Magnetic wells in dimension three

Yuri A. Kordyukov joint with Bernard Helffer & Nicolas Raymond & San Vũ Ngọc

Magnetic Fields and Semiclassical Analysis Rennes, May 21, 2015

 Ω

イロト イ押ト イヨト イヨト

Setting of the problem

- The configuration space is \mathbb{R}^3 with coordinates $(q_1,q_2,q_3).$
- The magnetic vector potential $\textbf{A} = (A_1, A_2, A_3) \in \mathcal{C}^{\infty}(\mathbb{R}^3, \mathbb{R}^3).$
- The magnetic field

$$
\mathbf{B}=\nabla\times\mathbf{A}=(\partial_2A_3-\partial_3A_2,\partial_3A_1-\partial_1A_3,\partial_1A_2-\partial_2A_1).
$$

Problem

The semiclassical analysis of the discrete spectrum of the magnetic Laplacian

$$
\mathcal{L}_{\hbar,\mathbf{A}}:=(-i\hbar\nabla_q-\mathbf{A}(q))^2.
$$

This means that we will consider that \hbar belongs to $(0, \hbar_0)$ with \hbar_0 small enough.

 Ω

ラメス 国

4 ロ ト ィ *同* ト

Self-adjointness and lower bounds

Define

$$
b(q):=\|\mathbf{B}(q)\|.
$$

Assumption 1

There exists a constant *C* > 0 such that

$$
\|\nabla \mathsf{B}(q)\| \leqslant C\left(1+b(q)\right),\, \forall q \in \mathbb{R}^3\,.
$$

Under Assumption 1, we have [HelfferMohamed96]:

- the operator $\mathcal{L}_{\hbar, \mathbf{A}}$ is essentially self-adjoint on $L^2(\mathbb{R}^3);$
- there exist $h_0 > 0$ and $C_0 > 0$ such that, for all $\hbar \in (0, h_0)$,

$$
\hbar(1-C_0\hbar^{\frac{1}{4}})\int_{\mathbb{R}^3}b(q)|u(q)|^2{\rm d}q\leqslant \langle \mathcal{L}_{\hbar,\mathbf{A}}u\,|\,u\rangle\,,\,\forall u\in \mathcal{C}_0^\infty(\mathbb{R}^3)\,.
$$

 Ω

イロト イ押ト イヨト イヨト

Bounds for the spectrum

Denote $b_0 := \inf_{q \in \mathbb{R}^3} b(q)$.

Lower bound for the spectrum

The bottom of the spectrum $s(\mathcal{L}_{\hbar, \mathbf{A}})$ is asymptotically above $\hbar b_0$: There exist $h_0 > 0$ and $C_0 > 0$ such that, for all $\hbar \in (0, h_0)$.

$$
\mathfrak{s}(\mathcal{L}_{\hbar,\mathbf{A}})\subset [\hbar b_0(1-C_0\hbar^{\frac{1}{4}}),+\infty),
$$

Denote $b_1 := \liminf_{|q| \to +\infty} b(q)$.

Lower bound for the essential spectrum

The bottom of the essential spectrum $s_{\text{ess}}(\mathcal{L}_{\hbar, \mathbf{A}})$ is asymptotically above $\hbar b_1$: There exist $h_1 > 0$ and $C_1 > 0$ such that, for all $\hbar \in (0, h_1)$,

$$
\mathfrak{s}_{\textup{\textbf{ess}}}(\mathcal{L}_{\hbar,\mathbf{A}})\subset [\hbar b_1(1-C_1\hbar^{\frac{1}{4}}),+\infty).
$$

π

 Ω

イロト イ押ト イラト イラト

Main assumptions

Assumption 2

- **•** The magnetic field does not vanish: $b_0(:= \inf_{\alpha \in \mathbb{R}^3} b(q)) > 0;$
- **•** The magnetic field is confining: $b_0 < b_1$ (:= lim inf_{|q|→+∞} $b(q)$);
- There exists a point $q_0\in\mathbb{R}^3$ and $\varepsilon>0,$ $\tilde{\beta}_0\in (b_0,b_1)$ such that

$$
\{b(q)\leqslant \tilde{\beta}_0\}\subset D(q_0,\varepsilon),
$$

 $D(q_0, \varepsilon)$ is the Euclidean ball centered at the origin and of radius ε .

Note that the last assumption is satisfied as soon as *b* admits a unique and non degenerate minimum.

 Ω

イロト イ押 トイラト イラト

Overview

- At the classical level, the Hamiltonian dynamics for a non-uniform magnetic field splits into three scales:
	- the cyclotron motion around field lines,
	- the center-guide oscillation along the field lines,
	- the oscillation within the space of field lines.

Under our assumptions, we exhibit three semiclassical scales and their corresponding effective quantum Hamiltonians, by means of three microlocal normal forms *à la Birkhoff*.

