Geostatistics for point processes Predicting the intensity of partially observed point process data

Edith Gabriel^{1,2} & Joël Chadœuf²

¹Laboratory of Mathematics, Avignon University ²French National Institute for Agricultural Research

Stochastic Geometry and its Applications Nantes, 7th April 2016

Motivations

Predicting the local intensity

Defining the predictor, similarly to a kriging interpolator Solving a Fredholm equation to find the weights \Rightarrow approximated solutions Illustrative results

Discussion

A well-known issue

The issue

How to extensively map the intensity of a point process in a large window when observation methods are available at a much smaller scale only?

Motivating examples

- Estimating spatial repartition of a bird species at a national scale from observations made in windows of few hectares.
- Detecting plant disease at the field scale from observations defined as spots of few square millimetres on leaves.
- Mapping the presence of plant species at the catchment scale when the observation scale is the square metre.

 \Rightarrow The intensity of the process must be predicted from data issued out of samples spread over the window of interest.

Context

Let Φ a point process assumed to be

stationary and isotropic,

$$\lambda = \frac{\mathbb{E}\left[\Phi(S_{obs})\right]}{\nu(S_{obs})}; \ g(r) = \frac{1}{2\pi r} \frac{\partial K^*(r)}{\partial r}$$

with $K^*(r) = \frac{1}{\lambda} \mathbb{E} \left[\Phi(b(0, r)) - 1 | 0 \in \Phi \right].$

• observed in S_{obs} ,

driven by a stationary random field, Z.

Our aim

Local intensity

We call *local* intensity of the point process Φ , its intensity given the random field, Z: $\lambda(x|Z)$.

Window of interest:

 $S = S_{obs} \cup S_{unobs}$ $= (\cup \Box) \cup (\cup \Box)$

 $\Phi = \{ \circ, \bullet \}; \ \Phi_{\mathcal{S}_{obs}} = \{ \bullet \}$

Our aim

To predict the local intensity in an unobserved window S_{unobs} .

Geostatistics for point processes

Edith Gabriel and Joël Chadœuf

Example

Thomas process:

- κ: intensity of the Poisson process parents, Z,
- µ: mean number of offsprings per parent,
- σ: standard deviation of Gaussian displacement.

This process is stationary with intensity $\lambda = \kappa \mu$.

The local intensity corresponds to the intensity of the inhomogeneous Poisson process of offsprings, i.e. the intensity conditional to the parent process Z.

 \star More generally, we consider any process driven by a stationary random field \star

Existing solutions

- From the reconstruction of the process
 - Reconstruction method based on the 1st and 2^d-order characteristics of Φ (see e.g. Tscheschel & Stoyan, 2006).
 Cat the intensity by logged emonthing
 - Get the intensity by kernel smoothing.
 - A simulation-based method \Rightarrow long computation times.
- Intensity driven by a stationary random field
 - Diggle *et al.* (2007, 2013): Bayesian framework
 - Monestiez et al. (2006, 2013): Close to classical geostatistics.

Models constrained within the class of Cox processes.

Our alternative approach

We want to predict the local intensity $\lambda(x|Z)$

- outside the observation window,
- without precisely knowing the underlying point process ⇒ we only consider the 1st and 2^d-order characteristics,
- in a reasonable time.

We define an unbiased linear predictor

- which minimizes the error prediction variance (as in the geostatistical concept).
- whose weights depend on the structure of the point process.

Our predictor

Proposition

The predictor
$$\widehat{\lambda}(x_o|Z) = \sum_{x \in \Phi \cap S_{obs}} w(x)$$
 is the BLUP of $\lambda(x_o|Z)$.

The weights, w(x), are solution of the Fredholm equation of the 2^d kind:

$$w(x) + \lambda \int_{S_{obs}} w(y) (g(x - y) - 1) dy - \frac{1}{\nu(S_{obs})} \left[1 + \int_{S_{obs}^2} w(y) (g(x - y) - 1) dx dy \right]$$

= $\lambda (g(x_o - x) - 1) - \frac{\lambda}{\nu(S_{obs})} \int_{S_{obs}} (g(x_o - x) - 1) dx$

and satisfy $\int_{S_{obs}} w(x) dx = 1$.

Elements of proof

Linearity:

By definition,
$$\lambda(x_o|Z) = \lim_{\nu(B)\to 0} \frac{\mathbb{E}\left[\Phi(B \oplus x_o)|Z\right]}{\nu(B)}$$

■ Furthermore, $\widehat{\mathbb{E}} [\Phi(B \oplus x_o) | Z] = \sum_{c_j \in \mathcal{G}(S_{obs})} \alpha(c_j; B, x_o) \Phi(B \oplus c_j)$ is the BLUP of $\Phi(B \oplus x_o)^1$, where $\mathcal{G}(S_{obs})$ is a grid superimposed on S_{obs} .

