Asymptotic distribution of the diameter of a random elliptical cloud

YANN DEMICHEL

Joint work with A.-K. Fermin and P. Soulier

, 1/30

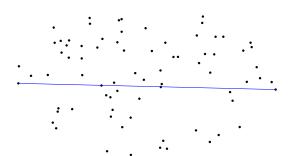
Random cloud

- \mathbb{X} is a random vector in \mathbb{R}^d with $d \geq 1$ fixed
- $n \ge 1$ is the size of the cloud
- ullet $\{\mathbb{X}_i\}_{1\leq i\leq n}$ are independent vectors distributed as \mathbb{X}

Diameter of the cloud

ullet $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^d

$$D_n := \max_{1 \le i < j \le n} \|\mathbb{X}_i - \mathbb{X}_j\|$$



What is the asymptotic distribution of D_n when $n \to \infty$?

Answer?

- For special cases
- ullet Depends on the distribution of $\mathbb X$

Dichotomy

- Distributions supported by a bounded set
 - Distributions 'approximatively' uniform
 - Geometry of the support
- Distributions supported by an unbounded set
 - Spherically symmetric distributions

History: bounded support

- Uniform distribution supported by special planar sets (excluding balls or ellipsoids): Appel, Najim and Russo (2002)
- Distributions with support included in the unit d-ball (including uniform in the d-ball, in the d-sphere, in spherical sectors): Mayer and Molchanov (2007)
- Distributions supported by a polytope (included uniform or non-uniform in square, uniform in regular polygons, uniform in the unit *d*-cube) : *Lao* (2010)
- Distributions supported by a *d*-ellipsoid : *Schrempp* (2016)

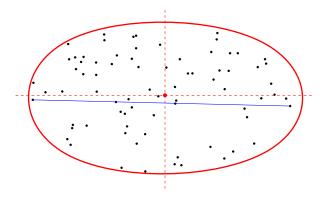
History: unbounded support

- Spherically symmetric normal distribution : Matthews and Rukhin (1993)
- Spherically symmetric Kotz distribution : Henze and Klein (1996)
- Power-tailed spherically decomposable distributions: Henze and Lao (2010)
- Spherically symmetric distributions : Jammalamadaka and Janson (2015)
 - → Open question : elliptically symmetric distributions?

Apetizer

A naive question ...

Where are the points which can achieve the diameter?



, 7/30

Apetizer

... a naive answer

$$M_n := \max_{1 \le i \le n} \|\mathbb{X}_i\|$$

 D_n is achieved for a pair of diametrically opposed points each of them realizing M_n

If you believe in this, you need:

- To localize the vectors with large norms
- ullet To control the asymptotic distribution of M_n

Precisely:

- Distribution of $\|X\|$?
- Distribution of $\frac{1}{\|\mathbb{X}\|}\mathbb{X}$ conditional on $\|\mathbb{X}\|$ is large?

Elliptical distribution :
$$X = R\Lambda U$$

where

- ullet $\mathbb{U}=(U_1,\ldots,U_d)$ is uniform on the unit sphere \mathcal{S}^{d-1}
- Λ is an invertible $d \times d$ matrix
- ullet R is a positive random variable independent of ${\mathbb U}$

In addition:

R is in the max domain of attraction of the Gumbel distribution

R is in the max domain of attraction of the Gumbel distribution

There exists a differentiable function $\psi_R:(0,\infty)\to(0,\infty)$ such that

$$\lim_{x\to\infty} \frac{\mathbb{P}(R>x+t\psi_R(x))}{\mathbb{P}(R>x)} = e^{-t}$$

locally uniformly with respect to $t \in \mathbb{R}$

Such a function ψ_R satisfies :

$$\lim_{x\to\infty}\frac{\psi_R(x+t\psi_R(x))}{\psi_R(x)}=1\;;\;\lim_{x\to\infty}\psi_R'(x)=0\;;\;\lim_{x\to\infty}\frac{\psi_R(x)}{x}=0$$

