Magnetic wells in dimension three

Yuri A. Kordyukov joint with Bernard Helffer & Nicolas Raymond & San Vũ Ngọc

Magnetic Fields and Semiclassical Analysis Rennes, May 21, 2015

Setting of the problem

- The configuration space is \mathbb{R}^3 with coordinates (q_1, q_2, q_3) .
- The magnetic vector potential $\mathbf{A} = (A_1, A_2, A_3) \in \mathcal{C}^{\infty}(\mathbb{R}^3, \mathbb{R}^3).$
- The magnetic field

$$\mathbf{B} = \nabla \times \mathbf{A} = (\partial_2 A_3 - \partial_3 A_2, \partial_3 A_1 - \partial_1 A_3, \partial_1 A_2 - \partial_2 A_1).$$

Problem

The semiclassical analysis of the discrete spectrum of the magnetic Laplacian

$$\mathcal{L}_{\hbar,\mathbf{A}} := (-i\hbar
abla_q - \mathbf{A}(q))^2.$$

This means that we will consider that \hbar belongs to $(0, \hbar_0)$ with \hbar_0 small enough.

Self-adjointness and lower bounds

Define

$$b(q) := \|\mathbf{B}(q)\|.$$

Assumption 1

There exists a constant C > 0 such that

$$\|
abla {f B}(q)\|\leqslant C\left(1+b(q)
ight),\,orall q\in {\mathbb R}^3$$
 .

Under Assumption 1, we have [HelfferMohamed96]:

- the operator $\mathcal{L}_{\hbar,\mathbf{A}}$ is essentially self-adjoint on $L^2(\mathbb{R}^3)$;
- there exist $h_0 > 0$ and $C_0 > 0$ such that, for all $\hbar \in (0, h_0)$,

$$\hbar(1-C_0\hbar^{\frac{1}{4}})\int_{\mathbb{R}^3}b(q)|u(q)|^2\mathrm{d} q\leqslant \langle \mathcal{L}_{\hbar,\mathbf{A}}u\,|\,u\rangle\,,\,\forall u\in\mathcal{C}_0^\infty(\mathbb{R}^3)\,.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bounds for the spectrum

Denote $b_0 := \inf_{q \in \mathbb{R}^3} b(q)$.

Lower bound for the spectrum

The bottom of the spectrum $\mathfrak{s}(\mathcal{L}_{\hbar,\mathbf{A}})$ is asymptotically above $\hbar b_0$: There exist $h_0 > 0$ and $C_0 > 0$ such that, for all $\hbar \in (0, h_0)$,

$$\mathfrak{s}(\mathcal{L}_{\hbar,\mathbf{A}})\subset [\hbar b_0(1-C_0\hbar^{rac{1}{4}}),+\infty),$$

Denote $b_1 := \liminf_{|q| \to +\infty} b(q)$.

Lower bound for the essential spectrum

The bottom of the essential spectrum $\mathfrak{s}_{ess}(\mathcal{L}_{\hbar,\mathbf{A}})$ is asymptotically above $\hbar b_1$: There exist $h_1 > 0$ and $C_1 > 0$ such that, for all $\hbar \in (0, h_1)$,

$$\mathfrak{s}_{\mathrm{ess}}(\mathcal{L}_{\hbar,\mathbf{A}}) \subset [\hbar b_1(1-C_1\hbar^{\frac{1}{4}}),+\infty).$$

Main assumptions

Assumption 2

- The magnetic field does not vanish: $b_0(:= \inf_{q \in \mathbb{R}^3} b(q)) > 0;$
- The magnetic field is confining: b₀ < b₁(:= lim inf_{|q|→+∞} b(q));
- There exists a point $q_0 \in \mathbb{R}^3$ and $\varepsilon > 0$, $\tilde{\beta}_0 \in (b_0, b_1)$ such that

$$\{b(q)\leqslant ilde{eta}_0\}\subset D(q_0,arepsilon),$$

 $D(q_0, \varepsilon)$ is the Euclidean ball centered at the origin and of radius ε .

Note that the last assumption is satisfied as soon as *b* admits a unique and non degenerate minimum.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview

- At the classical level, the Hamiltonian dynamics for a non-uniform magnetic field splits into three scales:
 - the cyclotron motion around field lines,
 - the center-guide oscillation along the field lines,
 - the oscillation within the space of field lines.