As a consequence, when the magnetic field admits a unique and non degenerate minimum, we are able to reduce the spectral analysis of the low-lying eigenvalues to a one-dimensional \hbar -pseudo-differential operator whose Weyl's symbol admits an asymptotic expansion in powers of $\hbar^{\frac{1}{2}}.$

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Notation

Assume that *b* admits a unique and non degenerate minimum at *q*0:

$$
b(q_0)=b_0:=\inf_{q\in\mathbb{R}^3}b(q)>0,\quad\mathsf{Hess}_{q_0}b>0\,.
$$

Denote

$$
\sigma = \frac{\text{Hess}_{q_0}b(\mathbf{B}, \mathbf{B})}{2b_0^2}, \quad \theta = \sqrt{\frac{\det \text{Hess}_{q_0}b}{\text{Hess}_{q_0}b(\mathbf{B}, \mathbf{B})}}
$$

 \Rightarrow

 299

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Asymptotic description of the spectrum

Main Theorem 1

For all $c \in (0,3)$, the spectrum of $\mathcal{L}_{\hbar, \mathbf{A}}$ below $b_0 \hbar + c \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}}$ coincides modulo $\mathcal{O}(\hbar^{\infty})$ with the spectrum of the operator \mathcal{F}_{\hbar} acting on $\mathsf{L}^2(\mathbb{R}_{\mathsf{x}_2})$:

$$
\mathcal{F}_{\hbar}=b_0\hbar+\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}-\frac{\zeta}{2\theta}\hbar^2+\hbar\left(\frac{\theta}{2}\mathcal{K}_{\hbar}+\pmb{k}^{\star}(\hbar^{\frac{1}{2}},\mathcal{K}_{\hbar})\right),
$$

\n- \n
$$
\mathcal{K}_{\hbar} = \hbar^2 D_{x_2}^2 + x_2^2
$$
, ζ is some explicit constant,\n
\n- \n $k^* \in C_0^\infty(\mathbb{R}^2)$ with $k^*(\hbar^{\frac{1}{2}}, Z) = \mathcal{O}((\hbar + |Z|)^{\frac{3}{2}})$.\n
\n

Remark

This description is reminiscent of the results *à la* Bohr-Sommerfeld of [Helffer-Robert84, HelfferSjostrand89] obtained in the case of one dimensional semiclassical operators.

Yuri A. Kordyukov (Ufa) [Magnetic wells in dimension three](#page-0-0) Rennes, May 21, 2015 8/38

Eigenvalue asymptotics

Main Theorem 2

Let $(\lambda_m(\hbar))_{m \geqslant 1}$ be the non decreasing sequence of the eigenvalues of \mathcal{L}_{h} **A**. For any $c \in (0, 3)$, let

$$
N_{\hbar,c}:=\{m\in\mathbb{N}^*;\quad \lambda_m(\hbar)\leqslant \hbar b_0+c\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}\}.
$$

Then:

the cardinal of $\mathsf{N}_{\hbar, \pmb{c}}$ is of order $\mathcal{O}(\hbar^{-\frac{1}{2}}),$

 Ω

化重新分离

 $1.71 \times 1.71 \times$

Eigenvalue asymptotics

and there exist $v_1, v_2 \in \mathbb{R}$ and $\hbar_0 > 0$ such that

$$
\lambda_m(\hbar) = \hbar b_0 + \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} + \left[\theta(m - \frac{1}{2}) - \frac{\zeta}{2\theta} \right] \hbar^2 + v_1(m - \frac{1}{2}) \hbar^{\frac{5}{2}} + v_2(m - \frac{1}{2})^2 \hbar^3 + \mathcal{O}(\hbar^{\frac{5}{2}}),
$$

uniformly for $h \in (0, h_0)$ and $m \in N_{h,c}$.

In particular, the splitting between two consecutive eigenvalues satisfies

$$
\lambda_{m+1}(\hbar) - \lambda_m(\hbar) = \theta \hbar^2 + \mathcal{O}(\hbar^{\frac{5}{2}}).
$$

Remark

An upper bound of $\lambda_m(\hbar)$ for fixed \hbar -independent *m* with remainder in $\mathcal{O}(\hbar^{\frac{9}{4}})$ was obtained in [HelfferKordyukov13] through a quasimodes construction involving powers of $\hbar^{\frac{1}{4}}.$

• The phase space is

$$
\mathbb{R}^6 = \{(q,p) \in \mathbb{R}^3 \times \mathbb{R}^3\}
$$

and we endow it with the canonical 2-form

$$
\omega_0 = d p_1 \wedge d q_1 + d p_2 \wedge d q_2 + d p_3 \wedge d q_3.
$$

The classical magnetic Hamiltonian, defined for $(q, p) \in \mathbb{R}^3 \times \mathbb{R}^3$

$$
H(q,p) = ||p - \mathbf{A}(q)||^2.
$$

An important role will be played by the characteristic hypersurface

$$
\Sigma = H^{-1}(0),
$$

which is the submanifold defined by the parametrization:

$$
\mathbb{R}^3 \ni q \mapsto j(q):=(q,\mathbf{A}(q)) \in \mathbb{R}^3 \times \mathbb{R}^3.
$$

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

The vector potential $\textbf{A} = (A_1, A_2, A_3) \in \mathcal{C}^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$ is associated (via the Euclidean structure) with the following 1-form

$$
\alpha = A_1 dq_1 + A_2 dq_2 + A_3 dq_3.
$$

Its exterior derivative $d\alpha$ is a 2-form, called magnetic 2-form and expressed as

$$
d\alpha = (\partial_1 A_2 - \partial_2 A_1)dq_1 \wedge dq_2
$$

+
$$
(\partial_1 A_3 - \partial_3 A_1)dq_1 \wedge dq_3 + (\partial_2 A_3 - \partial_3 A_2)dq_2 \wedge dq_3.
$$

It is identified with the magnetic vector field

$$
\boldsymbol{B}=\nabla\times\boldsymbol{A}=(\partial_2A_3-\partial_3A_2,\partial_3A_1-\partial_1A_3,\partial_1A_2-\partial_2A_1).
$$

 Ω

イロト イ押 トイラト イラト

We may notice the relation between

- the characteristic hypersurface Σ ,
- the symplectic structure ω_0
- the magnetic 2-form $d\alpha$:

$$
j^*\omega_0 = \mathrm{d}\alpha\,,
$$

where

$$
j: \mathbb{R}^3 \ni q \mapsto (q, \mathbf{A}(q)) \in \mathbb{R}^3 \times \mathbb{R}^3.
$$

If $b_0 > 0$, then the restriction $j^*\omega_0$ of the canonical symplectic form ω_0 to Σ is

- **o** in 2*D*-case, non-degenerate (i.e. Σ is a symplectic submanifold);
- **o** in 3D-case, degenerate.

