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Classical Hodgkin-Huxley-System
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internal gating variables n, m; h modeling activation of ion channels

(explicit) smooth coefficient functions F, «;, 5;



Classical Hodgkin-Huxley-System

dVe = —F(Ve e, me, h)dt + S(t) dt
dny = [an(Ve)(1— ne) — Ba(Ve)ne]dt
dm; = [ (Vo)(1—my;) — Bm(Vt)mt] dt
dhe = [on(Ve)(1— he) — Ba(Ve)he dt

with
® membrane potential V' of a neuron

m deterministic periodic external input signal S

internal gating variables n, m, h modeling activation of ion channels

(explicit) smooth coefficient functions F, «;, 5;



Stochastic Hodgkin-Huxley-System

dVe = —F(Vi, ne,me, hy)dt + d&;

dn, = [a,,(Vt)(l —n) — Bn(Vt)nt] dt
dm; = [am(Vt)(l —my) — Bm(Vt)mt] dt
dhe = [an(Ve)(1 = he) — B(Ve)he] dt
d&e = (S(t) —&)dt + o(&)dWe

with
m membrane potential V' of a neuron
m deterministic periodic external input signal S
m internal gating variables n, m, h modeling activation of ion channels
m (explicit) smooth coefficient functions F,«;, 3;

m 7 >0 and o € C? bounded away from 0, W 1D Brownian Motion



Some Sample Paths
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stochastic HH with periodic signal: gating variables n(t) (violet), m(t) (blue), h(t) (grey) functions of t
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the following parameters werde used for signal and CIR : period = 28, amplitude = 9 , sigma = 0.5 , tau = 0.75 , K = 30
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stochastic HH with periodic signal: voltage v(t) function of t; black dotted line indicating periodicity of the semigroup
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the following parameters werde used for signal and CIR : period = 28 , amplitude = 5 , sigma = 15 , tau = 0.25 , K = 30
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Introduce Parametrized Signal

Let S = Sy, 1) depend on an unknown shape parameter ¥ € © C R9 and
let it be periodic with unknown periodicity T € (0, 00).

Then the equation for X = (V,n,m, h,£) is of the form
dXt = B(,,g’T)(t, Xt)dt + Z(Xt)th

and its solution lives on R x [0,1]3 x R (if started there).

Long-term goal:

Estimate (¢, T) from continuous observation not of X, but only of the
membrane potential V.

Immediate goal:

Prove LAN for the corresponding sequence of statistical experiments.
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from a fixed and deterministic xo = (vo, no, Mo, ho, &o).
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Likelihood-Ratios for Observation of X, V or ¢

Write P(*:T) for the law on C([0, 00); R®) under which the canonical
process (7¢)¢>0 solves the stochastic Hodgkin-Huxley system starting
from a fixed and deterministic xo = (vo, no, Mo, ho, &o).

Consider the following filtrations:

m 7O = J(T]S, 0<s< t+) <> observe full process
m Fl= g(ngl), 0<s< t+) <> observe membrane potential V
m = 0(77§5), 0<s<t +) <> observe distorted signal &

These lead to three different sequences of experiments

(C([O,m);R5)7f£7 {P(ﬁ,r)

_;—;’(19,T)6@><(0,oo)}), neN

where i = 0,1, 5.



Likelihood-Ratios for Observation of X, V or ¢

However, as the parameters are only present in the drift term for the fifth
(and thus also the first) equation and the local martingale part of X
under ]P’w’T)|]:'9 is given by

(/' o(£)dWe, 0,0,0, / o(E)dW)T,

0 0

we can conclude that for all i € {0,1,5} under P(*:7)| -,

d]P’(ﬁ/vT/) i t S - _ 5
log 7|}-f 4 ,7/ @ 77’)(5) (19,7—)(5) dW,
dB D 0 o (&)
T [ (B Sum))',
2 Jo 0(55)

9T /(9,T
L AWSTET),



Likelihood-Ratios for Observation of X, V or ¢

However, as the parameters are only present in the drift term for the fifth
(and thus also the first) equation and the local martingale part of X
under ]P’w’T)|]:'9 is given by

(/0' a(gt)dwt,o,o,o,/' o(E)dW)T,

0

we can conclude that for all i € {0,1,5} under P(*:7)| -,

d]P’(ﬁ/vT/) i t S - _ 5
log 7|}-f 4 ,7/ @ 77’)(5) (19,7—)(5) dW,
dB D 0 o (&)
T [ (B Sum))',
2 Jo 0(55)

9T /(9,T
L AWSTET),

I
= If LAN holds for any of these sequences, it holds for all of them.
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VoSs(-) € L2 (0,00) for all ¥ € ©.

loc

S: (19, T) — 5(1977-) =5y (T)
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Conditions on the Deterministic Signal

For each ¥ € © let Sy € C?([0,00)) be a 1-periodic function with

Siy(s) € C1(©) for all s € [0, 00).