Under our assumptions, we exhibit three semiclassical scales and their corresponding effective quantum Hamiltonians, by means of three microlocal normal forms *à la Birkhoff*.

 As a consequence, when the magnetic field admits a unique and non degenerate minimum, we are able to reduce the spectral analysis of the low-lying eigenvalues to a one-dimensional *ħ*-pseudo-differential operator whose Weyl's symbol admits an asymptotic expansion in powers of *ħ*¹/₂.

Notation

Assume that *b* admits a unique and non degenerate minimum at q_0 :

$$b(q_0)=b_0:=\inf_{q\in\mathbb{R}^3}b(q)>0,\quad \mathrm{Hess}_{q_0}b>0\,.$$

Denote

$$\sigma = \frac{\text{Hess}_{q_0} b(\mathbf{B}, \mathbf{B})}{2b_0^2}, \quad \theta = \sqrt{\frac{\text{det} \text{Hess}_{q_0} b}{\text{Hess}_{q_0} b(\mathbf{B}, \mathbf{B})}}$$

Yuri A. Kordyukov (Ufa)

э

イロト イヨト イヨト イヨト

Asymptotic description of the spectrum

Main Theorem 1

For all $c \in (0,3)$, the spectrum of $\mathcal{L}_{\hbar,\mathbf{A}}$ below $b_0\hbar + c\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}$ coincides modulo $\mathcal{O}(\hbar^{\infty})$ with the spectrum of the operator \mathcal{F}_{\hbar} acting on $L^2(\mathbb{R}_{x_2})$:

$$\mathcal{F}_{\hbar} = b_0 \hbar + \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} - \frac{\zeta}{2\theta} \hbar^2 + \hbar \left(\frac{\theta}{2} \mathcal{K}_{\hbar} + k^{\star} (\hbar^{\frac{1}{2}}, \mathcal{K}_{\hbar}) \right),$$

•
$$\mathcal{K}_{\hbar} = \hbar^2 D_{x_2}^2 + x_2^2$$
, ζ is some explicit constant,

•
$$k^{\star} \in \mathcal{C}^{\infty}_{0}(\mathbb{R}^{2})$$
 with $k^{\star}(\hbar^{\frac{1}{2}}, Z) = \mathcal{O}((\hbar + |Z|)^{\frac{3}{2}}).$

Remark

This description is reminiscent of the results *à la* Bohr-Sommerfeld of [Helffer-Robert84, HelfferSjostrand89] obtained in the case of one dimensional semiclassical operators.

Yuri A. Kordyukov (Ufa)

Magnetic wells in dimension three

Eigenvalue asymptotics

Main Theorem 2

Let $(\lambda_m(\hbar))_{m \ge 1}$ be the non decreasing sequence of the eigenvalues of $\mathcal{L}_{h,\mathbf{A}}$. For any $c \in (0,3)$, let

$$\mathsf{N}_{\hbar,c} := \{ m \in \mathbb{N}^*; \quad \lambda_m(\hbar) \leqslant \hbar b_0 + c \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} \}.$$

Then:

the cardinal of $N_{\hbar,c}$ is of order $\mathcal{O}(\hbar^{-\frac{1}{2}})$,

< ロ > < 同 > < 回 > < 回 >

Eigenvalue asymptotics

and there exist $v_1, v_2 \in \mathbb{R}$ and $\hbar_0 > 0$ such that

$$\begin{split} \lambda_m(\hbar) = \hbar b_0 + \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} + \left[\theta(m - \frac{1}{2}) - \frac{\zeta}{2\theta} \right] \hbar^2 \\ + \upsilon_1(m - \frac{1}{2}) \hbar^{\frac{5}{2}} + \upsilon_2(m - \frac{1}{2})^2 \hbar^3 + \mathcal{O}(\hbar^{\frac{5}{2}}) \,, \end{split}$$

uniformly for $\hbar \in (0, \hbar_0)$ and $m \in N_{\hbar,c}$.