 Ω

イロト イ押ト イヨト イヨ

Localization

- For eigenvalues of $\mathcal{L}_{\hbar, \mathbf{A}}$ of order $\mathcal{O}(\hbar)$, the corresponding eigenfunctions are microlocalized in the semi-classical sense near the characteristic hypersurface Σ .
- We will be reduced to investigate the magnetic geometry locally in space near a point $q_0 \in \mathbb{R}^3$ belonging to the confinement region.

• We put

$$
q_0=0.
$$

 Ω

イロト イ押ト イヨト イヨトー

Local coordinates

Claim

In a neighborhood of $(q_0, \mathbf{A}(q_0)) \in \Sigma$, there exist symplectic coordinates $(x_1, \xi_1, x_2, \xi_2, x_3, \xi_3)$ such that, $\Sigma = \{x_1 = \xi_1 = \xi_3 = 0\}.$ Hence Σ is parametrized by (x_2, ξ_2, x_3) . Near Σ, in these new coordinates, the Hamiltonian *H* admits the expansion

$$
\hat{H}=H^0+\mathcal{O}(|x_1|^3+|\xi_1|^3+|\xi_3|^3),
$$

where \hat{H} denotes H in the coordinates $(x_1, x_2, x_3, \xi_1, \xi_2, \xi_3)$, and with

$$
H^0 = \xi_3^2 + b(x_2, \xi_2, x_3)(x_1^2 + \xi_1^2).
$$

 Ω

イロト イ押ト イヨト イヨト

Remark

The direction of **B** considered as a vector field on Σ is $\frac{\partial}{\partial x_3}$:

$$
\mathbf{B}(x_2,\xi_2,x_3)=b(x_2,\xi_2,x_3)\frac{\partial}{\partial x_3}.
$$

About the proof

We first study the linearization near Σ , describing the transverse Hessian of the Hamiltonian *H* at Σ, and then apply the Weinstein symplectic neighborhood theorem.

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

The first Birkhoff normal form

Near Σ, in these new coordinates, the Hamiltonian *H* admits the expansion

$$
\hat{H} = \xi_3^2 + b(x_2, \xi_2, x_3)(x_1^2 + \xi_1^2) + \mathcal{O}(|x_1|^3 + |\xi_1|^3 + |\xi_3|^3),
$$

Theorem 1

If $\mathbf{B}(0) \neq 0$, there exists a neighborhood of $(0, \mathbf{A}(0))$ endowed with symplectic coordinates $(x_1, \xi_1, x_2, \xi_2, x_3, \xi_3)$ in which $\Sigma = \{x_1 = \xi_1 = \xi_3 = 0\}$ and $(0, \mathbf{A}(0))$ has coordinates $0 \in \mathbb{R}^6$, and there exist an associated unitary Fourier integral operator U_{\hbar} such that

$$
U_{\hbar}^*{\cal L}_{\hbar,{\bm A}}U_{\hbar}={\cal N}_{\hbar}+{\cal R}_{\hbar},
$$

where

$$
\mathcal{N}_{\hbar}=\hbar^2D^2_{x_3}+\mathcal{I}_{\hbar}\,\text{Op}^w_{\hbar}\,b(x_2,\xi_2,x_3)+\text{Op}^w_{\hbar}\,f^\star(\hbar,\mathcal{I}_{\hbar},x_2,\xi_2,x_3,\xi_3),
$$

The first Birkhoff normal form

$$
\mathcal{N}_{\hbar} = \hbar^2 D_{x_3}^2 + \mathcal{I}_{\hbar} \, Op_{\hbar}^w \, b(x_2, \xi_2, x_3) + Op_{\hbar}^w \, f^{\star}(\hbar, \mathcal{I}_{\hbar}, x_2, \xi_2, x_3, \xi_3),
$$

- (a) $\mathcal{I}_{\hbar} = \hbar^2 D_{x_1}^2 + x_1^2$,
- (b) $f^*(\hbar, Z, x_2, \xi_2, x_3, \xi_3)$ a smooth function, with compact support as small as we want with respect to Z and ξ_3 whose Taylor series with respect to Z, ξ_3, \hbar is

$$
\sum_{k\geqslant 3}\sum_{2\ell+2m+\beta=k}\hbar^{\ell}c^{\star}_{\ell,m,\beta}(x_2,\xi_2,x_3)Z^{m}\xi_3^{\beta}
$$

and the operator Op $_h^{\sf w}$ $f^\star(h, \mathcal{I}_h, \mathsf{x}_2, \xi_2, \mathsf{x}_3, \xi_3)$ has to be understood as the Weyl quantization of an operator valued symbol,

(c) the remainder \mathcal{R}_{\hbar} is a pseudo-differential operator such that, in a neighborhood of the origin, the Taylor series of its symbol with respect to $(x_1, \xi_1, \xi_3, \hbar)$ is 0. Ω

Comparison of the spectra

$$
\mathcal{N}_{\hbar}^{\sharp}=\mathsf{Op}_{\hbar}^{\mathsf{w}}\left(\mathsf{N}_{\hbar}^{\sharp}\right),
$$

with

$$
N_{\hbar}^{\sharp} = \xi_3^2 + \mathcal{I}_{\hbar} \underline{b}(x_2, \xi_2, x_3) + f^{\star, \sharp}(\hbar, \mathcal{I}_{\hbar}, x_2, \xi_2, x_3, \xi_3)
$$

where

b is a smooth extension of *b* away from *D*(0, ε) such that

$$
\{\underline{b}(q)\leqslant \tilde{\beta}_0\}\subset D(0,\varepsilon),
$$

 $f^{\star, \sharp} = \chi(X_2, \xi_2, X_3) f^\star$, with χ is a smooth cutoff function being 1 in a neighborhood of *D*(0, ε).

