Geostatistics for point processes Predicting the intensity of partially observed point process data

Edith Gabriel^{1,2} & Joël Chadœuf²

¹ Laboratory of Mathematics, Avignon University ²French National Institute for Agricultural Research

Stochastic Geometry and its Applications Nantes, 7th April 2016

[Motivations](#page-2-0)

[Predicting the local intensity](#page-9-0)

[Defining the predictor, similarly to a kriging interpolator](#page-9-0) [Solving a Fredholm equation to find the weights](#page-15-0) ⇒ [approximated solutions](#page-15-0) [Illustrative results](#page-22-0)

[Discussion](#page-24-0)

A well-known issue

The issue

How to extensively map the intensity of a point process in a large window when observation methods are available at a much smaller scale only?

Motivating examples

- **Estimating spatial repartition of a bird species at a national** scale from observations made in windows of few hectares.
- **Detecting plant disease at the field scale from observations** defined as spots of few square millimetres on leaves.
- **Mapping the presence of plant species at the catchment scale** when the observation scale is the square metre.

 \Rightarrow The intensity of the process must be predicted from data issued out of samples spread over the window of interest.

Context

Let Φ a point process assumed to be

stationary and isotropic,

$$
\lambda = \frac{\mathbb{E}\left[\Phi(S_{obs})\right]}{\nu(S_{obs})} \; ; \; g(r) = \frac{1}{2\pi r} \frac{\partial K^*(r)}{\partial r}
$$

with $K^*(r) = \frac{1}{\lambda} \mathbb{E} [\Phi(b(0,r)) - 1]0 \in \Phi].$

 \blacksquare observed in S_{obs} ,

 \blacksquare driven by a stationary random field, Z.

Our aim

Local intensity

We call local intensity of the point process Φ, its intensity given the random field, $Z: \lambda(x|Z)$.

Window of interest:

 $S = S_{obs} \cup S_{unobs}$ $=$ $(\cup \square) \cup (\cup \square)$

$$
\Phi=\{\circ,\bullet\};\ \Phi_{\mathcal{S}_{obs}}=\{\bullet\}
$$

Our aim

To predict the local intensity in an unobserved window S_{unobs} .

Example

Thomas process:

- \blacksquare κ : intensity of the Poisson process parents, Z,
- μ : mean number of offsprings per parent,
- \blacksquare σ : standard deviation of Gaussian displacement.

This process is stationary with intensity $\lambda = \kappa \mu$.

The local intensity corresponds to the intensity of the inhomogeneous Poisson process of offsprings, i.e. the intensity conditional to the parent process Z.

 \star More generally, we consider any process driven by a stationary random field \star

Existing solutions

- \blacksquare From the reconstruction of the process
	- Reconstruction method based on the 1^{st} and 2^d -order characteristics of Φ (see e.g. Tscheschel & Stoyan, 2006). Get the intensity by kernel smoothing.
	-
	- A simulation-based method \Rightarrow long computation times.
- **Intensity driven by a stationary random field**
	- Diggle et al. (2007, 2013): Bayesian framework
	- **Monestiez et al.** (2006, 2013): Close to classical geostatistics.

Models constrained within the class of Cox processes.

Our alternative approach

We want to predict the local intensity $\lambda(x|Z)$

 \blacksquare outside the observation window.

without precisely knowing the underlying point process \Rightarrow we only consider the 1st and 2^d-order characteristics,

 \blacksquare in a reasonable time.

We define an unbiased linear predictor

- which minimizes the error prediction variance (as in the geostatistical concept).
- whose weights depend on the structure of the point process.

Our predictor

Proposition

The predictor
$$
\widehat{\lambda}(x_o|Z) = \sum_{x \in \Phi \cap S_{obs}} w(x)
$$
 is the BLUP of $\lambda(x_o|Z)$.

The weights, $w(x)$, are solution of the Fredholm equation of the 2^d kind:

$$
w(x) + \lambda \int_{S_{obs}} w(y) (g(x - y) - 1) dy - \frac{1}{\nu(S_{obs})} \left[1 + \int_{S_{obs}^2} w(y) (g(x - y) - 1) dx dy \right]
$$

= $\lambda (g(x_0 - x) - 1) - \frac{\lambda}{\nu(S_{obs})} \int_{S_{obs}} (g(x_0 - x) - 1) dx$

and satisfy $\int_{S_{obs}} w(x) dx = 1$.

Elements of proof

Linearity:

By definition,
$$
\lambda(x_o|Z) = \lim_{\nu(B) \to 0} \frac{\mathbb{E}[\Phi(B \oplus x_o)|Z]}{\nu(B)}
$$
.