In particular, the splitting between two consecutive eigenvalues satisfies

$$\lambda_{m+1}(\hbar) - \lambda_m(\hbar) = \theta \hbar^2 + \mathcal{O}(\hbar^{\frac{5}{2}}).$$

Remark

An upper bound of $\lambda_m(\hbar)$ for fixed \hbar -independent m with remainder in $\mathcal{O}(\hbar^{\frac{9}{4}})$ was obtained in [HelfferKordyukov13] through a quasimodes construction involving powers of $\hbar^{\frac{1}{4}}$.

Yuri A. Kordyukov (Ufa)

• The phase space is

$$\mathbb{R}^6 = \{(q, p) \in \mathbb{R}^3 imes \mathbb{R}^3\}$$

and we endow it with the canonical 2-form

$$\omega_0 = \mathrm{d} \boldsymbol{p}_1 \wedge \mathrm{d} \boldsymbol{q}_1 + \mathrm{d} \boldsymbol{p}_2 \wedge \mathrm{d} \boldsymbol{q}_2 + \mathrm{d} \boldsymbol{p}_3 \wedge \mathrm{d} \boldsymbol{q}_3.$$

• The classical magnetic Hamiltonian, defined for $(q, p) \in \mathbb{R}^3 imes \mathbb{R}^3$

$$H(q, p) = \|p - \mathbf{A}(q)\|^2.$$

• An important role will be played by the characteristic hypersurface

$$\Sigma = H^{-1}(0),$$

which is the submanifold defined by the parametrization:

$$\mathbb{R}^3
i q \mapsto j(q) := (q, \mathbf{A}(q)) \in \mathbb{R}^3 imes \mathbb{R}^3.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 The vector potential A = (A₁, A₂, A₃) ∈ C[∞](ℝ³, ℝ³) is associated (via the Euclidean structure) with the following 1-form

$$\alpha = \mathbf{A}_1 \mathrm{d} \mathbf{q}_1 + \mathbf{A}_2 \mathrm{d} \mathbf{q}_2 + \mathbf{A}_3 \mathrm{d} \mathbf{q}_3.$$

• Its exterior derivative $\mathrm{d}\alpha$ is a 2-form, called magnetic 2-form and expressed as

$$d\alpha = (\partial_1 A_2 - \partial_2 A_1) dq_1 \wedge dq_2 + (\partial_1 A_3 - \partial_3 A_1) dq_1 \wedge dq_3 + (\partial_2 A_3 - \partial_3 A_2) dq_2 \wedge dq_3.$$

It is identified with the magnetic vector field

$$\mathbf{B} = \nabla \times \mathbf{A} = (\partial_2 A_3 - \partial_3 A_2, \partial_3 A_1 - \partial_1 A_3, \partial_1 A_2 - \partial_2 A_1).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We may notice the relation between

- the characteristic hypersurface Σ,
- the symplectic structure ω₀
- the magnetic 2-form $d\alpha$:

$$j^*\omega_0=\mathrm{d}\alpha\,,$$

where

$$j: \mathbb{R}^3
i q \mapsto (q, \mathbf{A}(q)) \in \mathbb{R}^3 imes \mathbb{R}^3.$$

If $b_0 > 0$, then the restriction $j^*\omega_0$ of the canonical symplectic form ω_0 to Σ is

- in 2D-case, non-degenerate (i.e. Σ is a symplectic submanifold);
- in 3D-case, degenerate.

< ロ > < 同 > < 回 > < 回 >

Localization

- For eigenvalues of L_{ħ,A} of order O(ħ), the corresponding eigenfunctions are microlocalized in the semi-classical sense near the characteristic hypersurface Σ.
- We will be reduced to investigate the magnetic geometry locally in space near a point $q_0 \in \mathbb{R}^3$ belonging to the confinement region.

We put

$$q_0 = 0.$$

Local coordinates

Claim

In a neighborhood of $(q_0, \mathbf{A}(q_0)) \in \Sigma$, there exist symplectic coordinates $(x_1, \xi_1, x_2, \xi_2, x_3, \xi_3)$ such that, $\Sigma = \{x_1 = \xi_1 = \xi_3 = 0\}$. Hence Σ is parametrized by (x_2, ξ_2, x_3) . Near Σ , in these new coordinates, the Hamiltonian *H* admits the

expansion

$$\hat{H} = H^0 + \mathcal{O}(|x_1|^3 + |\xi_1|^3 + |\xi_3|^3),$$

where \hat{H} denotes *H* in the coordinates $(x_1, x_2, x_3, \xi_1, \xi_2, \xi_3)$, and with