Corollary

Let $\beta_0\in (b_0,\tilde{\beta}_0).$ If ε and the support of f^\star are small enough, then the spectra of $\mathcal{L}_{\hbar, \mathbf{A}}$ and \mathcal{N}^\sharp_\hbar below $\beta_0 \hbar$ coincide modulo $\mathcal{O}(\hbar^{\infty}).$

Spectral reduction

In order to investigate the spectrum of $\mathcal{L}_{\hbar, \mathbf{A}}$ near the low lying eigenvalues, we replace \mathcal{I}_{\hbar} by \hbar :

$$
\mathcal{N}_{\hbar}^{[1]} = \hbar^2 D_{x_3}^2 + \hbar \, \mathsf{Op}_{\hbar}^{\mathsf{w}} \, b + \mathsf{Op}_{\hbar}^{\mathsf{w}} \, f^{\star}(\hbar, \hbar, x_2, \xi_2, x_3, \xi_3),
$$

and

$$
\mathcal{N}_{\hbar}^{[1],\sharp}=\mathsf{Op}_{\hbar}^{\mathsf{w}}\left(\mathsf{N}_{\hbar}^{[1],\sharp}\right),
$$

 $\textsf{where} \; \mathcal{N}_{\hbar}^{[1],\sharp} = \xi_3^2 + \hbar \underline{b}(\mathsf{x}_2,\xi_2,\mathsf{x}_3) + f^{\star,\sharp}(\hbar,\hbar,\mathsf{x}_2,\xi_2,\mathsf{x}_3,\xi_3).$

Corollary

If ε and the support of f^* are small enough, then for all $c \in (0, \textsf{min}(3b_0, \beta_0))$, the spectra of $\mathcal{L}_{\hbar, \mathbf{A}}$ and $\mathcal{N}_{\hbar}^{[1], \sharp}$ below $c \hbar$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.

 Ω

イロト イ押 トイラト イラト

Preliminaries

Let us now state our results concerning the normal form of $\mathcal{N}_\hbar^{[1]}$ (or $\mathcal{N}_\hbar^{[\![1],\sharp\!]}$ under the following assumption.

Notation

- **•** $f = f(z)$ is a differentiable function \Rightarrow $T_z f(·)$ its tangent map at the point **z**.
- *f* is twice differentiable \Rightarrow $T^2_{\mathbf{z}}f(\cdot,\cdot)$ the second derivative of *f*.

Assumption 3

 $T_0^2b(\mathbf{B}(0), \mathbf{B}(0)) > 0.$

If the function *b* admits a unique and positive minimum at 0 and that it is non degenerate, then Assumption 3 is satisfied.

Yuri A. Kordyukov (Ufa) [Magnetic wells in dimension three](#page-0-0) Rennes, May 21, 2015 21/38

 \equiv

 QQQ

イロト イ押 トイラ トイラトー

Preliminaries

Under Assumption 3, we have $\partial_3b(0,0,0)=0$ and, in the coordinates (x_2, ξ_2, x_3) given in Theorem 1,

$$
\partial_3^2b(0,0,0)>0.
$$

By the implicit function theorem that, for small x_2 , there exists a smooth function $(x_2, \xi_2) \mapsto s(x_2, \xi_2)$, $s(0, 0) = 0$, such that

$$
\partial_3b(x_2,\xi_2,s(x_2,\xi_2))=0.
$$

The point $s(x_2, \xi_2)$ is the unique (in a neighborhood of $(0, 0, 0)$) minimum of $x_3 \mapsto b(x_2, \xi_2, x_3)$. We define

$$
\nu(x_2,\xi_2):=(\tfrac{1}{2}\partial_3^2b(x_2,\xi_2,\mathbf{s}(x_2,\xi_2)))^{1/4}.
$$

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Taylor expansion at *s*(*x₂*, ξ₂)

$$
\mathcal{N}_{\hbar}^{[1]} = \hbar^2 D_{x_3}^2 + \hbar \, \mathsf{Op}_{\hbar}^W \, b + \mathsf{Op}_{\hbar}^W \, \mathsf{f}^\star(\hbar, \hbar, x_2, \xi_2, x_3, \xi_3),
$$

Theorem 2

Under Assumption 3, there exists a neighborhood V_0 of 0 and a Fourier integral operator V_{\hbar} which is microlocally unitary near V_0 and such that

$$
V_{\hbar}^*\mathcal{N}_{\hbar}^{[1]}V_{\hbar}=:\underline{\mathcal{N}}_{\hbar}^{[1]}=Op_{\hbar}^w\left(\underline{N}_{\hbar}^{[1]}\right),
$$

$$
\underline{N}_{\hbar}^{[1]} = \nu^2(x_2,\xi_2) \left(\xi_3^2 + \hbar x_3^2 \right) + \hbar b(x_2,\xi_2,\mathbf{s}(x_2,\xi_2)) + \underline{r}_{\hbar}
$$

and \underline{r}_\hbar is a semiclassical symbol such that

$$
\underline{r}_{\hbar} = \mathcal{O}(\hbar x_3^3) + \mathcal{O}(\hbar \xi_3^2) + \mathcal{O}(\xi_3^3) + \mathcal{O}(\hbar^2).
$$

