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Quantum Hall effect
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Quantum nature of Hall resistance plateaus

Plateaus observed for (ν integer):

ρxy =
B

ne
=

h

νe2

→ Quantized electronic densities:

n = ν
eB

h

In terms of Φ0 = h
e
: “Flux quantum”

Nelectrons = ν
Total magnetic flux

Φ0
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Energy spectrum for a single electron

H =
1

2m
(P + eA)2, B = ∇ ∧ A spatially uniform.

Define gauge invariant Π = P + eA = mv
{pi, rj} = δij, i, j ∈ {x, y}, {Πx,Πy} = eB
→ Harmonic oscillator spectrum: En = ~ω(n+ 1/2), ω = eB/m

Conserved quantities (also generators of magnetic translations)

v = ωẑ∧(r−R), R = r+ ẑ∧Π
eB

, {Rx, Ry}=− 1
eB
, {Ri,Πj} = 0

Heisenberg principle: B∆Rx∆Ry ≃ h
e

= Φ0

→ Magnetic length l =
√

~

eB
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Landau levels are degenerate

Intuitively, each state occupies the same area as a flux quantum
Φ0, so that the number of states per Landau level =

Total magnetic flux

Φ0

ν is interpreted as the number of occupied Landau levels

3<   <4νentierν
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Ferromagnetism at ν = 1

Coulomb repulsion favours
anti-symmetric orbital
wavefunction

→ spin wavefunction:
symmetric (ferromagnet)

mm−1 m+1 ......

ν = 1

exchange gap

no interactions with repulsive interactions

in QH systems :     no kinetic−energy cost !
( LL ~ flat band)
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A class of trial states near ν = 1

Take antisymmetrized products of single particle states (Slater
determinants or Hartree-Fock states): |Sψ〉 =

∧N
α=1 |Φα〉

where Φα,a(r) = χα(r)ψa(r), r = (x, y), a ∈ {1, ..., d}.
χα(r) → electron position.
ψa(r) → slowly varying spin background. (〈ψ(r)|ψ(r)〉 = 1).

In the d = 2 case, if σa denote Pauli matrices:
Associated classical spin field: na(r) = 〈ψ(r)|σa|ψ(r)〉
Topological charge: Ntop = 1

4π

∫

d(2)r (∂x~n ∧ ∂y~n) · ~n
Because of large magnetic field, we require that orbital
wave-functions Φα,a(r) minimize their kinetic energy.
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Extra charges at ν = 1 induce Skyrmion textures

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993)

〈Φα|(P − eA)2|Φα〉 = 〈χα|(P − eAeff)2 + Veff |χα〉
Veff = 〈∇ψ|∇ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉

Aeff = A− Φ0
1

2π
A

Berry connection: A = 1
i
〈ψ|∇ψ〉

Generalized topological charge:
∮

A.dr = 2πNtop

(This coincides with the previous notion when d = 2).
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Extra charges at ν = 1 induce Skyrmion textures

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993)

〈Φα|(P − eA)2|Φα〉 = 〈χα|(P − eAeff)2 + Veff |χα〉

Consequences:
The charge orbitals χα(r) lie in the lowest Landau level of Aeff .
There are Neff = Effective flux/Φ0 states in this level.
Condition to minimize Coulomb energy:

Nelectrons = Neff

Finally:
Nelectrons = N(ν = 1) −Ntop
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Picture of a Skyrmion crystal
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Skyrmion crystals in electronic systems

Theoretical prediction: Brey, Fertig, Côté and MacDonald, PRL
75, 2562 (1995)
Specific heat peak: Bayot et al. PRL 76, 4584 (1996) and PRL
79, 1718 (1997)
Increase in NMR relaxation: Gervais et al. PRL 94, 196803
(2005)
Raman spectroscopy: Gallais et al, PRL 100, 086806 (2008)
Microwave spectroscopy: Han Zhu et al. PRL 104, 226801
(2010)