VoSs(+) € L2 (0,00) for all ¥ € ©.

S: (0, T)— Sw,1) =Sy (+) is L2 -differentiable with derivative
5(0.7) € (Lige(0,00))71.

S: (¥, T) = Sw.1) is L2 ~continuous.

For each (9, T) € © x (0, 00) there are a € (0,1] and
B €0, (1 +3«)/2) such that for suitable £ > 0

[VoSw, 1) — VaSe, 1|

B [e%
Lo < Ct? |T - T

forallt >0, T" € (T —¢, T 4+ ¢) and some constant C that does
not depend on T’ or t.
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Local Asymptotic normality

Fix (¥, T) € © x (0,00). Suppose that for each t > 0 the matrix

;
VS VS,
ST = [( _eT-2s, )( 725, )

is invertible (we will define the measure v in a minute). Let (hy), C RIt! any
bounded sequence and set (n, Ty) := (¥, T) + dnhn with the local scale

6n := diag (n_1/2, e, nT Y2 n_3/2) € R+ x(d+1)

€ R(@+1)x (d+1)

Theorem (Local Asymptotic Normality)
With

1 n S
1(9,T) ::/ Jw’T)(s)ds and AE?’T) = 75,,/ L)(S)dws
0 0 U(gs)

we have AYT) £, A7 (0,1(%:T)) and

1
ATRTOT) = g T AP BT 0Ty 4 00,1 (1),
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m The grid chain (ng)keNo is a time homogeneous Markov chain.
Due to our assumptions it is positive Harris-recurrent and we write
u for its unique invariant probability measure.



Tools for the Proof

m The grid chain (ng)keNo is a time homogeneous Markov chain.
Due to our assumptions it is positive Harris-recurrent and we write
u for its unique invariant probability measure.

m The path segment chain (=), <y, With

k= (5(k-1)T+s)5€[O,T] , keEN,
=o € C[0, T] arbitrary with =o(T) = &,
is a C[0, T]-valued time homogeneous Markov chain. It inherits

positive Harris-recurrence from the grid chain and we denote its
invariant probability measure by m.
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Tools for the Proof

Strong Law of Large Numbers for = (Hoépfner, Kutoyants, 2010)

(A¢)r>0 increasing process, F € L*(m) nonnegative with
K
At =Y F(5j) forall keN.
j=1

Then . .
?At t—)_oo) ?m(F) ]PW’T)—a.s.

Apply this to show that for 1-periodic bounded measurable f and m € Ny

1+1 /tn Sm f(2s/ T) ds 00 tm+1
nm o?(&) m+1

1
/ £() iPosr(0-2)ds PP T)as.
0 —_———

=:w(ds)



Main Step of the Proof

" S(9,71(5) o [ S,7)(5)Sw,1)(s)T
8n dw, ) =2 [ 2@DBEPOTIRY
< /o o (&) > /0 o2(&5) :

_ /( IVSH($)VeSH($)T 2 (=sT2SH($)VaS0($)) )0_2(5 s
0

n=2 (=sT=25,(5)VySs(2)) " n3s2T 45} (%)
VSV S] —(57-25,Vys
n—o0 999 V Iy 2 9 V29
v 2 r2¢s T S r—arcry2
—(57725,V45y) 2T-4(sY)

-
/t VySy VoSy
= 1 CIS
0 fsT*2S{9 fsT*251’9



Example

m A simple example for a signal that satisfies the regularity
assumptions is

Sw.n(s) = ; (gk(ﬁ) sin (21{;5) + hi(9) cos <2kT7TS)>

with / € Ny and gk, hx € C}(©) for all k € {0,...,n}.




Example

m A simple example for a signal that satisfies the regularity
assumptions is

Sw.n(s) = ; (gk(ﬂ) sin (21{;5) + hi(9) cos <2kT7TS)>

with / € Ny and gk, hx € C}(©) for all k € {0,...,n}.

m For 0 =1 and the above signal with /| = d, hy = 0 and gx
depending only on 7y, the invertibility condition for J*T)(t) also
holds.



Next Step

Construct estimator(s) for (¥, T) involving only V.
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