$$H^0 = \xi_3^2 + b(x_2, \xi_2, x_3)(x_1^2 + \xi_1^2).$$

Remark

The direction of **B** considered as a vector field on Σ is $\frac{\partial}{\partial x_2}$:

$$\mathbf{B}(x_2,\xi_2,x_3)=b(x_2,\xi_2,x_3)\frac{\partial}{\partial x_3}.$$

About the proof

We first study the linearization near Σ , describing the transverse Hessian of the Hamiltonian *H* at Σ , and then apply the Weinstein symplectic neighborhood theorem.

The first Birkhoff normal form

Near Σ , in these new coordinates, the Hamiltonian H admits the expansion

$$\hat{H} = \xi_3^2 + b(x_2, \xi_2, x_3)(x_1^2 + \xi_1^2) + \mathcal{O}(|x_1|^3 + |\xi_1|^3 + |\xi_3|^3),$$

Theorem 1

If **B**(0) \neq 0, there exists a neighborhood of (0, **A**(0)) endowed with symplectic coordinates ($x_1, \xi_1, x_2, \xi_2, x_3, \xi_3$) in which $\Sigma = \{x_1 = \xi_1 = \xi_3 = 0\}$ and (0, **A**(0)) has coordinates $0 \in \mathbb{R}^6$, and there exist an associated unitary Fourier integral operator U_{\hbar} such that

$$U_{\hbar}^{*}\mathcal{L}_{\hbar,\mathbf{A}}U_{\hbar}=\mathcal{N}_{\hbar}+\mathcal{R}_{\hbar},$$

where

$$\mathcal{N}_{\hbar} = \hbar^2 D_{x_3}^2 + \mathcal{I}_{\hbar} \operatorname{Op}_{\hbar}^{\mathsf{w}} b(x_2, \xi_2, x_3) + \operatorname{Op}_{\hbar}^{\mathsf{w}} f^{\star}(\hbar, \mathcal{I}_{\hbar}, x_2, \xi_2, x_3, \xi_3),$$

The first Birkhoff normal form

$$\mathcal{N}_{\hbar} = \hbar^2 D_{x_3}^2 + \mathcal{I}_{\hbar} \operatorname{Op}_{\hbar}^{\mathsf{w}} b(x_2, \xi_2, x_3) + \operatorname{Op}_{\hbar}^{\mathsf{w}} f^{\star}(\hbar, \mathcal{I}_{\hbar}, x_2, \xi_2, x_3, \xi_3),$$

(a) *L*_ħ = ħ²*D*²_{x1} + x₁²,
(b) *f**(ħ, *Z*, *x*₂, *ξ*₂, *x*₃, *ξ*₃) a smooth function, with compact support as small as we want with respect to *Z* and *ξ*₃ whose Taylor series with respect to *Z*, *ξ*₃, ħ is

$$\sum_{k \geqslant 3} \sum_{2\ell+2m+\beta=k} \hbar^\ell c^\star_{\ell,m,\beta}(x_2,\xi_2,x_3) Z^m \xi_3^\beta$$

and the operator $Op_{\hbar}^{W} f^{\star}(\hbar, \mathcal{I}_{\hbar}, x_{2}, \xi_{2}, x_{3}, \xi_{3})$ has to be understood as the Weyl quantization of an operator valued symbol,

(c) the remainder \mathcal{R}_{\hbar} is a pseudo-differential operator such that, in a neighborhood of the origin, the Taylor series of its symbol with respect to $(x_1, \xi_1, \xi_3, \hbar)$ is 0.

Comparison of the spectra

$$\mathcal{N}^{\sharp}_{\hbar} = \mathsf{Op}^{\textit{w}}_{\hbar}\left(\textit{N}^{\sharp}_{\hbar}
ight),$$

with

$$N_{\hbar}^{\sharp} = \xi_3^2 + \mathcal{I}_{\hbar}\underline{b}(x_2,\xi_2,x_3) + f^{\star,\sharp}(\hbar,\mathcal{I}_{\hbar},x_2,\xi_2,x_3,\xi_3)$$

where

• <u>b</u> is a smooth extension of b away from $D(0, \varepsilon)$ such that

$$\{\underline{b}(q)\leqslant \widetilde{\beta}_0\}\subset D(0,\varepsilon),$$

f^{*,♯} = χ(*x*₂, *ξ*₂, *x*₃)*f*^{*}, with χ is a smooth cutoff function being 1 in a neighborhood of *D*(0, ε).