Recent observation (neutron scattering) on the chiral itinerant

magnet MnSi: Mühlbauer et al, Science 323, 915 (2009)
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Multi-Component Systems (Internal Degrees of Freedom)
La

nd
au

 le
ve

ls

|+>

|−>
d

ν   = 1/2

ν   = 1/2 ν   = ν   + ν   = 1

+

+ −− T

: A sublattice : B sublattice

τ

τ

2

3

1

2

e 1e

e

spin + isospin : SU(4)

A     physical spin: SU(2)

two−fold valley 
degeneracy

B     bilayer: SU(2) isospin

        SU(2) isospin

C     graphene (2D graphite)

(doubling of LLs)

exciton 
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The case for entangled textures (I)

Bourassa et al, Phys. Rev. B 74, 195320 (2006)
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The case for entangled textures (II)

Bilayer with charge imbal-
ance

Ezawa, Tsitsishvili,
Phys. Rev. B 70, 125304,
(2004)

Collective mode spectrum

Côté et al.,
Phys. Rev. B 76, 125320,
(2007)
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Enforcing projection onto the lowest Landau level

Problem: in general, factorization of single particle orbitals is not
compatible with lying in the L.L.L.
Important exception: holomorphic textures.
Solution: diagonalize an auxiliary Zeeman-like Hamiltonian:

ĤZ = −PLLL ψa(r)ψ̄b(r)
Pd

i=1
ψ̄b(r)ψb(r)

PLLL. In absence of PLLL, this operator

has two highly degenerate eigenvalues, 1 and 0.
Effects of PLLL(F. Faure and B. Zhilinskii, (2001)):
Lifts the degeneracy, turning the spectrum of ĤZ into two bands,
separated by a gap.
The dimensions of eigenspaces associated to eigenvalues 1
and 0 are respectively N −Ntop and (d− 1)N +Ntop.
The projector P̂ associated to the former band can be computed
by a semi-classical expansion, the small parameter being the
magnetic length l.
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Semi-classical expansion of P̂

• Start from [P̂ , ĤZ ] = 0 and P̂ 2 = P̂ .

• Represent operators in the LLL, P̂ and ĤZ by their

(anti-Wick) symbols, P and P0 = ψa(r)ψ̄b(r)
Pd

i=1
ψ̄b(r)ψb(r)

.

• Expand P = P0 + l2P1 + l4P2 + ..., and like-wise for star
products. First quantum correction: P1 = (1 − 2P0)(P0 ⋆1 P0).

• Form Slater determinant |Sψ〉 from projector P̂ .

• Transform anti-Wick (contravariant) symbols into Wick
(covariant) symbols to get local density matrix Pcov(r) in
state |Sψ〉. Pcov = P0 + 2l2∂z̄∂zP0 + l2P1 + O(l4)

• Local particle density: ρ(r) = 1
2πl2

−Qtop(r)
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CP (d − 1) model for exchange energy

d-component spinor field |ψ(r)〉 parametrizes a Slater
determinant |Sψ〉. Consider two-body interactions (Coulomb)
and look at first quantum correction in total energy:

Eex = 〈Sψ|Hint|Sψ〉 =

∫

d(2)r

(〈∇ψ|∇ψ〉
〈ψ|ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉

〈ψ|ψ〉2
)

Berry connection: A = 1
i
〈ψ|∇ψ〉

Topological charge:
∮

A.dr = 2πNtop

E ≥ π|Ntop|

Lower bound is reached when |ψ(r)〉 is holomorphic (Ntop > 0)
or anti-holomorphic: (Ntop < 0), leading to a massive
degeneracy.
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Slater determinants as coherent states

Variational formulation of Schrödinger equation:
δ
∫ tf
ti

(

i〈Ψ|∂Ψ
∂t
〉 − 〈Ψ|H|Ψ〉

)

dt = 0

Time-dependent Hartree-Fock equations of motion: constrained
dynamics within the manifold |Ψ(t)〉 = |Sψ(t)〉. To lowest order in
l2 expansion:

〈Sψ(t)|
∂Sψ(t)

∂t
〉 =

∫

d2r

2πl2
〈ψ(r, t)|∂ψ(r, t)

∂t
〉+O(1) ≡ α(ψ(t))[

∂ψ(r, t)

∂t
]

Considering ω = −idα allows us to view the set of classical
textures as an infinite dimensional symplectic manifold. The
subset of holomorphic textures D is a submanifold of finite
dimension. Observation: the restriction of ω to D is
non-degenerate.
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Hamiltonians with continuous degeneracies (I)

Normal form for positive Hamiltonians near a degenerate
equilibrium point (Williamson):

H =
1

2

N0+Nd
∑

j=N0+1

p2
j +

1

2

N
∑

j=N0+Nd+1

ωj(p
2
j + q2

j )

N0, Nd, and Nm = N −N0 −Nd are the numbers of zero modes,
of drift modes, and of massive modes respectively.
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Hamiltonians with continuous degeneracies (II)

Relative Darboux theorem: if a classical Hamiltonian system
admits a submanifold D of degenerate equilibria with a constant
Williamson type (N0,Nd,Nm), there exists locally canonical
coordinates, such that:

• D is defined by:
pN0+1 = ... = pN0+Nd

= pN0+Nd+1 = ... = pN = 0 and
qN0+Nd+1 = ... = qN = 0.

• Near D, the previous normal form for H is valid, with ωj
functions of the slow coordinates
(ps, qs) ≡ (p1, ..., pN0

, q1, ..., qN0
, qN0+1, ..., qN0+Nd

), and the
kinetic term takes the form: 1

2

∑N0+Nd

j=N0+1Aij(ps, qs)pipj.

Useful special case: if the restriction of ω to D is
non-degenerate, then Nd = 0.
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Quantum degeneracy among holomorphic textures

Question: how does the quantum ground-state energy of the
massive modes depend on the slow variables (ps, qs) ?
Toy model: Assume a single particle Hamiltonian (z = p+ iq)
such that H(z, z̄) ≡ 〈Φz̄|Ĥ|Φz̄〉 is minimal at z = 0. Then:
H(z, z̄) = E0 + ω0

2
z̄z + ∆

4
z2 + ∆̄

4
z̄2 + ...

Quantum-mechanically: Ĥ = E0 + ~ω0 b
+b+ ~∆

2
(b+)2 + ~∆̄

2
b2 + ...,

with [b, b+] = 1. Its ground-state energy is:
Egs = E0 + ~

2
(
√

ω2
0 − ∆2 − ω0). So Egs = E0 if ∆ = 0. This holds

to all orders in ~ if the Taylor expansion of the covariant symbol
H(z, z̄) does not contain any term of the form zn or z̄n.
Main remark: the CP (d− 1) action, seen as a covariant symbol,
has this property, z being replaced by {δψa(r)}a,r, and z̄ by
{δψa(r)}a,r.
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Spectrum of the Hessian matrix (I)

Consider small deviations |ψ〉 → |ψ〉 +
√

〈ψ|ψ〉|φ〉 away from
holomorphic spinor |ψ〉.

E = π|Ntop| + 2〈φ|M+PM |φ〉 + ...

M |φ〉 = |∂z̄φ〉 + 1
2
〈∂z̄ψ|ψ〉
〈ψ|ψ〉 |φ〉

P |φ〉 = |φ〉 − |ψ(z)〉〈ψ(z)|
〈ψ(z)|ψ(z)〉 |φ〉

Key property:
[M,M+] = 1

2
B(r) = πQ(r)

If B(r) constant, the spectrum of M+M is {B
2
n, n = 0, 1, 2, ...}.

At large d, we may expect that the effect of P is small.