Taylor expansion and comparison of the spectra

We have

$$
V_{\hbar}^{*}\mathcal{N}_{\hbar}^{\{1\}}V_{\hbar}=:\underline{\mathcal{N}}_{\hbar}^{\{1\}}= \mathsf{Op}_{\hbar}^{\mathsf{w}}\left(\underline{\mathcal{N}}_{\hbar}^{\{1\}}\right),\\[2mm]\underline{\mathcal{N}}_{\hbar}^{\{1\}}=\nu^{2}(x_{2},\xi_{2})\left(\xi_{3}^{2}+\hbar x_{3}^{2}\right)+\hbar b(x_{2},\xi_{2},\mathbf{s}(x_{2},\xi_{2}))+\underline{\mathcal{L}}_{\hbar}
$$

We introduce

$$
\underline{\mathcal{N}}_h^{[1],\sharp} = \mathsf{Op}_h^{\mathsf{w}}\left(\underline{\mathcal{N}}_h^{[1],\sharp}\right),
$$
\n
$$
\underline{\mathcal{N}}_h^{[1],\sharp} = \underline{\nu}^2(x_2,\xi_2)\left(\xi_3^2 + \hbar x_3^2\right) + \hbar \underline{b}(x_2,\xi_2, \mathbf{s}(x_2,\xi_2)) + \underline{\mathcal{L}}_h^{\sharp},
$$

where:

 $\gamma^\sharp_{\hbar}=\chi(\mathsf{x}_2,\mathsf{\xi}_2,\mathsf{x}_3,\mathsf{\xi}_3)$ r φ_{\hbar} with χ a cut-off function equal to 1 on $D(0,\varepsilon)$ with support in $D(0, 2\varepsilon)$,

 ν a smooth and constant (with a positive constant) extension of ν .

 Ω

イロト イ押ト イヨト イヨト

Taylor expansion and comparison of the spectra

Corollary

There exists a constant $\tilde{c} > 0$ such that, for any cut-off function χ equal to 1 on $D(0, \varepsilon)$ with support in $D(0, 2\varepsilon)$, we have:

- (a) The spectra of $\mathcal{N}_\hbar^{[1],\sharp}$ and $\mathcal{N}_\hbar^{[1],\sharp}$ below $(b_0 + \tilde{c} \varepsilon^2) \hbar$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.
- (b) For all $c \in (0, \min(3b_0, b_0 + \tilde{c} \varepsilon^2))$, the spectra of $\mathcal{L}_{\hbar, \mathbf{A}}$ and $\mathcal{N}_{\hbar}^{[1], \sharp}$ below *ch* coincide modulo $\mathcal{O}(\hbar^{\infty})$.

Problem:

$$
\underline{\mathcal{N}}_{\hbar}^{[1],\sharp}=\mathsf{Op}_{\hbar}^{w}\left(\underline{\mathcal{N}}_{\hbar}^{[1],\sharp}\right),
$$

$$
\underline{N}_{\hbar}^{[1],\sharp} = \underline{\nu}^2(x_2,\xi_2) \left(\xi_3^2 + \hbar x_3^2\right) + \hbar \underline{b}(x_2,\xi_2,{\bf s}(x_2,\xi_2)) + \underline{\it r}_{\hbar}^{\sharp}
$$

is not an elliptic \hbar -pseudo-differential operator.

,

Change of semiclassical parameter

We let $h=\hbar^{\frac{1}{2}}$ and, if \pmb{A}_\hbar is a semiclassical symbol on $\mathcal{T}^*\mathbb{R}^2$, admitting a semiclassical expansion in $\hbar^{\frac{1}{2}},$ we write

$$
\mathcal{A}_{\hbar}:=\operatorname{Op}_{\hbar}^{\mathsf{w}}\mathsf{A}_{\hbar}=\operatorname{Op}_{\hbar}^{\mathsf{w}}\mathsf{A}_{\hbar}=:\mathfrak{A}_{\hbar},
$$

with

$$
A_h(x_2,\tilde{\xi}_2,x_3,\tilde{\xi}_3)=A_{h^2}(x_2,h\tilde{\xi}_2,x_3,h\tilde{\xi}_3).
$$

Thus, \mathcal{A}_\hbar and \mathfrak{A}_\hbar represent the same operator when $\mathcal{h}=\hbar^{\frac{1}{2}},$ but the former is viewed as an \hbar -quantization of the symbol A_{\hbar} , while the latter is an *h*-pseudo-differential operator with symbol A_h . Notice that, if A_h belongs to some class $S(m)$, then $A_h \in S(m)$ as well. This is of course not true the other way around.