Corollary

Let $\beta_0 \in (b_0, \tilde{\beta}_0)$. If ε and the support of f^* are small enough, then the spectra of $\mathcal{L}_{\hbar,\mathbf{A}}$ and $\mathcal{N}^{\sharp}_{\hbar}$ below $\beta_0 \hbar$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.

Spectral reduction

In order to investigate the spectrum of $\mathcal{L}_{\hbar,A}$ near the low lying eigenvalues, we replace \mathcal{I}_{\hbar} by \hbar :

$$\mathcal{N}_{\hbar}^{[1]} = \hbar^2 D_{x_3}^2 + \hbar \operatorname{Op}_{\hbar}^w b + \operatorname{Op}_{\hbar}^w f^*(\hbar, \hbar, x_2, \xi_2, x_3, \xi_3),$$

and

$$\mathcal{N}_{\hbar}^{[1],\sharp} = \mathsf{Op}_{\hbar}^{w}\left(\mathcal{N}_{\hbar}^{[1],\sharp}
ight),$$

where $N_{\hbar}^{[1],\sharp} = \xi_3^2 + \hbar \underline{b}(x_2,\xi_2,x_3) + f^{\star,\sharp}(\hbar,\hbar,x_2,\xi_2,x_3,\xi_3).$

Corollary

If ε and the support of f^* are small enough, then for all $c \in (0, \min(3b_0, \beta_0))$, the spectra of $\mathcal{L}_{\hbar, \mathbf{A}}$ and $\mathcal{N}_{\hbar}^{[1], \sharp}$ below $c\hbar$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.

< ロ > < 同 > < 回 > < 回 >

Preliminaries

Let us now state our results concerning the normal form of $\mathcal{N}_{\hbar}^{[1],\sharp}$ (or $\mathcal{N}_{\hbar}^{[1],\sharp}$) under the following assumption.

Notation

- *f* = *f*(**z**) is a differentiable function ⇒ *T*_z*f*(·) its tangent map at the point **z**.
- *f* is twice differentiable $\Rightarrow T_z^2 f(\cdot, \cdot)$ the second derivative of *f*.

Assumption 3

 $T_0^2 b(\mathbf{B}(0), \mathbf{B}(0)) > 0.$

If the function *b* admits a unique and positive minimum at 0 and that it is non degenerate, then Assumption 3 is satisfied.

Yuri A. Kordyukov (Ufa)

Magnetic wells in dimension three

Rennes, May 21, 2015

э

21/38

Preliminaries

Under Assumption 3, we have $\partial_3 b(0,0,0) = 0$ and, in the coordinates (x_2, ξ_2, x_3) given in Theorem 1,

$$\partial_3^2 b(0,0,0) > 0$$
 .

By the implicit function theorem that, for small x_2 , there exists a smooth function $(x_2, \xi_2) \mapsto s(x_2, \xi_2)$, s(0, 0) = 0, such that

$$\partial_3 b(x_2,\xi_2,s(x_2,\xi_2))=0.$$

The point $s(x_2, \xi_2)$ is the unique (in a neighborhood of (0, 0, 0)) minimum of $x_3 \mapsto b(x_2, \xi_2, x_3)$. We define

$$\nu(x_2,\xi_2) := (\frac{1}{2}\partial_3^2 b(x_2,\xi_2,s(x_2,\xi_2)))^{1/4}$$

イロト 不得 トイヨト イヨト 二日

Taylor expansion at $s(x_2, \xi_2)$

$$\mathcal{N}_{\hbar}^{[1]} = \hbar^2 D_{x_3}^2 + \hbar \operatorname{Op}_{\hbar}^{w} b + \operatorname{Op}_{\hbar}^{w} f^{\star}(\hbar, \hbar, x_2, \xi_2, x_3, \xi_3),$$