Distribution of $\Lambda \mathbb{U}$

Supported by the ellipsoid $\{\Sigma u: u \in \mathcal{S}^{d-1}\}$ where

$$\Sigma := \Lambda' \Lambda$$

is (up to a constant) the covariance matrix of $\ensuremath{\mathbb{X}}$

The ellipsoid is centered at the origin and has d axes directed by the eigenvectors of Σ with semi-length the square roots of the corresponding eigenvalues

$$\lambda_1 = \dots = \lambda_{\textbf{m}} > \lambda_{\textbf{m}+1} \geq \dots \geq \lambda_d > 0$$

ordered and repeated, where $1 \le \mathbf{m} \le d$ is the multiplicity of the largest one. If $\mathbf{m} = d$ we have a spherical distribution.

Distribution of $\Lambda \mathbb{U}$

Up to an orthogonal transformation we may assume that

$$\Lambda = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_d})$$

, 12/30

Localization principle for R

If $\mathbb V$ is a bounded random variable then the vector $R\mathbb V$ has a large norm iif R is large and $\mathbb V$ is close to its maximum.

Therefore, when $\mathbb{X}=R\Lambda\mathbb{U}$ is large then $\|\mathbb{X}\|$ is of order $\sqrt{\lambda_1}R$ and \mathbb{X} is located near the dominant eigenspace associated with λ_1 :

$$\|\mathbb{X}\| = \sqrt{\lambda_1} R \left(1 - \sum_{k=m+1}^{d} \frac{\lambda_1 - \lambda_k}{\lambda_1} U_k^2\right)^{1/2}$$

Theorem [FDS, 2015]

Define the functions ψ and ϕ on $(0,\infty)$ by

$$\psi(x) = \sqrt{\lambda_1} \psi_R \left(\frac{x}{\sqrt{\lambda_1}}\right)$$
 and $\phi(x) = \left(\frac{\psi(x)}{x}\right)^{1/2}$

Then, as $x \to \infty$,

$$\mathbb{P}(\|\mathbb{X}\| > x) \sim C_{\mathbf{m}} \left(\phi(x) \right)^{d-\mathbf{m}} \mathbb{P}\left(R > \frac{x}{\sqrt{\lambda_1}} \right)$$

where

$$C_{\mathbf{m}} := \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{\mathbf{m}}{2})} 2^{(d-\mathbf{m})/2} \left(\prod_{k=\mathbf{m}+1}^{d} \frac{\lambda_1}{\lambda_1 - \lambda_k} \right)^{1/2}$$

In particular, $\|\mathbb{X}\|$ is also in the max domain of attraction of the Gumbel distribution

Theorem [FDS, 2015]

Define
$$\Theta = \frac{1}{\|\mathbb{X}\|}\mathbb{X} = (\Theta_1, \dots, \Theta_d)$$
.

Then, as $x \to \infty$, conditionally on $\|X\| > x$,

$$\left(\frac{\|\mathbb{X}\|-x}{\psi(x)},\Theta_1,\ldots,\Theta_{\mathbf{m}},\frac{\Theta_{\mathbf{m}+1}}{\phi(x)},\ldots,\frac{\Theta_d}{\phi(x)}\right)$$

converges in distribution to

$$\left(\textit{E}, \Theta^{(m)}, \sqrt{\frac{\lambda_{m+1}}{\lambda_1 - \lambda_{m+1}}} \textit{G}_{m+1}, \ldots, \sqrt{\frac{\lambda_d}{\lambda_1 - \lambda_d}} \textit{G}_d\right)$$

where E is an exponential random variable with mean 1, $\Theta^{(m)}$ is uniformly distributed on \mathcal{S}^{m-1} , G_{m+1},\ldots,G_d are independent standard Gaussian random variables, and all components are independent.

