Consistency of likelihood estimation for Gibbs point processes

David Dereudre, Laboratoire Paul Painlevé, University Lille 1 (Joint work with Frédéric Lavancier, Laboratoire Jean Leray, Université Nantes)

Conference of the GDR GeoSto, Nantes, 6th April 2016

うして ふゆう ふほう ふほう ふしつ

Let P be an infinite volume Gibbs Point Process in \mathbb{R}^d for an energy function which depends on a parameter θ .

Let P be an infinite volume Gibbs Point Process in \mathbb{R}^d for an energy function which depends on a parameter θ . Let γ be a realization of P.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ や

Let P be an infinite volume Gibbs Point Process in \mathbb{R}^d for an energy function which depends on a parameter θ . Let γ be a realization of P. Let $\hat{\theta}_{\Lambda}$ the MLE of θ based on the observation ω_{Λ} .

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Let P be an infinite volume Gibbs Point Process in \mathbb{R}^d for an energy function which depends on a parameter θ . Let γ be a realization of P. Let $\hat{\theta}_{\Lambda}$ the MLE of θ based on the observation ω_{Λ} .

Question

What are the asymptotic properties of $(\hat{\theta}_{\Lambda})$ when Λ goes to \mathbb{R}^d ?

Let P be an infinite volume Gibbs Point Process in \mathbb{R}^d for an energy function which depends on a parameter θ . Let γ be a realization of P. Let $\hat{\theta}_{\Lambda}$ the MLE of θ based on the observation ω_{Λ} .

Question

What are the asymptotic properties of $(\hat{\theta}_{\Lambda})$ when Λ goes to \mathbb{R}^d ?

• Mase(1992) The MLE is consistent, asymptotically normal and efficient for exponential models with small interaction (cluster expansion conditions).

Let P be an infinite volume Gibbs Point Process in \mathbb{R}^d for an energy function which depends on a parameter θ . Let γ be a realization of P. Let $\hat{\theta}_{\Lambda}$ the MLE of θ based on the observation ω_{Λ} .

Question

What are the asymptotic properties of $(\hat{\theta}_{\Lambda})$ when Λ goes to \mathbb{R}^d ?

- Mase(1992) The MLE is consistent, asymptotically normal and efficient for exponential models with small interaction (cluster expansion conditions).
- Jensen(1993) The MLE is asymptotically normal under the Dobrushin uniqueness condition.

Let P be an infinite volume Gibbs Point Process in \mathbb{R}^d for an energy function which depends on a parameter θ . Let γ be a realization of P. Let $\hat{\theta}_{\Lambda}$ the MLE of θ based on the observation ω_{Λ} .

Question

What are the asymptotic properties of $(\hat{\theta}_{\Lambda})$ when Λ goes to \mathbb{R}^d ?

- Mase(1992) The MLE is consistent, asymptotically normal and efficient for exponential models with small interaction (cluster expansion conditions).
- Jensen(1993) The MLE is asymptotically normal under the Dobrushin uniqueness condition.
- Mase(2000) The MLE is consistent for exponential models.

Let P be an infinite volume Gibbs Point Process in \mathbb{R}^d for an energy function which depends on a parameter θ . Let γ be a realization of P. Let θ_{Λ} the MLE of θ based on the observation ω_{Λ} .

Question

What are the asymptotic properties of $(\hat{\theta}_{\Lambda})$ when Λ goes to \mathbb{R}^d ?

- Mase(1992) The MLE is consistent, asymptotically normal and efficient for exponential models with small interaction (cluster expansion conditions).
- Jensen(1993) The MLE is asymptotically normal under the Dobrushin uniqueness condition.
- Mase(2000) The MLE is consistent for exponential models.
- Other estimators are consistent and asymptotically normal : MPLE, Takacs-Fiksel estimators, variational estimators.

Let Λ be a bounded window in \mathbb{R}^d , \mathcal{C}_{Λ} the space of finite configurations in Λ and π_{Λ} the law of the Poisson Point Process in Λ with intensity 1.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Let Λ be a bounded window in \mathbb{R}^d , \mathcal{C}_{Λ} the space of finite configurations in Λ and π_{Λ} the law of the Poisson Point Process in Λ with intensity 1.

The energy H is a functional from Ω_{Λ} to $\mathbb{R} \cup \{+\infty\}$.