Furthermore, $\widehat{\mathbb{E}}\left[\Phi(B\oplus x_o)|Z\right]=\sum_{c_j\in\mathcal{G}(S_{obs})}\alpha(c_j;B,x_o)\Phi(B\oplus c_j)$ is the BLUP of $\Phi(B\oplus \mathsf{x}_o)^1$, where $\mathcal{G}(\mathsf{S}_{obs})$ is a grid superimposed on $\mathsf{S}_{obs}.$

Thus, we propose m.

$$
\widehat{\lambda}(x_{o}|Z) = \lim_{\nu(B)\to 0} \sum_{c_j\in\mathcal{G}(S_{obs})} \frac{\alpha(c_j;B,x_o)}{\nu(B)} \Phi(B\oplus c_j) = \sum_{x\in\Phi\cap S_{obs}} w(x).
$$

1
¹ Gabriel *et al.* (2016) Adapted kriging to predict the intensity of partially observed point process data.

Elements of proof

Unbiasedness:

$$
\mathbb{E}\left[\widehat{\lambda}(x_o|Z) - \lambda(x_o|Z)\right] = 0
$$

$$
\iff \int_{S_{obs}} \lambda w(x) dx - \mathbb{E} \left[\lim_{\nu(B) \to 0} \frac{\mathbb{E} [\Phi(B \oplus x_{o}) | Z]}{\nu(B)} \right] = 0
$$

$$
\iff \lambda \left(\int_{S_{obs}} w(x) dx - 1 \right) = 0
$$

$$
\iff \int_{S_{obs}} w(x) dx = 1.
$$

Elements of proof

Minimum error prediction variance:

For any Borel set B,

$$
\mathbb{V}\mathrm{ar} \left(\Phi(B) \right) = \lambda \nu(B) + \lambda^2 \int_{B \times B} \left(g(x - y) - 1 \right) \mathrm{d} x \mathrm{d} y
$$

and for $B_0 = B \oplus x_0$ with $x_0 \notin S_{obs}$,

$$
\lim_{\nu(B)\to 0}\frac{1}{\nu(B)}\int_{B_o\times S_{obs}}\left(g(x-y)-1\right)\,dx\,dy=\int_{S_{obs}}\left(g(x_o-x)-1\right)\,dx
$$

Then minimizing $\mathbb{V}\mathrm{ar}\left(\widehat{\lambda}(\mathsf{x}_o | \mathsf{Z}) - \lambda(\mathsf{x}_o | \mathsf{Z})\right)$ is equivalent to minimize

$$
\lambda \int_{S_{obs}} w^2(x) dx + \lambda^2 \int_{S_{obs} \times S_{obs}} w(x) w(y) (g(x - y) - 1) dx dy
$$

- 2 $\lambda^2 \int_{S_{obs}} w(x) (g(x_0 - x) - 1) dx$

Elements of proof

Using Lagrange multipliers under the constraint on the weights, we set

$$
T(w(x)) = \lambda \int_{S_{obs}} w^2(x) dx + \lambda^2 \int_{S_{obs} \times S_{obs}} w(x)w(y) (g(x - y) - 1) dx dy
$$

- 2 $\lambda^2 \int_{S_{obs}} w(x) (g(x_0 - x) - 1) dx + \mu \left(\int_{S_{obs}} w(x) dx = 1 \right)$

Then, for $\alpha(x) = w(x) + \varepsilon(x)$,

$$
T(\alpha(x)) \approx T(w(x)) + 2\lambda \int_{S_{obs}} \varepsilon(x) \left[w(x)x + \lambda w(y) \left(g(x - y) - 1 \right) \right] dy
$$

- \lambda \left(g(x - 0 - x) - 1 \right) + \frac{\mu}{2\lambda} dx

Elements of proof

From variational calculation and the Riesz representation theorem,

$$
T(\alpha(x)) - T(w(x)) = 0 \Leftrightarrow \int_{S_{obs}} \varepsilon(x) \left[w(x)x + \lambda \int_{S_{obs}} w(y) (g(x - y) - 1) dy \right. \left. - \lambda (g(x_0 - x) - 1) + \frac{\mu}{2\lambda} \right] dx = 0 \Leftrightarrow w(x) + \lambda \int_{S_{obs}} w(y) (g(x - y) - 1) dy \left. - \lambda (g(x_0 - x) - 1) + \frac{\mu}{2\lambda} = 0
$$