Thus, we propose

$$\widehat{\lambda}(x_o|Z) = \lim_{\nu(B)\to 0} \sum_{c_j \in \mathcal{G}(S_{obs})} \frac{\alpha(c_j; B, x_o)}{\nu(B)} \Phi(B \oplus c_j) = \sum_{x \in \Phi \cap S_{obs}} w(x).$$

¹Gabriel et al. (2016) Adapted kriging to predict the intensity of partially observed point process data.

Geostatistics for point processes

Edith Gabriel and Joël Chadœuf

Discussion

Elements of proof

Unbiasedness:

$$\mathbb{E}\left[\widehat{\lambda}(x_o|Z) - \lambda(x_o|Z)\right] = 0$$

$$\iff \int_{S_{obs}} \lambda w(x) \, dx - \mathbb{E}\left[\lim_{\nu(B) \to 0} \frac{\mathbb{E}\left[\Phi(B \oplus x_o)|Z\right]}{\nu(B)}\right] = 0$$

$$\iff \lambda\left(\int_{S_{obs}} w(x) \, dx - 1\right) = 0$$

$$\iff \int_{S_{obs}} w(x) \, dx = 1.$$

Elements of proof

Minimum error prediction variance:

For any Borel set B,

$$\mathbb{V}$$
ar ($\Phi(B)$) = $\lambda \nu(B) + \lambda^2 \int_{B \times B} (g(x - y) - 1) \, dx \, dy$

and for $B_o = B \oplus x_o$ with $x_o \notin S_{obs}$,

$$\lim_{\nu(B)\to 0} \frac{1}{\nu(B)} \int_{B_o \times S_{obs}} (g(x-y) - 1) \, \mathrm{d}x \, \mathrm{d}y = \int_{S_{obs}} (g(x_o - x) - 1) \, \mathrm{d}x$$

Then minimizing $\mathbb{V}ar\left(\widehat{\lambda}(x_o|Z) - \lambda(x_o|Z)\right)$ is equivalent to minimize

$$\begin{split} \lambda \int_{\mathcal{S}_{obs}} w^2(x) \, \mathrm{d}x + \lambda^2 \int_{\mathcal{S}_{obs} \times \mathcal{S}_{obs}} w(x) w(y) \left(g(x-y) - 1 \right) \, \mathrm{d}x \, \mathrm{d}y \\ &- 2\lambda^2 \int_{\mathcal{S}_{obs}} w(x) \left(g(x_o - x) - 1 \right) \, \mathrm{d}x \end{split}$$

Elements of proof

Using Lagrange multipliers under the constraint on the weights, we set

$$T(w(x)) = \lambda \int_{S_{obs}} w^2(x) \, \mathrm{d}x + \lambda^2 \int_{S_{obs} \times S_{obs}} w(x)w(y) \left(g(x-y) - 1\right) \, \mathrm{d}x \, \mathrm{d}y$$
$$- 2\lambda^2 \int_{S_{obs}} w(x) \left(g(x_o - x) - 1\right) \, \mathrm{d}x + \mu \left(\int_{S_{obs}} w(x) \, \mathrm{d}x = 1\right)$$

Then, for $\alpha(x) = w(x) + \varepsilon(x)$,

$$T(\alpha(x)) \approx T(w(x)) + 2\lambda \int_{S_{obs}} \varepsilon(x) \left[w(x)x + \lambda w(y) \left(g(x-y) - 1 \right) dy -\lambda \left(g(x-o-x) - 1 \right) + \frac{\mu}{2\lambda} \right] dx$$

Discussion

Elements of proof

From variational calculation and the Riesz representation theorem,

$$T(\alpha(x)) - T(w(x)) = 0 \quad \Leftrightarrow \quad \int_{S_{obs}} \varepsilon(x) \left[w(x)x + \lambda \int_{S_{obs}} w(y) \left(g(x - y) - 1 \right) \, dy \right]$$
$$- \lambda \left(g(x_o - x) - 1 \right) + \frac{\mu}{2\lambda} \right] \, dx = 0$$
$$\Leftrightarrow \quad w(x) + \lambda \int_{S_{obs}} w(y) \left(g(x - y) - 1 \right) \, dy$$
$$- \lambda \left(g(x_o - x) - 1 \right) + \frac{\mu}{2\lambda} = 0$$