Definition

The Finite volume Gibbs point process in Λ is the probability measure on Ω_{Λ} which is absolutely continuous with respect to π_{Λ} with density

$$f_{\Lambda} = \frac{1}{Z_{\Lambda}} e^{-H}.$$

うして ふゆう ふほう ふほう ふしつ

Examples : pairwise potential interactions

$$H_{\Lambda}(\gamma) = z \ N_{\Lambda}(\gamma) + \sum_{\{x,y\} \in \gamma} \phi(x-y).$$

Examples : pairwise potential interactions

$$H_{\Lambda}(\gamma) = z \ N_{\Lambda}(\gamma) + \sum_{\{x,y\} \in \gamma} \phi(x-y).$$

- The Strauss pair potential :

$$\phi(x) = \begin{cases} \beta & \text{if} \quad |x| < R, \\ 0 & \text{if} \quad |x| \ge R. \end{cases}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Examples : pairwise potential interactions

$$H_{\Lambda}(\gamma) = z \ N_{\Lambda}(\gamma) + \sum_{\{x,y\} \in \gamma} \phi(x-y).$$

- The Strauss pair potential :

$$\phi(x) = \begin{cases} \beta & \text{if } |x| < R, \\ 0 & \text{if } |x| \ge R. \end{cases}$$

- The Lennard-Jones pair potential :

$$\phi(x) = A|x|^{-n} - B|x|^{-m}, \quad x \in \mathbb{R}^d.$$

(The standard Lennard-Jones model, n = 12 and m = 6).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The area interaction :

$$H_{\Lambda}(\gamma) = z \ N_{\Lambda}(\gamma) + \beta \text{Volume}\left(\bigcup_{x \in \gamma} B(x, R)\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The area interaction :

$$H_{\Lambda}(\gamma) = z \ N_{\Lambda}(\gamma) + \beta \text{Volume}\left(\bigcup_{x \in \gamma} B(x, R)\right).$$

The Quermass interaction :

$$H_{\Lambda}(\gamma) = z \ N_{\Lambda}(\gamma) + \sum_{i=1}^{d+1} \beta_i M_i \left(\bigcup_{x \in \gamma} B(x, R) \right).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $((M_i)_{1 \le i \le d+1}$ are the Minkowski's functionals)

Infinite volume Gibbs point process

 \mathcal{C} is the space of locally finite configurations of points in \mathbb{R}^d .

Infinite volume Gibbs point process

 \mathcal{C} is the space of locally finite configurations of points in \mathbb{R}^d . A family of interaction energies is a collection $\mathcal{H} = (H_\Lambda)$ of measurable functions from Ω to $\mathbb{R} \cup \{+\infty\}$ such that for $\Lambda \subset \Lambda'$

$$H_{\Lambda'}(\gamma) = H_{\Lambda}(\gamma) + \varphi_{\Lambda,\Lambda'}(\gamma_{\Lambda^c}).$$

Infinite volume Gibbs point process

 \mathcal{C} is the space of locally finite configurations of points in \mathbb{R}^d . A family of interaction energies is a collection $\mathcal{H} = (H_\Lambda)$ of measurable functions from Ω to $\mathbb{R} \cup \{+\infty\}$ such that for $\Lambda \subset \Lambda'$

$$H_{\Lambda'}(\gamma) = H_{\Lambda}(\gamma) + \varphi_{\Lambda,\Lambda'}(\gamma_{\Lambda^c}).$$

The local conditional densities :

$$f_{\Lambda}(\gamma) = \frac{1}{Z_{\Lambda}(\gamma_{\Lambda^c})} e^{-H_{\Lambda}(\gamma)},$$

Definition

A probability measure P on is a Gibbs measure if for every Λ ,

$$P(d\gamma_{\Lambda}|\gamma_{\Lambda^c}) = f_{\Lambda}(\gamma)\pi_{\Lambda}(d\gamma_{\Lambda}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We consider a family of parametric energy functionals (H^{θ}_{Λ}) where $\theta \in \mathring{\Theta} \subset \mathbb{R}^{p}$. P^{*} is a Gibbs point process for $(H^{\theta^{*}}_{\Lambda})$ with unknown θ^{*} . γ^{*} is a realization of P^{*} . $\Lambda_{n} = [-n, n]^{d}$ are the observation windows.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

We consider a familly of parametric energy functionals (H^{θ}_{Λ}) where $\theta \in \mathring{\Theta} \subset \mathbb{R}^{p}$. P^{*} is a Gibbs point process for $(H^{\theta^{*}}_{\Lambda})$ with unknown θ^{*} . γ^{*} is a realization of P^{*} . $\Lambda_{n} = [-n, n]^{d}$ are the observation windows.

