G(·) is positive and can reach

high values.
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Focus on the exp. function and on E[G(‖X(k )‖
2)]
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k=10  − Empirical gain
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k=80

k=10  − Theoretical gain
k=20
k=50
k=80

• m = 50000 replications of PPP (B (0, 1), θ), d = 2.

• Empirical and Monte-Carlo approximations of theoretical gains,
for different parameters k , κ, γ.

• General comments :

1. The IbP formula is empirically checked.
2. The parameters k , κ, γ and θ are strongly connected. A bad

choice can lead to negative gains.
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k=10  − Theoretical gain
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• m = 50000 replications of PPP (B (0, 1), θ), d = 2.

• Monte-Carlo approximations of theoretical gains for different
values of k . The parameters κ and γ optimize Gain(̂θk ) for each
value of θ.

• General comments :

1. For any k , if we optimize in terms of κ and γ, the gain
becomes always positive.

2. Still, if we want interesting values of gains, k needs to be
optimized.
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• Simulation based on m = 50000 replications.

• For each value of θ, d

(k?, γ?, κ?) = argmax(k ,γ,κ)Gain(̂θk ) = argmax(k ,γ,κ)E[G(‖X(k )‖
2)].

mle stein Gain (%)
mean sd mse k? mean sd mse

θ = 5, d = 1 5 1.6 2.52 11 4.4 1.0 1.44 43.0
d = 2 5 1.3 1.58 18 4.6 0.8 0.86 45.6
d = 3 5 1.1 1.19 22 4.6 0.7 0.64 46.1

θ = 10, d = 1 10 2.2 5.03 22 9.2 1.4 2.73 45.8
d = 2 10 1.8 3.18 34 9.4 1.2 1.72 46.0
d = 3 10 1.5 2.37 44 9.5 1.0 1.27 46.3

θ = 20, d = 1 20 3.1 9.91 42 18.8 2.0 5.31 46.4
d = 2 20 2.5 6.38 66 19.1 1.6 3.41 46.5
d = 3 20 2.2 4.72 84 19.1 1.3 2.47 47.5

θ = 40, d = 1 40 4.5 20.09 84 38.5 2.9 10.61 47.2
d = 2 40 3.6 12.79 125 38.6 2.2 6.78 46.9
d = 3 40 3.1 9.58 169 38.8 1.9 4.95 48.3
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Data-driven est. : replace θ by θ̂mle in the optimization

• Simulation based on m = 5000 replications.

• For each value of θ, d , let Θ(θ, ρ) =
[
θ − ρ

√
θ/|W |, θ + ρ

√
θ/|W |

]
.

Then, we suggest define κ?, γ? as the maximum of∫
Θ(̂θMLE ,ρ)

Gain(̂θk )dθ =
16

d2|W |
E

∫
Θ(̂θMLE ,ρ)

G(Y(k ))
θ

dθ. (3)

Gain (%)
ρ = 0 ρ = 1 ρ = 1.6449 ρ = 1.96

θ = 5, d = 1 48.8 47.9 36.4 30.1
d = 2 38.6 42.4 37.1 31.4
d = 3 39.4 42.6 37.0 31.7

θ = 10, d = 1 40.3 43.8 36.7 30.1
d = 2 36.2 38.8 33.7 27.9
d = 3 31.6 36.6 32.0 28.3

θ = 20, d = 1 37.3 38.6 34.5 28.0
d = 2 27.3 33.1 31.0 26.5
d = 3 20.8 28.6 28.1 23.8

θ = 40, d = 1 22.3 30.8 29.2 23.9
d = 2 16.3 24.0 28.2 24.4
d = 3 12.7 19.0 24.5 22.0
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A few more comments

• Even if the results are done under the Poisson assumption,
if the simulated model

• is clustered (e.g. Thomas, LGCP) the empirical gains
(compared to N (W )/|W |) are significant .

• is regular the empirical gains seems to be close to zero (not
really worse than N (W )/|W |)

Perspectives

1. Deriving a general IbP formula for inhomogeneous Poisson
point processes or Cox point processes seems reasonable.

2. Exploit the IbP for other statistical methodologies or
explicit moment calculations
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Comparison with Privault-Réveillac’s est. when d = 1
• Assume X is observed onW̃ = [0, 2].
• Let X1 be the closest point of X to 0, then θ̂pr is defined for some κ > 0 by

θ̂pr = θ̂mle +
2

κ
1(N (W̃ ) = 0) +

2X1

2(1 + κ) −X1
1(0 < X1 ≤ 2).

Note that X1 ∼ E(θ).
• The gain writes

Gain(̂θpr ) =
2

θκ2
exp(−2θ) −

2

θ
E

(
X1

2(1 + κ) −X1
1(X1 ≤ 2)

)
.

Gain optimized in κ in terms of θ.
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