Theorem 2

Under Assumption 3, there exists a neighborhood \mathcal{V}_0 of 0 and a Fourier integral operator V_\hbar which is microlocally unitary near \mathcal{V}_0 and such that

$$V_{\hbar}^* \mathcal{N}_{\hbar}^{[1]} V_{\hbar} =: \underline{\mathcal{N}}_{\hbar}^{[1]} = \mathsf{Op}_{\hbar}^w \left(\underline{N}_{\hbar}^{[1]} \right),$$

$$\underline{\textit{M}}^{[1]}_{\hbar} = \nu^2(\textit{x}_2, \xi_2) \left(\xi_3^2 + \hbar \textit{x}_3^2\right) + \hbar \textit{b}(\textit{x}_2, \xi_2, \textit{s}(\textit{x}_2, \xi_2)) + \underline{\textit{r}}_{\hbar}$$

and \underline{r}_{\hbar} is a semiclassical symbol such that

$$\underline{r}_{\hbar} = \mathcal{O}(\hbar x_3^3) + \mathcal{O}(\hbar \xi_3^2) + \mathcal{O}(\xi_3^3) + \mathcal{O}(\hbar^2).$$

Taylor expansion and comparison of the spectra

We have

$$egin{aligned} & V_{\hbar}^*\mathcal{N}_{\hbar}^{[1]}V_{\hbar}=:\underline{\mathcal{N}}_{\hbar}^{[1]}=\operatorname{Op}_{\hbar}^w\left(\underline{N}_{\hbar}^{[1]}
ight),\ & \underline{N}_{\hbar}^{[1]}=
u^2(x_2,\xi_2)\left(\xi_3^2+\hbar x_3^2
ight)+\hbar b(x_2,\xi_2,s(x_2,\xi_2))+\underline{r}_{\hbar} \end{aligned}$$

We introduce

$$\underline{\mathcal{N}}_{\hbar}^{[1],\sharp} = \mathsf{Op}_{\hbar}^{w} \left(\underline{N}_{\hbar}^{[1],\sharp} \right),$$
$$\underline{N}_{\hbar}^{[1],\sharp} = \underline{\nu}^{2}(x_{2},\xi_{2}) \left(\xi_{3}^{2} + \hbar x_{3}^{2} \right) + \hbar \underline{b}(x_{2},\xi_{2},s(x_{2},\xi_{2})) + \underline{r}_{\hbar}^{\sharp},$$

where:

 $\underline{r}_{\hbar}^{\sharp} = \chi(x_2, \xi_2, x_3, \xi_3) \underline{r}_{\hbar}$ with χ a cut-off function equal to 1 on $D(0, \varepsilon)$ with support in $D(0, 2\varepsilon)$,

 $\underline{\nu}$ a smooth and constant (with a positive constant) extension of ν .

24/38

Taylor expansion and comparison of the spectra

Corollary

There exists a constant $\tilde{c} > 0$ such that, for any cut-off function χ equal to 1 on $D(0, \varepsilon)$ with support in $D(0, 2\varepsilon)$, we have:

- (a) The spectra of $\underline{\mathcal{N}}_{\hbar}^{[1],\sharp}$ and $\mathcal{N}_{\hbar}^{[1],\sharp}$ below $(b_0 + \tilde{c}\varepsilon^2)\hbar$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.
- (b) For all $c \in (0, \min(3b_0, b_0 + \tilde{c}\varepsilon^2))$, the spectra of $\mathcal{L}_{\hbar, \mathbf{A}}$ and $\underline{\mathcal{M}}_{\hbar}^{[1], \sharp}$ below $c\hbar$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.

Problem:

$$\underline{\mathcal{N}}_{\hbar}^{[1],\sharp} = \mathsf{Op}_{\hbar}^{w}\left(\underline{N}_{\hbar}^{[1],\sharp}\right),$$

$$\underline{N}_{\hbar}^{[1],\sharp} = \underline{\nu}^2(x_2,\xi_2) \left(\xi_3^2 + \hbar x_3^2\right) + \hbar \underline{b}(x_2,\xi_2,s(x_2,\xi_2)) + \underline{r}_{\hbar}^{\sharp}$$

is not an elliptic \hbar -pseudo-differential operator.