 $\|\mathbb{X}\|$ is in the max domain of attraction of the Gumbel distribution

Thus:

- Consider $a_n > 0$ such that $\mathbb{P}(\|\mathbb{X}\| > a_n) \sim \frac{1}{n}$
- Set $b_n = \psi(a_n)$

Then:

- $\lim_{n\to\infty} a_n = \infty$ and $\lim_{n\to\infty} \frac{b_n}{a_n} = 0$
- For all $t \in \mathbb{R}$,

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{M_n - a_n}{b_n} \le t\right) = e^{-e^{-t}}$$

, 16/30

Corollary [FDS, 2015]

Let $c_n = \phi(a_n)$ and define the points

$$P_{\textit{n},\textit{i}} = \left(\frac{\|\mathbb{X}_{\textit{i}}\| - \textit{a}_{\textit{n}}}{\textit{b}_{\textit{n}}}, \Theta_{\textit{i},1}, \ldots, \Theta_{\textit{i},m}, \frac{\Theta_{\textit{i},m+1}}{\textit{c}_{\textit{n}}}, \ldots, \frac{\Theta_{\textit{i},d}}{\textit{c}_{\textit{n}}}\right)$$

Then, the point processes $\sum_{i=1}^{n} \delta_{P_{n,i}}$ converge weakly to a PPP $\sum_{i=1}^{\infty} \delta_{P_i}$ on $\mathbb{R} \times \mathcal{S}^{\mathbf{m}-1} \times \mathbb{R}^{d-\mathbf{m}}$ with

$$P_{i} = \left(\Gamma_{i}, \Theta_{i}^{(\mathbf{m})}, \sqrt{\frac{\lambda_{m+1}}{\lambda_{1} - \lambda_{m+1}}} G_{i, \mathbf{m}+1}, \dots, \sqrt{\frac{\lambda_{d}}{\lambda_{1} - \lambda_{d}}} G_{i, d}\right)$$

where $\{\Gamma_i\}$ are the points of a PPP on $(-\infty,\infty]$ with mean measure $\mathrm{e}^{-t}\mathrm{d}t$, $\{\Theta_i^{(\mathbf{m})}\}$ are i.i.d. vectors uniformly distributed on $\mathcal{S}^{\mathbf{m}-1}$ and $\{G_{i,k}\}$ are i.i.d. standard Gaussian variables, all sequences being mutually independent.

Conclusion

Vectors $X_i = ||X_i||\Theta_i$ with the largest norm concentrate around the dominant eigenspace in such a way that

- $\|\mathbb{X}_i\| \sim a_n + b_n \Gamma_i$ with $a_n \to \infty$ and $b_n = o(a_n)$
- The **m** first coordinates of Θ_i are uniform on $\mathcal{S}^{\mathbf{m}-1}$
- The $d-\mathbf{m}$ other coordinates of Θ_i tend to 0 with rate $c_n \to 0$ with Gaussian fluctuations

Last question

Are these large vectors always diametrically opposed?

- If $\mathbf{m}=1:\mathcal{S}^{\mathbf{m}-1}$ has only one direction Thus two vectors with a large norm will be on opposite sides and their distance is automatically large, typically twice as large as the norm of each one.
 - We expect that D_n behaves roughly like $2a_n$
- If $m>1:\mathcal{S}^{m-1}$ has an infinite number of directions Thus two vectors with a large norm can be close to each other and their distance will be typically much smaller than twice their norm.
 - We expect then a corrective term when comparing D_n to $2a_n$

Theorem [FDS, 2015]

Assume that $\mathbf{m}=1$, i.e. $\lambda_1>\lambda_2$. Then

$$\frac{D_n - 2a_n}{b_n} \stackrel{\text{(d)}}{\longrightarrow} \max_{i,j \geq 1} \left\{ \Gamma_i^+ + \Gamma_j^- - \frac{1}{4} \sum_{k=2}^d \frac{\lambda_k}{\lambda_1 - \lambda_k} (G_{i,k}^+ + G_{j,k}^-)^2 \right\}$$

where $\{\Gamma_i^{\pm}\}$ are the points of a PPP with mean measure $\frac{1}{2}\mathrm{e}^{-t}\mathrm{d}t$ on \mathbb{R} , and $\{G_{i,k}^{\pm}\}$ are i.i.d. standard Gaussian variables, independent of the points $\{\Gamma_i^{\pm}\}$.