Definition

Let \mathcal{K} be a compact subset of $\overset{\circ}{\Theta}$ such that $\theta^* \in \mathcal{K}$. The MLE of θ^* from the observation $\gamma^*_{\Lambda_n}$ is defined by

$$(\hat{\theta}_n) = \operatorname*{argmax}_{\theta \in \mathcal{K}} f^{\theta}_{\Lambda_n}(\gamma^*_{\Lambda_n}).$$

うして ふゆう ふほう ふほう ふしつ

Corollaries of our main Theorems

- The MLE of (z^*, β^*, R^*) in the Strauss model is consistent

$$\phi(x) = \begin{cases} \beta & \text{if } |x| < R, \\ 0 & \text{if } |x| \ge R. \end{cases}$$

- The MLE of $(z^*, A^*, B^*, n^*, m^*)$ in the Lennard-Jones model is consistent

$$\phi(x) = A|x|^{-n} - B|x|^{-m}, \quad x \in \mathbb{R}^d.$$

- The MLE of (z^*, β^*, R^*) in the Area Process is consistent

$$H_{\Lambda}(\gamma) = z \ N_{\Lambda}(\gamma) + \beta \text{Volume}\left(\bigcup_{x \in \gamma} B(x, R)\right).$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Assumptions of our main Theorem

[Stability] : For any compact set $\mathcal{K} \subset \Theta$, there exists a constant $\kappa \geq 0$ such that for any Λ , any $\theta \in \mathcal{K}$ and any $\gamma \in \Omega$

 $H^{\theta}_{\Lambda}(\gamma_{\Lambda}) \ge -\kappa N_{\Lambda}(\gamma)$

Assumptions of our main Theorem

[Stability] : For any compact set $\mathcal{K} \subset \Theta$, there exists a constant $\kappa \geq 0$ such that for any Λ , any $\theta \in \mathcal{K}$ and any $\gamma \in \Omega$

$$H^{\theta}_{\Lambda}(\gamma_{\Lambda}) \ge -\kappa N_{\Lambda}(\gamma)$$

[MeanEnergy] : The following decompositions holds

$$H^{\theta}_{\Lambda_n} = \sum_{k \in \{-n, n-1\}^d} H^{\theta}_0 \circ \tau_{-k} + \partial H^{\theta}_{\Lambda_n}$$

with for any $P \in \mathcal{G}$

$$E_P(H_0^\theta) < +\infty$$

and

$$\lim_{n \to \infty} \frac{1}{|\Lambda_n|} \sup_{\theta \in \mathcal{K}} \left| \partial H^{\theta}_{\Lambda_n} \right| \stackrel{P-as}{=} 0.$$

うして ふゆう ふほう ふほう ふしつ

[Boundary] : For all $P \in \mathcal{G}$, for any compact set $\mathcal{K} \subset \Theta$ and for P-almost every $\gamma \in \Omega$

$$\lim_{n \to \infty} \frac{1}{|\Lambda_n|} \sup_{\theta \in \mathcal{K}} \left| H^{\theta}_{\Lambda_n}(\gamma_{\Lambda_n}) - H^{\theta}_{\Lambda_n}(\gamma) \right| = 0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

[Boundary] : For all $P \in \mathcal{G}$, for any compact set $\mathcal{K} \subset \Theta$ and for *P*-almost every $\gamma \in \Omega$

$$\lim_{n \to \infty} \frac{1}{|\Lambda_n|} \sup_{\theta \in \mathcal{K}} \left| H_{\Lambda_n}^{\theta}(\gamma_{\Lambda_n}) - H_{\Lambda_n}^{\theta}(\gamma) \right| = 0.$$

[Regularity] : For all $P \in \mathcal{G}$, for any compact set $\mathcal{K} \subset \Theta$

$$E_P\left(\sup_{\substack{\theta'\in\mathcal{K}\\|\theta-\theta'|\leq r}} \left| H_0^{\theta} - H_0^{\theta'} \right| \right) \underset{r\mapsto 0}{\longmapsto} 0.$$