Thus,

$$
1 + \lambda \int_{S_{obs}^2} w(y) \left(g(x - y) - 1 \right) dy dx - \lambda \int_{S_{obs}} \left(g(x_o - x) - 1 \right) dx + \frac{\nu(S_{obs})}{2\lambda} \mu = 0
$$

from which we obtain μ and we can deduce the Fredholm equation

$$
w(x) + \lambda \int_{S_{obs}} w(y) (g(x - y) - 1) dy - \frac{1}{\nu(S_{obs})} \left[1 + \int_{S_{obs}^2} w(y) (g(x - y) - 1) dx dy \right]
$$

= $\lambda (g(x_0 - x) - 1) - \frac{\lambda}{\nu(S_{obs})} \int_{S_{obs}} (g(x_0 - x) - 1) dx$

Solving the Fredholm equation

Any existing solution already considered in the literature can be used!

Our aim is to map the local intensity in a given window ⇒ access to fast solutions.

Several approximations can be used to solve the Fredholm equation.

The weights $w(x)$ can be defined as

- step functions \rightsquigarrow direct solution,
- linear combination of known basis functions, e.g. splines \rightsquigarrow continuous approximation.

 \blacksquare . . .

Here, we illustrate the ones with the less heavy calculations and implementation.

Step functions

Let consider the following partition of $S_{obs}: \: S_{obs} = \cup_{j=1}^n B_j$, with

B: elementary square centered at 0, $B_j=B\oplus c_j$: elementary square centered at $c_j,$ $B_k \cap B_i = \emptyset$,

n: number of grid cell centers lying in S_{obs} .

For
$$
w(x) = \sum_{j=1}^{n} w_j \frac{1_{\{x \in B_j\}}}{\nu(B)}
$$
, we get $\widehat{\lambda}(x_0|Z) = \sum_{j=1}^{n} w_j \frac{\Phi(B_j)}{\nu(B)}$,

with $w = (w_1, \ldots, w_n) = C^{-1}C_o + \frac{1 - \mathbf{1}^T C^{-1} C_o}{\mathbf{1}^T C^{-1} \mathbf{1}} C^{-1} \mathbf{1}$, where

- $C = \lambda \nu(B) \mathbf{I} + \lambda^2 \nu^2(B) (G 1)$: covariance matrix with $G = \{g_{ij}\}_{i,j=1,...,n}$, $g_{ij} = \frac{1}{\nu^2(B)}\int_{B\times B}g(c_i - c_j + u - v) du dv$, and **I** the $n \times n$ -identity matrix.
- $C_o = \lambda \nu(B) \mathbb{I}_{x_o} + \lambda^2 \nu^2(B) (G_o 1)$: covariance vector with \mathbb{I}_{x_0} the *n*-vector with zero values and one term equals to one where $x_0 = c_i$, and $G_0 = \{g_{io}\}_{i=1}^{\infty}$.

Step functions: variance of the predictor

We consider the Neuman series to invert the covariance matrix. $C = \lambda \nu(B) \mathbf{I} + \lambda^2 \nu^2(B) (G - 1)$, when $\lambda \nu(B) \rightarrow 0$:

$$
C^{-1} = \frac{1}{\lambda \nu(B)} \left[\mathbf{I} + \lambda \nu(B) J_{\lambda} \right],
$$

where a generic element of the matrix J_{λ} is given by

$$
J_{\lambda}[i,j] = \sum_{k=1}^{\infty} (-1)^k \lambda^{k-1} \left(g(x_i, x_{i_1}) - 1 \right) \left(g(x_{i_{k-1}}, x_j) - 1 \right)
$$

$$
\times \int_{S_{obs}^{k-1}} \prod_{m=1}^{k-2} (g(x_{i_m}, x_{i_{m+1}}) - 1) dx_{i_1} \dots dx_{i_{k-1}}.
$$

This leads to

$$
\begin{array}{rcl}\n\mathbb{V}\text{ar}\left(\widehat{\lambda}(x_{o}|Z)\right) & = & \lambda^{3}\nu^{2}(B)(G_{o}-1)^{T}(G_{o}-1) + \lambda^{4}\nu^{3}(B)(G_{o}-1)^{T}J_{\lambda}(G_{o}-1) \\
& & + \frac{1 - \left[\lambda\nu(B)\mathbf{1}^{T}(G_{o}-1) + \lambda^{2}\nu^{2}(B)\mathbf{1}^{T}J_{\lambda}(G_{o}-1)\right]^{2}}{\frac{\nu(S_{obs})}{\nu^{2}(B)\mathbf{1}^{T}J_{\lambda}\mathbf{1}}.\n\end{array}
$$

Step functions: illustrative results about prediction

Theoretical local intensity

Prediction within S_{unobs}

Spline basis

Let consider that the weights of $\lambda(x_o | Z) = \sum_{x \in \Phi \cap S_{obs}} w(x)$ are defined as a degree d spline curve:

$$
w(x)=\sum_{i=1}^k h_{i,d}(x),
$$

where $h_{i,d}$ denotes the *i*th *B*-spline of order *d*.