, 20/30

Theorem [FDS, 2015]

Assume that $\mathbf{m} > 1$.

Then, for all $t \in \mathbb{R}$,

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{D_n - 2a_n}{b_n} + d_n \le t\right) = e^{-e^{-t}}$$

where

$$d_n = \frac{\mathbf{m} - 1}{2} \log \frac{a_n}{b_n} - \log \log \frac{a_n}{b_n} - \log C'_{\mathbf{m}}$$

with

$$C'_{\mathbf{m}} = \left(2d - \mathbf{m} - 1\right)2^{\mathbf{m} - 4}\pi^{-1/2}\Gamma\left(\frac{\mathbf{m}}{2}\right)\left(\prod_{k=\mathbf{m}+1}^{d} \frac{\lambda_1}{\lambda_1 - \lambda_k}\right)^{-1/2}$$

, 21/30

Example : bivariate Gaussian variable with correlation $ho \in (0,1)$

$$\mathbb{X} = R\Lambda \mathbb{U} \quad \text{ with } \quad R = \sqrt{\chi_2^2} \quad \text{ and } \quad \Lambda'\Lambda = \Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

- Eigenvalues : $\lambda_1 = 1 + \rho$ and $\lambda_2 = 1 \rho$
- Eigenspaces : $span\{(1,1)\}$ and $span\{(-1,1)\}$
- Multiplicity : $\mathbf{m} = \begin{cases} 1 & \text{if } \rho \neq 0 \\ 2 & \text{if } \rho = 0 \end{cases}$

, 22/30

Set
$$a_n = \sqrt{(1+\rho)\log n}$$
 and $b_n = \sqrt{\frac{1+\rho}{2\log n}}$

• If $\rho \neq 0$ then

$$\frac{D_n - 2a_n}{b_n} \stackrel{\text{(d)}}{\longrightarrow} \max_{i,j \geq 1} \left\{ \Gamma_i^+ + \Gamma_j^- - \frac{1 - \rho}{8\rho} (G_i^+ + G_j^-)^2 \right\}$$

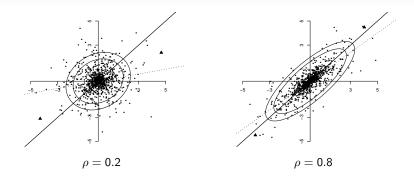
where $\{\Gamma_i^{\pm}\}$ are the points of a PPP with mean measure $\frac{1}{2}\mathrm{e}^{-t}\mathrm{d}t$ on \mathbb{R} , and $\{G_i^{\pm}\}$ are i.i.d. standard Gaussian variables, independent of the points $\{\Gamma_i^{\pm}\}$.

• If $\rho = 0$ then for all $t \in \mathbb{R}$,

$$\lim_{n\to\infty}\mathbb{P}\bigg(\frac{D_n-2a_n}{b_n}+d_n\leq t\bigg)=\mathrm{e}^{-\mathrm{e}^{-t}}$$

where

$$d_n = \frac{1}{2}\log\log n - \log\log\log n + \log(4\sqrt{2\pi})$$



The two points ▲ realizing the diameter

- They concentrate around the diagonal at rate $O(\log n)$
- Fluctuations are Gaussian variables with variance $\frac{1-\rho}{2\rho}$