Thus,

$$1 + \lambda \int_{S_{obs}^2} w(y) (g(x - y) - 1) \, dy \, dx - \lambda \int_{S_{obs}} (g(x_o - x) - 1) \, dx + \frac{\nu(S_{obs})}{2\lambda} \mu = 0$$

from which we obtain μ and we can deduce the Fredholm equation

$$w(x) + \lambda \int_{S_{obs}} w(y) (g(x - y) - 1) dy - \frac{1}{\nu(S_{obs})} \left[1 + \int_{S_{obs}^2} w(y) (g(x - y) - 1) dx dy \right]$$

= $\lambda (g(x_o - x) - 1) - \frac{\lambda}{\nu(S_{obs})} \int_{S_{obs}} (g(x_o - x) - 1) dx$

Geostatistics for point processes

Edith Gabriel and Joël Chadœuf

. . . .

Solving the Fredholm equation

Any existing solution already considered in the literature can be used!

Our aim is to map the local intensity in a given window \Rightarrow access to fast solutions.

Several approximations can be used to solve the Fredholm equation.

The weights w(x) can be defined as

- step functions ~→ direct solution,
- linear combination of known basis functions, e.g. splines ~ continuous approximation.

Here, we illustrate the ones with the less heavy calculations and implementation.

Step functions

Let consider the following partition of S_{obs} : $S_{obs} = \bigcup_{i=1}^{n} B_i$, with

$$\begin{split} B: \text{ elementary square centered at } 0, \\ B_j &= B \oplus c_j \text{: elementary square centered at } c_j, \\ B_k \cap B_j &= \emptyset, \end{split}$$

n: number of grid cell centers lying in S_{obs} .

For
$$w(x) = \sum_{j=1}^{n} w_j \frac{\mathbb{1}_{\{x \in B_j\}}}{\nu(B)}$$
, we get $\widehat{\lambda}(x_o|Z) = \sum_{j=1}^{n} w_j \frac{\Phi(B_j)}{\nu(B)}$,

with $w = (w_1, \ldots, w_n) = C^{-1}C_o + \frac{1-1^T C^{-1}C_o}{1^T C^{-1} 1} C^{-1} 1$, where

- $C = \lambda \nu(B) \mathbf{I} + \lambda^2 \nu^2(B)(G-1)$: covariance matrix with $G = \{g_{ij}\}_{i,j=1,...,n}, g_{ij} = \frac{1}{\nu^2(B)} \int_{B \times B} g(c_i - c_j + u - v) du dv$, and \mathbf{I} the $n \times n$ -identity matrix.
- $C_o = \lambda \nu(B) \mathbb{I}_{x_o} + \lambda^2 \nu^2(B) (G_o 1)$: covariance vector with \mathbb{I}_{x_o} the *n*-vector with zero values and one term equals to one where $x_o = c_i$, and $G_o = \{g_{io}\}_{i=1,...,n}$.

Discussion

Step functions: variance of the predictor

We consider the Neuman series to invert the covariance matrix, $C = \lambda \nu(B) \mathbf{I} + \lambda^2 \nu^2(B)(G-1)$, when $\lambda \nu(B) \rightarrow 0$:

$$C^{-1} = \frac{1}{\lambda \nu(B)} \left[\mathbf{I} + \lambda \nu(B) J_{\lambda} \right],$$

where a generic element of the matrix J_{λ} is given by

$$\begin{aligned} J_{\lambda}[i,j] &= \sum_{k=1}^{\infty} (-1)^k \lambda^{k-1} \left(g(x_i, x_{l_1}) - 1 \right) \left(g(x_{l_{k-1}}, x_j) - 1 \right) \\ &\times \int_{\mathcal{S}_{obs}^{k-1}} \prod_{m=1}^{k-2} (g(x_{l_m}, x_{l_{m+1}}) - 1) \ dx_{l_1} \dots \ dx_{l_{k-1}}. \end{aligned}$$

This leads to

$$\begin{split} \mathbb{V}\mathrm{ar}\left(\widehat{\lambda}(x_o|Z)\right) &= \lambda^3 \nu^2(B)(G_o-1)^T(G_o-1) + \lambda^4 \nu^3(B)(G_o-1)^T J_\lambda(G_o-1) \\ &+ \frac{1 - \left[\lambda \nu(B) \mathbf{1}^T(G_o-1) + \lambda^2 \nu^2(B) \mathbf{1}^T J_\lambda(G_o-1)\right]^2}{\frac{\nu(S_{obs})}{\lambda} + \nu^2(B) \mathbf{1}^T J_\lambda \mathbf{1}}. \end{split}$$

Discussion

Step functions: illustrative results about prediction

Theoretical local intensity

Prediction within Sunobs

Spline basis

Let consider that the weights of $\widehat{\lambda}(x_o|Z) = \sum_{x \in \Phi \cap S_{obs}} w(x)$ are defined as a degree *d* spline curve:

$$w(x) = \sum_{i=1}^{k} h_{i,d}(x)$$

where $h_{i,d}$ denotes the *i*th *B*-spline of order *d*.