 Ω

イロト イ押ト イヨト イヨト

The second Birkhoff normal form

Define an operator $\mathfrak{N}^{[1],\sharp}_h$ $_h^{[1],\sharp}$ to be the operator $\underline{\mathcal{N}}_h^{[1],\sharp}$ (but written in the *h*-quantization):

$$
\underline{\mathfrak{N}}_h^{[1],\sharp}=\mathsf{Op}_{h}^{\mathsf{w}}\left(\underline{\mathsf{N}}_h^{[1],\sharp}\right),
$$

where

$$
\underline{N}_h^{[1],\sharp} = h^2 \underline{b}(x_2, h\tilde{\xi}_2, s(x_2, h\tilde{\xi}_2)) + h^2 \mathcal{J}_h \underline{\nu}^2(x_2, h\tilde{\xi}_2) + \underline{r}_h^{\sharp},
$$

$$
\mathcal{J}_h := \mathsf{Op}_h^w \left(\tilde{\xi}_3^2 + x_3^2 \right)
$$

Theorem

Under Assumption 3, there exists a unitary operator *W^h* such that

$$
W_h^*\underline{\mathfrak{N}}_h^{[1],\sharp}W_h =: \mathfrak{M}_h = \mathsf{Op}_h^W(M_h),
$$

4.000.00

The second Birkhoff normal form

$$
\underline{N}_h^{[1],\sharp} = h^2 \underline{b}(x_2, h\tilde{\xi}_2, s(x_2, h\tilde{\xi}_2)) + h^2 \mathcal{J}_h \underline{\nu}^2(x_2, h\tilde{\xi}_2) + \underline{r}_h^{\sharp},
$$

$$
M_h = h^2 \underline{b}(x_2, h\tilde{\xi}_2, s(x_2, h\tilde{\xi}_2)) + h^2 \mathcal{J}_h \underline{\nu}^2(x_2, h\tilde{\xi}_2) + h^2 g^*(h, \mathcal{J}_h, x_2, h\tilde{\xi}_2) + h^2 R_h + h^{\infty} S(1).
$$

(a) $g^*(h, Z, x_2, \xi_2)$ a smooth function, with compact support as small as we want with respect to Z and with compact support in (x_2, ξ_2) , whose Taylor series with respect to *Z*, *h* is

$$
\sum_{2m+2\ell\geqslant 3}c_{m,\ell}(x_2,\xi_2)Z^m h^\ell,
$$

(b[\)](#page-19-0) the function R_h satisfies $R_h(x_2, h\tilde{\xi}_2, x_3, \tilde{\xi}_3) = \mathcal{O}((x_3, \tilde{\xi}_3)^\infty)$ $R_h(x_2, h\tilde{\xi}_2, x_3, \tilde{\xi}_3) = \mathcal{O}((x_3, \tilde{\xi}_3)^\infty)$ [.](#page-20-0)

Comparison of the spectra

Since *W^h* is exactly unitary, we get a direct comparison of the spectra.

$$
\underline{\mathfrak{N}}_h^{[1],\sharp}=\mathsf{Op}_h^w\left(\underline{\mathsf{N}}_h^{[1],\sharp}\right),
$$

$$
\underline{N}_h^{[1],\sharp} = h^2 \underline{b}(x_2, h\tilde{\xi}_2, s(x_2, h\tilde{\xi}_2)) + h^2 \mathcal{J}_h \underline{\nu}^2(x_2, h\tilde{\xi}_2) + \underline{r}_h^{\sharp},
$$

We introduce

$$
\mathfrak{M}^\sharp_{h}=\mathsf{Op}^w_{h}\left(\mathsf{M}^\sharp_{h}\right),
$$

 $M^{\sharp}_{h} = h^2 \underline{b}(x_2, h\tilde{\xi}_2, s(x_2, h\tilde{\xi}_2)) + h^2 \mathcal{J}_h \underline{\nu}^2(x_2, h\tilde{\xi}_2) + h^2 g^*(h, \mathcal{J}_h, x_2, h\tilde{\xi}_2).$

Corollary

If ε and the support of g^* are small enough, for all $\eta > 0$, the spectra of $\mathfrak{N}_h^{[1],\sharp}$ $\frac{[1], \sharp}{h}$ and \mathfrak{M}^\sharp_h below $b_0 h^2 + \mathcal{O}(h^{2+\eta})$ coincide modulo $\mathcal{O}(h^\infty).$

Spectral reduction

We replace J*^h* by *h*:

$$
\mathfrak{M}_{h}^{[1],\sharp}=\mathsf{Op}_{h}^{w}\left(\mathsf{M}_{h}^{[1],\sharp}\right),
$$

with

$$
M^{[1],\sharp}_h=h^2\underline{b}(x_2,h\tilde{\xi}_2,s(x_2,h\tilde{\xi}_2))+h^3\underline{\nu}^2(x_2,h\tilde{\xi}_2)+h^2g^\star(h,h,x_2,h\tilde{\xi}_2).
$$

Corollary

If ε and the support of g^* are small enough, we have

(a) For $c \in (0, 3)$, the spectra of \mathfrak{M}^\sharp_h and $\mathfrak{M}^{[1],\sharp}_h$ $\int_h^{[1],\sharp}$ below $b_0 h^2 + c \sigma^{\frac{1}{2}} h^3$ coincide modulo $\mathcal{O}(h^\infty)$ (here $\sigma = \nu^4(0,0))$).