Most likely, Hessian of CP (d−1) model is gapped, with an energy

gap of order e2

4πǫl
nl2. (l =

√

~/eB, Q(r) = n).
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Spectrum of the Hessian matrix (II)
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Variational evaluation of the hessian spectrum for d = 3
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Variational approach for lattice of textures

E = Eex + Eel, Eel = 1
2

∫

d(2)r1
∫

d(2)r2Q(r1)u(r1 − r2)Q(r2)

u(r) = e2

4πǫ|r|

Assume an average charge density Q(r) = n, then
Eel/Eex = ln1/2, where l =

√

~/eB. In the dilute limit, Eex ≫ Eel.
Main approximation: Minimize E among the configurations that
minimize Eex. That is, we look for holomorphic d-component
spinor configurations |Ψ(r)〉 with given Q(r) = n, such that Eel is
minimum.
Physical intuition: One should make Q(r) as homogeneous as
possible. In particular, it is natural to consider first periodic
patterns.
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Periodic textures with lowest energy

|Ψ(z)〉 =

















θ0(z)
θ1(z)
.
.
.

θd−1(z)

















Pattern of zeros
(d=4)

γ1

γ2

Spontaneously broken SU(d) symmetry : if g ∈ SU(d), changing
|Ψ(z)〉 into g |Ψ(z)〉 gives another physically inequivalent
ground-state.
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Periodic texture d = 2
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Periodic texture d = 4
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Spatial variations of topological charge

Q(r) is always γ1/d and γ2/d periodic.

At large d the modulation contains mostly the lowest harmonic,
and its amplitude decays exponentially with d.

Large d behavior for a square lattice:

Q(x, y) ≃ 2

π
−4de−πd/2[cos(2

√
dx)−2e−πd/2 cos2(4

√
dx)+(x↔ y)]+...

Only the triangular lattice seems to yield a true local energy
minimum. This is most directly seen by computing
eigenfrequencies of small deformation modes.
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Consequences of U(d) symmetry

Zero-momentum sector: Hamiltonian system with N = d2

degrees of freedom.

If g ∈ U(d), the transformation M → gM preserves equations of
motion.

The U(d)-orbit of the periodic ground-state has dimension d2.
Furthermore, it is lagrangian.

Example of a system with a degenerate manifold of Williamson
type (N0, Nd, Nm) = (0, d2, 0).
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Collective mode spectrum (I)

Analogy with spin-wave theory:

ψa(r) = (δab +Mab(r))θb(r)

Mab(r) gives d2 degrees of freedom for each
pseudo-momentum, so there are d2 branches (positive
frequencies) in the excitation spectrum: the situation is
reminiscent of a non-collinear antiferromagnet.

Get one magnetophonon with ω ≃ k1+α/2 if u(r) ≃ r−α, and
d2 − 1 spin-waves with linear dispersion.
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Collective mode spectrum (II)

Numerical spectrum for d = 3 and Coulomb interactions

D. Kovrizhin, B. D. and R. Moessner, Phys. Rev. Lett. 110, 186802, (2013)
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An U(d) σ-model for collective dynamics? (I)

Linear spin-waves

ψa(r) = (δab +Mab(r))θb(r)

Mab(r) =
∑

~k e
i~k·~rM̃ab(~k)

Sigma model (gradient
expansion)

ψa(r) = gab(r)θb(r), gab(r)
unitary
S local functional of
derivatives of gab.

S = g

∫

dt

∫

d(2)r Tr
[

(∂tg)
2 − (∂xg)

2 − (∂yg)
2
]
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An U(d) σ-model for collective dynamics ? (II)

Projection on a space of holomorphic functions not compatible
with unitarity condition

∑

b gba(r)gbc(r) = δac.
Our “spin-wave theory” has the following structure:

ψa(r) =
[

(δab + M̂ab)θb

]

(r) with M̂ab(r) = Phol
(

∑

~kMab(~k)e
i~k·~r

)

Suggests to construct gradient expansion using Phol:
ψa(r) = Phol (gab(r)θb) (r) ?
Note: PholfPholgθ = Phol(f⋆g)θ
But is there an optimal choice of Phol ?
S non-local functional of derivatives of gab. Can we approximate
it by a local one in the long wave-length limit ?
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Summary (I)

• Construction of Slater determinants in L.L.L associated to
smooth classical spin textures.