A simplistic toy example in \mathbb{R} :

■
$$
S_{obs} = [0, L) \subset [0, L'] = S
$$

Linear spline defined from equally-spaced knots x_i :

$$
w(x) = \begin{cases} a_0 + b_0x, & x \in \Delta_0 = [x_0, x_1) = [0, \frac{1}{k}), \\ a_1 + b_1x, & x \in \Delta_1 = [x_1, x_2) = [\frac{1}{k}, \frac{2L}{k}), \\ \vdots \\ a_{k-1} + b_{k-1}x, & x \in \Delta_{k-1} = [x_{k-1}, x_k) = [\frac{(k-1)L}{k}, L), \\ a_i + b_i(x - x_i)) \mathbf{1}_{\{x \in \Delta_i\}} \end{cases}
$$

Spline basis

From the continuity property and the constraint $\int_{S_{obs}} w(x) dx = 1$:

$$
w(x) = \frac{1}{L} - \sum_{j=0}^{k-1} b_j P_j(x),
$$

with
$$
P_j(x) = \sum_{i=0}^{k-1} \left(\frac{1/2 - k + j}{k^2} - \mathbf{1}_{\{j < i\}} - (x - \frac{ik}{k}) \mathbf{1}_{\{i = j\}} \right) \mathbf{1}_{\{x \in \Delta_i\}}
$$

The Fredholm equation becomes

$$
\sum_{j=0}^{k-1} b_j \left[P_j(x) + \lambda \int_L P_j(y) (g(x-y) - 1) dy - \frac{1}{L} \int_{L^2} P_j(y) (g(x-y) - 1) dx dy \right]
$$

= $\frac{\lambda}{L} \int_L (g(x-y) - 1) dy - \frac{1}{L^2} \int_{L^2} (g(x-y) - 1) dx dy - \lambda (g(x_0 - x) - 1)$
+ $\frac{1}{L} \int_L (g(x_0 - x) - 1) dx$
i.e. of the form $\sum_{j=0}^{k-1} b_j A_j(x) = Q(x)$,

Then, $(b_0, \ldots, b_{k-1}) = b$ is obtained from m control points and satisfy

$$
b=(X^TX)^{-1}X^TY,
$$

with $X = (A_i(x_i))_{i=1,...,m}$ and $Y = (Q(x_i))_{i=1,...,m}$.

Spline basis: illustrative results

Thomas process in 1D ($\kappa = 0.5$, $\mu = 25$, $\sigma = 0.25$)

Theoretical local intensity on S_{obs} ; \quad Predicted values ; \quad Intensity of Φ

$$
\{\bullet\} = \Phi_{S_{obs}} \text{ ; } \{\bullet\} = \Phi_{S_{unobs}}
$$

In practice: g must be estimated

[Motivations](#page-2-0) **[Predicting the local intensity](#page-9-0)** and the local intensity [Discussion](#page-24-0) Discussion
 Motivations Discussion Discussion Discussion Discussion Discussion Discussion Discussion

In practice

Application to Montagu's Harriers' nest locations

Work in progress

- \blacksquare Take into account some covariates in the prediction.
- Get results with splines on the plane.
- Use finite elements method to solve the Fredholm equation.
- Determine the properties of the related predictor.
- Extend the approach to the spatio-temporal setting.

References

E. Bellier et al. (2013) Reducting the uncertainty of wildlife population abundance: model-based versus design-based estimates. Environmetrics, 24(7):476–488.

E. Gabriel et al. (2016) Adapted kriging to predict the intensity of partially observed point process data. Spatial statistics, in revision.

P. Diggle and P. Ribeiro (2007) Model-based geostatistics. Springer.

P. Diggle et al. (2013) Spatial and spatio-temporal log-gaussian cox processes: extending the geostatistical paradigm. Statistical Science, 28(4):542–563.

P. Monestiez et al. (2006) Geostatistical modelling of spatial distribution of balaenoptera physalus in the northwestern mediterranean sea from sparse count data and heterogeneous observation efforts, Ecological Modelling, 193:615–628.

A. Tscheschel and D. Stoyan (2006) Statistical reconstruction of random point patterns. Computational Statistics and Data Analysis, 51:859–871.