ション ふゆ マ キャット しょう くしゃ

[Regularity] : (second part) For any $\eta > 0$ and any $\theta_0 \in \Theta$, there exists $\theta \subset B(\theta_0, \eta)$ and $r_0 > 0$ such that for any Λ and any γ_{Λ}

$$\inf_{\theta' \in B(\theta_0, r_0)} \left(\frac{H^{\theta}_{\Lambda}(\gamma_{\Lambda}) - H^{\theta'}_{\Lambda}(\gamma_{\Lambda})}{N_{\Lambda}(\gamma_{\Lambda})} \right) \ge g(r_0) \underset{r_0 \mapsto 0}{\longmapsto} 0$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

where g is a function such that $g(r) \mapsto 0$ when $r \mapsto 0$.

Assumptions of our main Theorem

[VariationalPrinciple] : The *pressure* exits;

$$p(\theta) := \lim_{n \to \infty} \frac{1}{|\Lambda_n|} \ln(Z_{\Lambda_n}^{\theta}).$$

In addition, for any θ, θ' in Θ and $\mu^{\theta'} \in \mathcal{G}^{\theta'}$,

$$\mathcal{I}(\mu^{\theta'}) + E_{\mu^{\theta'}}(H_0^{\theta}) \ge -p(\theta)$$

うして ふゆう ふほう ふほう ふしつ

and the equality holds if and only if $\theta' = \theta$. $(\mathcal{I}(\mu^{\theta'}))$ is the specific entropy of $\mu^{\theta'}$ with respect to π)

Assumptions of our main Theorem

[VariationalPrinciple] : The *pressure* exits;

$$p(\theta) := \lim_{n \to \infty} \frac{1}{|\Lambda_n|} \ln(Z_{\Lambda_n}^{\theta}).$$

In addition, for any θ, θ' in Θ and $\mu^{\theta'} \in \mathcal{G}^{\theta'}$,

$$\mathcal{I}(\mu^{\theta'}) + E_{\mu^{\theta'}}(H_0^{\theta}) \ge -p(\theta)$$

and the equality holds if and only if $\theta' = \theta$. $(\mathcal{I}(\mu^{\theta'})$ is the specific entropy of $\mu^{\theta'}$ with respect to π) This assumption is satisfied for any finite range interaction (Der. 2015)

Theorem (Dereudre, Lavancier)

Under the assumptions [Stability], [MeanEnergy], [Boundary], [Regularity] and [VariationalPrinciple], for any $\theta^* \in \mathcal{K}$ and any $P^* \in \mathcal{G}^{\theta^*}$, the MLE $\hat{\theta}_n$ converges P^* -almost surely to θ^* when n goes to infinity.

Theorem (Dereudre, Lavancier)

Under the assumptions [Stability], [MeanEnergy], [Boundary], [Regularity] and [VariationalPrinciple], for any $\theta^* \in \mathcal{K}$ and any $P^* \in \mathcal{G}^{\theta^*}$, the MLE $\hat{\theta}_n$ converges P^* -almost surely to θ^* when n goes to infinity.

うして ふゆう ふほう ふほう ふしつ

Variants of this theorem are given in the paper :

- with an hardcore part
- in the pairwise setting
- in the linear setting

Sketch of the proof

$$\hat{\theta}_n(\gamma) = \operatorname*{argmax}_{\theta \in \mathcal{K}} f^{\theta}_{\Lambda_n}(\gamma_{\Lambda_n}).$$

• Step 1 (A limiting contrast function) :

$$K_n(\theta, \gamma) := \frac{1}{|\Lambda_n|} \log f^{\theta}_{\Lambda_n}(\gamma) \xrightarrow{P^* - as} K(\theta).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(Classical thermodynamic arguments)

Sketch of the proof

$$\hat{\theta}_n(\gamma) = \operatorname*{argmax}_{\theta \in \mathcal{K}} f^{\theta}_{\Lambda_n}(\gamma_{\Lambda_n}).$$

• Step 1 (A limiting contrast function) :

$$K_n(\theta, \gamma) := \frac{1}{|\Lambda_n|} \log f^{\theta}_{\Lambda_n}(\gamma) \xrightarrow{P^* - as} K(\theta).$$

(Classical thermodynamic arguments)

• Step 2 (Identification) :

$$\operatorname{argmax}_{\theta} K(\theta) = \{\theta^*\}.$$

ション ふゆ マ キャット しょう くしゃ

(Variational principle)