• Use of a semi-classical expansion in the l → 0 limit.
• Heuristic picture: Slater determinants associated to smooth

spin textures as coherent states in fermionic Fock space.
• CP (d− 1) model emerges as principal symbol of low-energy

Hamiltonian Heff .
• Highly degenerate ground-state spanned by holomorphic

textures.
• Degeneracy robust to the introduction of quantum

fluctuations.
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Summary (II)

• The anti-holomorphic degrees of freedom have a finite but
small energy gap, of order nl2.

• Degeneracy among holomorphic textures is lifted by
long-range tail of interaction potential (sub-principal symbol
of Heff).

• Yields Skyrmion crystals which spontaneously break SU(d)
symmetry.

• Existence of collective (Goldstone) modes similar to those in
non-collinear antiferromagnets.
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Open questions

• Small Hessian gap O(nl2) associated to anti-holomorphic
modes → can we justify projection onto the linear span of
holomorphic textures, when the sub-principal symbol of Heff

is introduced ?
• Are the collective degrees of freedom described by an

emerging U(d) σ-model ?
• Role of non-commutativity of physical plane ?
• Role of quantum fluctuations → quantum melting of

Skyrmion crystal?
• Connection to experiments (NMR relaxations in bilayers)?

• Extension to higher integer filling factors → CP (d−1) replaced
by Grassmanian manifolds.
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Construction of periodic textures

Problem: construct periodic holomorphic maps from torus to
projective space
Answer: use Theta functions

γ1 = π
√
d

γ2 = π
√
dτ

γ1

γ2

θ(z + γ) = eaγz+bγθ(z)

γ = n1γ1 + n2γ2

n1 and n2 integers
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Fixing the topological charge d

1

i

∫

C(γ1,γ2)

θ′(z)

θ(z)
=

1

i
(aγ1γ2 − aγ2γ1) = 2πd

γ1

γ2

Theta functions of a fixed type carrying topological charge d on
the elementary (γ1, γ2) parallelogram form a complex vector
space of dimension d (Riemann Roch theorem on torus).
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Lattice of allowed translations

Twθ(z) = eµ(w)zθ(z − w)

Twθ(z + γ)

Twθ(z)
= eaγz+bγeµ(w)γ−aγw

Type conservation:

µ(w)γ − aγw ∈ 2πZZ

for any lattice vector γ.

Quantized translations:

w =
1

d
(m1γ1 +m2γ2)

µ(w) =
1

d
(m1aγ1 +m2aγ2)

TwTw′ = ei
2π
d

(m1m′

2
−m2m′

1
)Tw′Tw

(m1m
′
2 −m2m

′
1)/d =

topological charge inside
parallelogram delimited by
w and w′.
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp
d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp
d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)

γ1

γ2

θ0
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp
d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)

γ1

γ2

θ1
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp
d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)

γ1

γ2

θ2
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp
d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)

γ1

γ2

θ3
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Applications of a flat topological charge profile

N. Cooper and J. Dalibard, PRL 110, 185301 (2013); N. Cooper
and R. Moessner, PRL 109, 215302 (2012)

Tight binding model in momentum space with a non-zero
average flux (à la Hofstadter) corresponds, in the large N limit to
a periodic texture in real space r → |ψ(r)〉 with very flat Berry
curvature. After adding kinetic energy of atoms, this generates a
very flat effective orbital magnetic field.
For N = 3, Ω = 3ER, get Landau level with a bandwidth

W = 0.015ER.
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