Possible generalizations thanks the localization principle

Distribution of X

 $\mathbb{X} = R\lambda(\mathbb{U})$ with λ a bounded function

The behavior of \mathbb{X} given that its norm is large and then the behavior of D_n will be determined by the maxima of $\|\lambda\|$:

- If they are isolated points, we obtain results similar to the case $\mathbf{m}=1$
- Otherwise, if $\|\lambda\|$ is constant on non empty open subsets of \mathcal{S}^{d-1} , we obtain results similar to the case $\mathbf{m} > 1$

Possible generalizations thanks the localization principle

Non Euclidean diameter

Another open question in Jammalamadaka and Janson :

Asymptotic of the ℓ^q -diameter of a random spherical cloud?

Consider:

- Spherical distribution : $\Lambda = I_d$ i.e. $\mathbb{X} := R\mathbb{U}$
- The ℓ^q -diameter of the cloud :

$$D_n^{(q)} := \max_{1 \le i \le j \le n} \|\mathbb{X}_i - \mathbb{X}_j\|_q$$

where, for $q \geq 1$, $||x||_q$ is the ℓ^q -norm of a vector $x \in \mathbb{R}^d$

Non Euclidean diameter

For $d \geq 2$ and $q \geq 1$, $q \neq 2$, the maximum of the ℓ^q -norm is achieved on the Euclidean sphere \mathcal{S}^{d-1} at isolated points :

- If $q\in[1,2)$ then $\max_{u\in\mathcal{S}^{d-1}}\|u\|_q=d^{1/q-1/2}$ achieved at the 2^d diagonal points $(\pm d^{-1/2},\dots,\pm d^{-1/2})$
- If $q \in (2, \infty)$, then $\max_{u \in \mathcal{S}^{d-1}} \|u\|_q = 1$ achieved at the 2d intersections of the axes with \mathcal{S}^{d-1}

Therefore the localization phenomenon will occur: a spherical vector \mathbb{X} such that $\|\mathbb{X}\|_q$ is large must be close to the direction of one of these maximum, and $D_n^{(q)}$ will be achieved by points which are nearly diametrically opposed along one of these directions.

Theorem [FDS, 2015]

If $q \in [1, 2)$, then

$$\frac{D_n^{(q)} - 2a_n^{(q)}}{b_n^{(q)}} \ \xrightarrow{\text{(d)}} \ \max_{1 \leq j \leq 2^{d-1}} \max_{i,i' \geq 1} \left\{ \Gamma_{i,j}^+ + \Gamma_{i',j}^- - \frac{q-1}{4} \sum_{k=1}^d (G_{i,j,k}^+ + G_{i',j,k}^-)^2 \right\}$$

where $\Gamma^{\pm}_{i,j}$ are the points of independent PPP on $(-\infty,\infty]$ with mean measure $2^{-d}\mathrm{e}^{-t}\mathrm{d}t$ and $(G^{\pm}_{i,j,1},\ldots,G^{\pm}_{i,j,d})$ are i.i.d. Gaussian vectors with covariance matrix

$$\frac{1}{d(2-q)} \begin{pmatrix} d-1 & -1 & \dots & -1 \\ -1 & d-1 & \dots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & \dots & -1 & d-1 \end{pmatrix}$$

, 28/30

Theorem [FDS, 2015]

If $q \in (2, \infty)$, then

$$\frac{D_n^{(q)} - 2a_n^{(q)}}{b_n^{(q)}} \stackrel{\text{(d)}}{\longrightarrow} \max_{1 \le i \le d} \left\{ \Gamma_i^+ + \Gamma_i^- \right\}$$

where $\{\Gamma_i^{\pm}\}$ are independent Gumbel random variables with location parameter $\log 2d$.

, 29/30

Thank you for your attention

Complete recipes in :

The diameter of an elliptical cloud A.-K. Fermin, Y. Demichel and P. Soulier Electron. Journal. Probab. 20 n°27, 1-32, 2015