Sketch of the proof

$$\hat{\theta}_n(\gamma) = \underset{\theta \in \mathcal{K}}{\operatorname{argmax}} f^{\theta}_{\Lambda_n}(\gamma_{\Lambda_n}).$$

• Step 1 (A limiting contrast function) :

$$K_n(\theta, \gamma) := \frac{1}{|\Lambda_n|} \log f^{\theta}_{\Lambda_n}(\gamma) \xrightarrow{P^* - as} K(\theta).$$

(Classical thermodynamic arguments)

• Step 2 (Identification) :

$$\operatorname{argmax}_{\theta} K(\theta) = \{\theta^*\}.$$

(Variational principle)

• Step 3 (Convergence of argmax) :

$$\operatorname{argmax}_{\theta} K_n(\theta, \gamma) \xrightarrow{P^* - as} \operatorname{argmax}_{\theta} K(\theta).$$

(main contribution in the present work)

Step 1 : A limiting contrast function

$$K_n(\theta, \gamma) = \frac{1}{|\Lambda_n|} \log f^{\theta}_{\Lambda_n}(\gamma)$$

= $\frac{1}{|\Lambda_n|} \left(-\log(Z^{\theta}_{\Lambda_n}) + H^{\theta}_{\Lambda_n}(\gamma_{\Lambda_n}) \right)$

We assume that P^* is ergodic. So, For P^* -almost all γ

$$K_n(\theta, \gamma) \longmapsto -p(\theta) - E_{P^*}(H_0^\theta) := K(\theta).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Recall the variational principle, for any θ, θ' in Θ and $\mu^{\theta'} \in \mathcal{G}^{\theta'}$

$$\mathcal{I}(\mu^{\theta'}) + E_{\mu^{\theta'}}(H_0^{\theta}) \ge -p(\theta) \tag{1}$$

with equality if and only if $\theta = \theta'$. So

$$K(\theta) = -p(\theta) - E_{P^*}(H_0^{\theta})$$

$$\leq I(P^*),$$

with equality if and only if $\theta = \theta^*$.

うしつ 川田 ふぼう ふぼう ふしゃ

Step 3 : Convergence of argmax

- Mase 2000 (exponential models) : The contrast functions are are strictly concave. The convergence of argmax is direct.

Step 3 : Convergence of argmax

- Mase 2000 (exponential models) : The contrast functions are are strictly concave. The convergence of argmax is direct.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- Guyon 1995 : Control of the modulus of continuity.

Step 3 : Convergence of argmax

- Mase 2000 (exponential models) : The contrast functions are are strictly concave. The convergence of argmax is direct.
- Guyon 1995 : Control of the modulus of continuity.

Lemma (Dereudre-Lavancier)

If a family of random contrast functions (K_n^{θ}) satisfies

•
$$K_n^{\theta} \stackrel{P^*-as}{\mapsto} K^{\theta}$$

•
$$argmax_{\theta}K^{\theta} = \{\theta^*\}$$

- $\theta \mapsto \mathcal{K}^{\theta}$ is upper semicontinuous
- There exists a function g : ℝ⁺ → R⁺ with g(x) → 0 when x → 0 such that ∀ε > 0, ∀θ, ∃θ' ∈ B(θ, g(ε)), ∃r > 0

$$P^*\left(\limsup_{n\to\infty}\left\{\sup_{B(\theta,r)}K_n^{\cdot}-K_n^{\theta'}\geq\varepsilon\right\}\right)=0.$$

Then the $\operatorname{argmax}_{\theta} K_n^{\theta}$ converges P^* -almost surely to $\operatorname{argmax}_{\theta} K^{\theta}$.

Bibliography

- D. Dereudre, F. Lavancier, *Consistency of likelihood* estimation for Gibbs point processes, To appear in Annals of Stat.
- D. Dereudre, Variational principle for Gibbs Point Processes with finite range interaction, Elect. Comm. Prob. (2015)
- X. Guyon. Random Fields on a Network. Springer-Verlag (1995).
- J. L. Jensen. Asymptotic normality of estimates in spatial point processes. Scandinavian Journal of Statistics (1993).
- S. Mase. Uniform LAN condition of planar Gibbsian point processes and optimality of maximum likelihood estimators of soft-core potential functions. Probability Theory and Related Fields, (1992).
- S. Mase. Asymptotic properties of MLE's of Gibbs models on ℝ^d. Unpublished manuscript, (2002).