A simplistic toy example in \mathbb{R} :

•
$$S_{obs} = [0, L) \subset [0, L'] = S$$

Linear spline defined from equally-spaced knots x_i:

$$w(x) = \begin{cases} a_0 + b_0 x, & x \in \Delta_0 = [x_0, x_1) = [0, \frac{L}{k}), \\ a_1 + b_1 x, & x \in \Delta_1 = [x_1, x_2) = [\frac{L}{k}, \frac{2L}{k}), \\ \vdots \\ a_{k-1} + b_{k-1} x, & x \in \Delta_{k-1} = [x_{k-1}, x_k) = [\frac{(k-1)L}{k}, L), \end{cases}$$
$$= (a_i + b_i (x - x_i)) \mathbf{1}_{\{x \in \Delta_i\}}$$

Spline basis

From the continuity property and the constraint $\int_{S_{obs}} w(x) dx = 1$:

$$w(x) = \frac{1}{L} - \sum_{j=0}^{k-1} b_j P_j(x),$$

with
$$P_j(x) = \sum_{i=0}^{k-1} \left(\frac{1/2-k+j}{k^2} - \mathbf{1}_{\{j < i\}} - (x - \frac{iL}{k})\mathbf{1}_{\{i = j\}} \right) \mathbf{1}_{\{x \in \Delta_i\}}$$

The Fredholm equation becomes

$$\sum_{j=0}^{k-1} b_j \left[P_j(x) + \lambda \int_L P_j(y)(g(x-y) - 1) \, dy - \frac{1}{L} \int_{L^2} P_j(y)(g(x-y) - 1) \, dx \, dy \right]$$

$$= \frac{\lambda}{L} \int_L (g(x-y) - 1) \, dy - \frac{1}{L^2} \int_{L^2} (g(x-y) - 1) \, dx \, dy - \lambda (g(x_o - x) - 1) + \frac{1}{L} \int_L (g(x_o - x) - 1) \, dx \, dy - \lambda (g(x_o - x) - 1) + \frac{1}{L} \int_L (g(x_o - x) - 1) \, dx \, dy - \lambda (g(x_o - x) - 1) \, dx \,$$

Then, $(b_0, \ldots, b_{k-1}) = b$ is obtained from *m* control points and satisfy

$$b = (X^T X)^{-1} X^T Y,$$

with $X = (A_j(x_l))_{l=1,...,m}$ and $Y = (Q(x_l))_{l=1,...,m}$.

Discussion

Spline basis: illustrative results

Thomas process in 1D ($\kappa = 0.5, \mu = 25, \sigma = 0.25$)

----- Theoretical local intensity on S_{obs} ; ----- Predicted values; ---- Intensity of Φ

$$\{\bullet\} = \Phi_{S_{obs}} \ ; \ \{\bullet\} = \Phi_{S_{unobs}}$$

Discussion

In practice: g must be estimated

Geostatistics for point processes

In practice

Application to Montagu's Harriers' nest locations

Prediction

 $\{\bullet\} = \Phi_{S_{obs}} \ ; \ \{\bullet\} = \Phi_{S_{unobs}}$

Edith Gabriel and Joël Chadœuf

Work in progress

- Take into account some covariates in the prediction.
- Get results with splines on the plane.
- Use finite elements method to solve the Fredholm equation.
- Determine the properties of the related predictor.
- Extend the approach to the spatio-temporal setting.

References

E. Bellier *et al.* (2013) Reducting the uncertainty of wildlife population abundance: model-based versus design-based estimates. *Environmetrics*, 24(7):476–488.

E. Gabriel *et al.* (2016) Adapted kriging to predict the intensity of partially observed point process data. *Spatial statistics*, in revision.

P. Diggle and P. Ribeiro (2007) Model-based geostatistics. Springer.

P. Diggle *et al.* (2013) Spatial and spatio-temporal log-gaussian cox processes: extending the geostatistical paradigm. Statistical Science, 28(4):542–563.

P. Monestiez *et al.* (2006) Geostatistical modelling of spatial distribution of balaenoptera physalus in the northwestern mediterranean sea from sparse count data and heterogeneous observation efforts, *Ecological Modelling*, 193:615–628.

A. Tscheschel and D. Stoyan (2006) Statistical reconstruction of random point patterns. *Computational Statistics and Data Analysis*, 51:859–871.