(b) If $c \in (0,3)$, the spectra of $\mathcal{L}_{\hbar, \mathbf{A}}$ and $\mathcal{M}_{\hbar}^{[1],\sharp} = \mathfrak{M}_{\hbar}^{[1],\sharp}$ $h^{1,1,\#}$ below $b_0\hbar + c\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}$ coincide modulo $\mathcal{O}(\hbar^{\infty}).$

Preliminaries

Go back to $\hbar\colon \mathfrak{M}_h^{[1],\sharp}$ $h^{\text{U},\mu}$ is written as

$$
\mathcal{M}_{\hbar}^{[1],\sharp}=\mathsf{Op}_{\hbar}^{\mathsf{w}}\left(\mathsf{M}_{\hbar}^{[1],\sharp}\right),
$$

with

$$
M_{\hbar}^{[1],\sharp} = \hbar \underline{b}(x_2,\xi_2,s(x_2,\xi_2)) + \hbar^{\frac{3}{2}} \underline{\nu}^2(x_2,\xi_2) + \hbar g^{\star}(\hbar^{\frac{1}{2}},\hbar^{\frac{1}{2}},x_2,\xi_2).
$$

We perform a last Birkhoff normal form for the operator $\mathcal{M}^{[1],\sharp}_\hbar$ as soon as $(x_2, \xi_2) \mapsto b(x_2, \xi_2, s(x_2, \xi_2))$ admits a unique and non degenerate minimum at $(0, 0) \Rightarrow$

Assumption 4

The function *b* admits a unique and positive minimum at 0 and it is non degenerate.

 Ω

イロメ イタメ イモメノモ

Taylor expansion

$$
\mathcal{M}_{\hbar}^{[1],\sharp}=\mathsf{Op}_{\hbar}^w\left(\mathsf{M}_{\hbar}^{[1],\sharp}\right), \text{with} \quad
$$

$$
M_{\hbar}^{[1],\sharp}=\hbar\underline{b}(x_2,\xi_2,s(x_2,\xi_2))+\hbar^{\frac{3}{2}}\underline{\nu}^2(x_2,\xi_2)+\hbar g^\star(\hbar^{\frac{1}{2}},\hbar^{\frac{1}{2}},x_2,\xi_2).
$$

By using a Taylor expansion, we get,

$$
M_{\hbar}^{[1],\sharp} = \hbar b_0 + \frac{\hbar}{2} \text{Hess}_{(0,0)} \underline{b}(x_2,\xi_2,s(x_2,\xi_2)) + \hbar^{\frac{3}{2}} \nu^2(0,0) + c x_2 \hbar^{\frac{3}{2}} + d \xi_2 \hbar^{\frac{3}{2}} \\ + \hbar \mathcal{O}((\hbar^{\frac{1}{2}},z_2)^3),
$$

where $c = \partial_{x_2} \nu^2(0,0)$ and $d = \partial_{\xi_2} \nu^2(0,0)$.

 2990

メロメメ 御き メミメメ 急ず 一番

Diagonalization of the Hessian

There exists a linear symplectic change of variables that diagonalizes the Hessian, so that, if L_h is the associated unitary transform,

$$
\mathcal{L}_{\hbar}^*\mathcal{M}_{\hbar}^{[1],\sharp}\mathcal{L}_{\hbar}=\mathsf{Op}^{\mathsf{w}}_{\hbar}\left(\hat{\mathcal{M}}_{\hbar}^{[1],\sharp}\right),
$$

with

$$
\hat{M}_{\hbar}^{[1],\sharp}=\hbar b_0+\frac{\hbar}{2}\theta(x_2^2+\xi_2^2)+\hbar^{\frac{3}{2}}\nu^2(0,0)+\hat{c}x_2\hbar^{\frac{3}{2}}+\hat{d}\xi_2\hbar^{\frac{3}{2}}+\hbar\mathcal{O}((\hbar^{\frac{1}{2}},z_2)^3),
$$

where

$$
\theta = \sqrt{\mathsf{det} \, \mathsf{Hess}_{(0,0)} b(x_2,\xi_2,s(x_2,\xi_2))} = = \sqrt{\frac{\mathsf{det} \, \mathsf{Hess}_{q_0} b}{\mathsf{Hess}_{q_0} b \, (\mathbf{B}, \mathbf{B})}} \, .
$$

 Ω

イロト イ押ト イヨト イヨト

Algebraic transformations

$$
\theta(x_2^2 + \xi_2^2) + \hat{c}x_2\hbar^{\frac{1}{2}} + \hat{d}\xi_2\hbar^{\frac{1}{2}} \n= \theta \left(\left(x_2 - \frac{\hat{c}\hbar^{\frac{1}{2}}}{\theta} \right)^2 + \left(\xi_2 - \frac{\hat{d}\hbar^{\frac{1}{2}}}{\theta} \right)^2 \right) - \hbar \frac{\hat{c}^2 + \hat{d}^2}{\theta} \n\hat{c}^2 + \hat{d}^2 = ||(\nabla_{x_2, \xi_2} \nu^2)(0, 0)||^2.
$$

There exists a unitary transform $\hat{U}_{{}_{\hbar^{\frac{1}{2}}}},$ which is in fact an \hbar -FIO whose phase admits a Taylor expansion in powers of $\hbar^{\frac{1}{2}}$:

$$
\hat{U}_{\hbar 2}^* L_\hbar^* \mathcal{M}_{\hbar}^{[1],\sharp} L_\hbar \hat{U}_{\hbar \frac{1}{2}} =: \underline{\mathcal{F}}_\hbar = \mathsf{Op}^w_\hbar \left(\underline{\mathcal{F}}_\hbar \right),
$$

where

$$
\underline{F}_{\hbar}=\hbar b_0+\hbar^{\frac{3}{2}}\nu^2(0,0)-\frac{\|(\nabla_{x_2,\xi_2}\nu^2)(0,0)\|^2}{2\theta}\hbar^2+\hbar\left(\frac{\theta}{2}|z_2|^2+\mathcal{O}((\hbar^{\frac{1}{2}},z_2)^3)\right).
$$

