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Menu of the day

Random cloud

X is a random vector in Rd with d ≥ 1 fixed

n ≥ 1 is the size of the cloud

{Xi}1≤i≤n are independent vectors distributed as X
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Menu of the day

Diameter of the cloud

‖ · ‖ is the Euclidean norm in Rd

Dn := max
1≤i<j≤n

‖Xi − Xj‖
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Menu of the day

What is the asymptotic distribution of Dn when n→∞ ?

Answer ?

For special cases

Depends on the distribution of X

Dichotomy

Distributions supported by a bounded set
Distributions ‘approximatively’ uniform
Geometry of the support

Distributions supported by an unbounded set
Spherically symmetric distributions
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Menu of the day

History : bounded support

Uniform distribution supported by special planar sets
(excluding balls or ellipsoids) : Appel, Najim and Russo (2002)

Distributions with support included in the unit d-ball
(including uniform in the d-ball, in the d-sphere, in spherical
sectors) : Mayer and Molchanov (2007)

Distributions supported by a polytope (included uniform or
non-uniform in square, uniform in regular polygons, uniform in
the unit d-cube) : Lao (2010)

Distributions supported by a d-ellipsoid : Schrempp (2016)
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Menu of the day

History : unbounded support

Spherically symmetric normal distribution : Matthews and
Rukhin (1993)

Spherically symmetric Kotz distribution : Henze and Klein
(1996)

Power-tailed spherically decomposable distributions : Henze
and Lao (2010)

Spherically symmetric distributions : Jammalamadaka and
Janson (2015)
→ Open question : elliptically symmetric distributions ?
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Apetizer

A naive question ...

Where are the points which can achieve the diameter ?
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Apetizer

... a naive answer

Mn := max
1≤i≤n

‖Xi‖

Dn is achieved for a pair of diametrically opposed points
each of them realizing Mn

If you believe in this, you need :

To localize the vectors with large norms

To control the asymptotic distribution of Mn

Precisely :

Distribution of ‖X‖ ?

Distribution of 1
‖X‖X conditional on ‖X‖ is large ?
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Today’s ingredients

Elliptical distribution : X = RΛU

where

U = (U1, . . . ,Ud) is uniform on the unit sphere Sd−1

Λ is an invertible d × d matrix

R is a positive random variable independent of U

In addition :

R is in the max domain of attraction of the Gumbel distribution

, 9/30



Today’s ingredients

R is in the max domain of attraction of the Gumbel distribution

There exists a differentiable function ψR : (0,∞)→ (0,∞) such
that

lim
x→∞

P(R > x + tψR(x))

P(R > x)
= e−t

locally uniformly with respect to t ∈ R

Such a function ψR satisfies :

lim
x→∞

ψR(x + tψR(x))

ψR(x)
= 1 ; lim

x→∞
ψ′R(x) = 0 ; lim

x→∞

ψR(x)

x
= 0
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Today’s ingredients

Distribution of ΛU

Supported by the ellipsoid {Σu : u ∈ Sd−1} where

Σ := Λ′Λ

is (up to a constant) the covariance matrix of X

The ellipsoid is centered at the origin and has d axes directed by
the eigenvectors of Σ with semi-length the square roots of the
corresponding eigenvalues

λ1 = · · · = λm > λm+1 ≥ · · · ≥ λd > 0

ordered and repeated, where 1 ≤ m ≤ d is the multiplicity of the
largest one. If m = d we have a spherical distribution.
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Today’s ingredients

Distribution of ΛU

Up to an orthogonal transformation we may assume that

Λ = diag(
√
λ1,
√
λ2, . . . ,

√
λd)
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Starter

Localization principle for R

If V is a bounded random variable then the vector RV has a large
norm iif R is large and V is close to its maximum.