Birkhoff normal form

We have $\mathcal{F}_\hbar = \mathsf{Op}^w_\hbar\left(\mathcal{F}_\hbar\right)$

$$
\underline{F}_\hbar = \hbar b_0 + \hbar^{\frac{3}{2}} \nu^2 (0,0) - \frac{\| (\nabla_{x_2, \xi_2} \nu^2)(0,0) \|^2}{2 \theta} \hbar^2 + \hbar \left(\frac{\theta}{2} |z_2|^2 + \mathcal{O}((\hbar^{\frac{1}{2}},z_2)^3) \right)
$$

A Birkhoff normal form \Rightarrow \mathcal{F}_\hbar acting on $\mathcal{L}^2(\mathbb{R}_{\mathsf{x}_2})$ given by

$$
\mathcal{F}_{\hbar}=b_0\hbar+\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}-\frac{\zeta}{2\theta}\hbar^2+\hbar\left(\frac{\theta}{2}\mathcal{K}_{\hbar}+\pmb{k}^{\star}(\hbar^{\frac{1}{2}},\mathcal{K}_{\hbar})\right),\; \mathcal{K}_{\hbar}=\hbar^2D_{x_2}^2+x_2^2;
$$

Here $k^{\star} \in \mathcal{C}^{\infty}_0(\mathbb{R}^2)$ a compactly supported function with $k^{\star}(\hbar^{\frac{1}{2}},Z) = \mathcal{O}((\hbar + |Z|)^{\frac{3}{2}}),$

$$
\sigma = \nu^4(0,0) = \frac{1}{2}\partial_3^2 b(0,0,0) = \frac{\text{Hess}_{q_0}b(\textbf{B},\textbf{B})}{2b_0^2},
$$

and

$$
\zeta = \|(\nabla_{x_2,\xi_2}\nu^2)(0,0)\|^2.
$$

.

 Ω

The third Birkhoff normal form

Theorem

Under Assumption 4, there exists a unitary \hbar *-Fourier Integral Operator* $Q_{h^{\frac{1}{2}}}$ whose phase admits an expansion in powers of $h^{\frac{1}{2}}$ such that

$$
Q_{\hbar^{\frac{1}{2}}}^*\mathcal{M}_{\hbar}^{[1],\sharp}Q_{\hbar^{\frac{1}{2}}}=\mathcal{F}_{\hbar}+\mathcal{G}_{\hbar},
$$

where

(a) \mathcal{F}_\hbar acting on $L^2(\mathbb{R}_{x_2})$ given by

$$
\mathcal{F}_{\hbar}=b_0\hbar+\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}-\frac{\zeta}{2\theta}\hbar^2+\hbar\left(\frac{\theta}{2}\mathcal{K}_{\hbar}+\pmb{k}^{\star}(\hbar^{\frac{1}{2}},\mathcal{K}_{\hbar})\right),\ \mathcal{K}_{\hbar}=\hbar^2D_{x_2}^2+x_2^2;
$$

(b) the remainder is in the form $\mathcal{G}_\hbar = \mathsf{Op}^w_\hbar(G_\hbar)$, with $G_\hbar = \hbar \mathcal{O}(|z_2|^\infty)$.

 Ω

イロト イ押ト イヨト イヨト

Comparison of the spectra

Corollary

If $ε$ *and the support of* $k[*]$ *are small enough, we have*

- (a) *For all* $\eta \in (0, \frac{1}{2})$ $\frac{1}{2})$, the spectra of $\mathcal{M}_\hbar^{[1],\sharp}$ and \mathcal{F}_\hbar below $b_0\hbar + \mathcal{O}(\hbar^{1+\eta})$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.
- (b) *(*⇔ *Main Theorem 1)*

For all c \in (0,3), the spectra of $\mathcal{L}_{\hbar, \mathsf{A}}$ and \mathcal{F}_{\hbar} below $b_0\hbar + c\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}$ *coincide modulo* $\mathcal{O}(\hbar^{\infty})$ *.*

The spectral analysis of

$$
\mathcal{F}_\hbar=b_0\hbar+\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}-\frac{\zeta}{2\theta}\hbar^2+\hbar\left(\frac{\theta}{2}\mathcal{K}_\hbar+k^\star(\hbar^{\frac{1}{2}},\mathcal{K}_\hbar)\right),\; \mathcal{K}_\hbar=\hbar^2D_{x_2}^2+x_2^2;
$$

is straightforward, and (b) implies Main Theor[em](#page-35-0) [2.](#page-37-0)

 Ω

Eigenvalue asymptotics

Main Theorem 2

Let $(\lambda_m(\hbar))_{m \geqslant 1}$ be the non decreasing sequence of the eigenvalues of \mathcal{L}_{h} **A**. For any $c \in (0, 3)$, let

$$
\mathsf{N}_{\hbar,\mathbf{c}}:=\{m\in\mathbb{N}^*;\quad \lambda_m(\hbar)\leqslant \hbar\mathbf{b}_0+c\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}\}.
$$

Then the cardinal of $\mathsf{N}_{\hbar, \bm{c}}$ is of order $\mathcal{O}(\hbar^{-\frac{1}{2}}),$ and there exist $v_1, v_2 \in \mathbb{R}$ and $\hbar_0 > 0$ such that

$$
\lambda_m(\hbar) = \hbar b_0 + \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} + \left[\theta(m - \frac{1}{2}) - \frac{\zeta}{2\theta} \right] \hbar^2 + v_1(m - \frac{1}{2}) \hbar^{\frac{5}{2}} + v_2(m - \frac{1}{2})^2 \hbar^3 + \mathcal{O}(\hbar^{\frac{5}{2}}),
$$

uniformly for $\hbar \in (0, \hbar_0)$ and $m \in N_{\hbar,c}$.

 $\sqrt{2}$