Therefore, when X = RΛU is large then ‖X‖ is of order
√
λ1R and

X is located near the dominant eigenspace associated with λ1 :

‖X‖ =
√
λ1R

(
1−

d∑
k=m+1

λ1 − λk

λ1
U2
k

)1/2
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Starter

Theorem [FDS, 2015]

Define the functions ψ and φ on (0,∞) by

ψ(x) =
√
λ1ψR

(
x√
λ1

)
and φ(x) =

(
ψ(x)

x

)1/2
Then, as x →∞,

P(‖X‖ > x) ∼ Cm

(
φ(x)

)d−m P
(
R >

x√
λ1

)
where

Cm :=
Γ(d2 )

Γ(m2 )
2(d−m)/2

( d∏
k=m+1

λ1

λ1 − λk

)1/2

In particular, ‖X‖ is also in the max domain of attraction of the
Gumbel distribution
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Starter

Theorem [FDS, 2015]

Define Θ = 1
‖X‖X = (Θ1, . . . ,Θd).

Then, as x →∞, conditionally on ‖X‖ > x ,(‖X‖ − x

ψ(x)
,Θ1, . . . ,Θm,

Θm+1

φ(x)
, . . . ,

Θd

φ(x)

)
converges in distribution to(

E ,Θ(m),
√

λm+1

λ1−λm+1
Gm+1, . . . ,

√
λd

λ1−λd Gd

)
where E is an exponential random variable with mean 1, Θ(m) is
uniformly distributed on Sm−1, Gm+1, . . . ,Gd are independent
standard Gaussian random variables, and all components are
independent.
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Starter

‖X‖ is in the max domain of attraction of the Gumbel distribution

Thus :

Consider an > 0 such that P(‖X‖ > an) ∼ 1

n

Set bn = ψ(an)

Then :

lim
n→∞

an =∞ and lim
n→∞

bn
an

= 0

For all t ∈ R,

lim
n→∞

P
(
Mn − an

bn
≤ t

)
= e−e

−t
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Starter

Corollary [FDS, 2015]

Let cn = φ(an) and define the points

Pn,i =
(‖Xi‖ − an

bn
,Θi ,1, . . . ,Θi ,m,

Θi,m+1

cn
, . . . ,

Θi,d

cn

)
Then, the point processes

∑n
i=1 δPn,i

converge weakly to a PPP∑∞
i=1 δPi

on R× Sm−1 × Rd−m with

Pi =

(
Γi ,Θ

(m)
i ,

√
λm+1

λ1−λm+1
Gi ,m+1, . . . ,

√
λd

λ1−λd Gi ,d

)
where {Γi} are the points of a PPP on (−∞,∞] with mean

measure e−tdt, {Θ(m)
i } are i.i.d. vectors uniformly distributed on

Sm−1 and {Gi ,k} are i.i.d. standard Gaussian variables, all
sequences being mutually independent.
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Main course

Conclusion

Vectors Xi = ‖Xi‖Θi with the largest norm concentrate around the
dominant eigenspace in such a way that

‖Xi‖ ∼ an + bnΓi with an →∞ and bn = o(an)

The m first coordinates of Θi are uniform on Sm−1

The d −m other coordinates of Θi tend to 0 with rate
cn → 0 with Gaussian fluctuations

, 18/30



Main course

Last question

Are these large vectors always diametrically opposed ?

If m = 1 : Sm−1 has only one direction
Thus two vectors with a large norm will be on opposite sides
and their distance is automatically large, typically twice as
large as the norm of each one.
We expect that Dn behaves roughly like 2an

If m > 1 : Sm−1 has an infinite number of directions
Thus two vectors with a large norm can be close to each other
and their distance will be typically much smaller than twice
their norm.
We expect then a corrective term when comparing Dn to 2an
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Main course

Theorem [FDS, 2015]

Assume that m = 1, i.e. λ1 > λ2.
Then

Dn − 2an
bn

(d)−→ max
i ,j≥1

{
Γ+
i + Γ−j −

1

4

d∑
k=2

λk

λ1 − λk
(G+

i ,k + G−j ,k)2

}

where {Γ±i } are the points of a PPP with mean measure 1
2e
−tdt

on R, and {G±i ,k} are i.i.d. standard Gaussian variables,

independent of the points {Γ±i }.
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Main course

Theorem [FDS, 2015]

Assume that m > 1.
Then, for all t ∈ R,

lim
n→∞

P
(

Dn − 2an
bn

+ dn ≤ t

)
= e−e

−t

where
dn =

m− 1

2
log

an
bn
− log log

an
bn
− logC ′m

with

C ′m = (2d −m− 1)2m−4π−1/2Γ
(m

2

)( d∏
k=m+1

λ1

λ1 − λk

)−1/2
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Main course

Example : bivariate Gaussian variable with correlation ρ ∈ (0, 1)

X = RΛU with R =
√
χ2
2 and Λ′Λ = Σ =

(
1 ρ

ρ 1

)

Eigenvalues : λ1 = 1 + ρ and λ2 = 1− ρ
Eigenspaces : span{(1, 1)} and span{(−1, 1)}

Multiplicity : m =

{
1 if ρ 6= 0

2 if ρ = 0
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Main course

Set an =
√

(1 + ρ) log n and bn =

√
1 + ρ

2 log n

If ρ 6= 0 then

Dn − 2an
bn

(d)−→ max
i,j≥1

{
Γ+
i + Γ−j −

1 − ρ

8ρ
(G+

i + G−j )2
}

where {Γ±i } are the points of a PPP with mean measure 1
2
e−tdt on R,

and {G±i } are i.i.d. standard Gaussian variables, independent of the
points {Γ±i }.

If ρ = 0 then for all t ∈ R,

lim
n→∞

P
(
Dn − 2an

bn
+ dn ≤ t

)
= e−e−t

where
dn = 1

2
log log n − log log log n + log(4

√
2π)
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Main course
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ρ = 0.8

The two points N realizing the diameter

They concentrate around the diagonal at rate O(log n)

Fluctuations are Gaussian variables with variance 1−ρ
2ρ
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Possible generalizations thanks the localization principle

Distribution of X

X = Rλ(U) with λ a bounded function

The behavior of X given that its norm is large and then the
behavior of Dn will be determined by the maxima of ‖λ‖ :

If they are isolated points, we obtain results similar to the case
m = 1
Otherwise, if ‖λ‖ is constant on non empty open subsets of
Sd−1, we obtain results similar to the case m > 1
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Possible generalizations thanks the localization principle

Non Euclidean diameter
Another open question in Jammalamadaka and Janson :

Asymptotic of the `q-diameter of a random spherical cloud ?

Consider :

Spherical distribution : Λ = Id i.e. X := RU
The `q-diameter of the cloud :

D
(q)
n := max

1≤i<j≤n
‖Xi − Xj‖q

where, for q ≥ 1, ‖x‖q is the `q-norm of a vector x ∈ Rd
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Non Euclidean diameter

For d ≥ 2 and q ≥ 1, q 6= 2, the maximum of the `q-norm is
achieved on the Euclidean sphere Sd−1 at isolated points :

If q ∈ [1, 2) then max
u∈Sd−1

‖u‖q = d1/q−1/2 achieved at the 2d

diagonal points (±d−1/2, . . . ,±d−1/2)

If q ∈ (2,∞), then max
u∈Sd−1

‖u‖q = 1 achieved at the 2d

intersections of the axes with Sd−1

Therefore the localization phenomenon will occur : a spherical
vector X such that ‖X‖q is large must be close to the direction of

one of these maximum, and D
(q)
n will be achieved by points which

are nearly diametrically opposed along one of these directions.
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Theorem [FDS, 2015]
If q ∈ [1, 2), then

D
(q)
n − 2a

(q)
n

b
(q)
n

(d)−→ max
1≤j≤2d−1

max
i,i′≥1

{
Γ+
i,j + Γ−i′,j −

q − 1

4

d∑
k=1

(G+
i,j,k + G−i′,j,k)2

}

where Γ±i ,j are the points of independent PPP on (−∞,∞] with

mean measure 2−de−tdt and (G±i ,j ,1, . . . ,G
±
i ,j ,d) are i.i.d. Gaussian

vectors with covariance matrix

1

d(2− q)


d − 1 −1 . . . −1

−1 d − 1 . . . −1
...

...
. . .

...

−1 . . . −1 d − 1


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Theorem [FDS, 2015]

If q ∈ (2,∞), then

D
(q)
n − 2a

(q)
n

b
(q)
n

(d)−→ max
1≤i≤d

{
Γ+
i + Γ−i

}
where {Γ±i } are independent Gumbel random variables with
location parameter log 2d .
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Thank you for your attention

Complete recipes in :

The diameter of an elliptical cloud
A.-K. Fermin, Y. Demichel and P. Soulier
Electron. Journal. Probab. 20 n◦27, 1-32, 2015
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