Change of semiclassical parameter

We let $h = \hbar^{\frac{1}{2}}$ and, if A_{\hbar} is a semiclassical symbol on $T^*\mathbb{R}^2$, admitting a semiclassical expansion in $\hbar^{\frac{1}{2}}$, we write

$$\mathcal{A}_{\hbar} := \mathsf{Op}_{\hbar}^{w} \mathcal{A}_{\hbar} = \mathsf{Op}_{h}^{w} \mathsf{A}_{h} =: \mathfrak{A}_{h},$$

with

$$\mathsf{A}_{h}(x_{2},\tilde{\xi}_{2},x_{3},\tilde{\xi}_{3})=\mathsf{A}_{h^{2}}(x_{2},h\tilde{\xi}_{2},x_{3},h\tilde{\xi}_{3}).$$

Thus, \mathcal{A}_{\hbar} and \mathfrak{A}_{h} represent the same operator when $h = \hbar^{\frac{1}{2}}$, but the former is viewed as an \hbar -quantization of the symbol \mathcal{A}_{\hbar} , while the latter is an *h*-pseudo-differential operator with symbol \mathcal{A}_{h} . Notice that, if \mathcal{A}_{\hbar} belongs to some class S(m), then $\mathcal{A}_{h} \in S(m)$ as well. This is of course not true the other way around.

< ロ > < 同 > < 回 > < 回 >

The second Birkhoff normal form

Define an operator $\underline{\mathfrak{M}}_{h}^{[1],\sharp}$ to be the operator $\underline{\mathcal{N}}_{h}^{[1],\sharp}$ (but written in the *h*-quantization):

$$\underline{\mathfrak{N}}_{h}^{[1],\sharp} = \mathsf{Op}_{h}^{w}\left(\underline{N}_{h}^{[1],\sharp}\right),$$

where

$$\begin{split} \underline{N}_{h}^{[1],\sharp} &= h^{2}\underline{b}(x_{2},h\tilde{\xi}_{2},s(x_{2},h\tilde{\xi}_{2})) + h^{2}\mathcal{J}_{h}\underline{\nu}^{2}(x_{2},h\tilde{\xi}_{2}) + \underline{r}_{h}^{\sharp},\\ \mathcal{J}_{h} &:= \mathsf{Op}_{h}^{w}\left(\tilde{\xi}_{3}^{2} + x_{3}^{2}\right) \end{split}$$

Theorem

Under Assumption 3, there exists a unitary operator W_h such that

$$W_{h}^{*}\underline{\mathfrak{N}}_{h}^{[1],\sharp}W_{h} =: \mathfrak{M}_{h} = \operatorname{Op}_{h}^{w}(\mathsf{M}_{h}),$$

The second Birkhoff normal form

$$\underline{N}_{h}^{[1],\sharp} = h^{2}\underline{b}(x_{2},h\tilde{\xi}_{2},s(x_{2},h\tilde{\xi}_{2})) + h^{2}\mathcal{J}_{h}\underline{\nu}^{2}(x_{2},h\tilde{\xi}_{2}) + \underline{r}_{h}^{\sharp},$$

$$\begin{split} \mathsf{M}_h &= h^2 \underline{b}(x_2, h\tilde{\xi}_2, \boldsymbol{s}(x_2, h\tilde{\xi}_2)) + h^2 \mathcal{J}_h \underline{\nu}^2(x_2, h\tilde{\xi}_2) \\ &+ h^2 g^*(h, \mathcal{J}_h, x_2, h\tilde{\xi}_2) + h^2 \mathsf{R}_h + h^\infty \boldsymbol{S}(1). \end{split}$$

(a) $g^*(h, Z, x_2, \xi_2)$ a smooth function, with compact support as small as we want with respect to *Z* and with compact support in (x_2, ξ_2) , whose Taylor series with respect to *Z*, *h* is

$$\sum_{m+2\ell\geqslant 3}c_{m,\ell}(x_2,\xi_2)Z^mh^\ell,$$

(b) the function R_h satisfies $R_h(x_2, h\tilde{\xi}_2, x_3, \tilde{\xi}_3) = \mathcal{O}((x_3, \tilde{\xi}_3)^{\infty})$.

Comparison of the spectra

Since W_h is exactly unitary, we get a direct comparison of the spectra.

$$\underline{\mathfrak{N}}_{h}^{[1],\sharp} = \mathsf{Op}_{h}^{w}\left(\underline{N}_{h}^{[1],\sharp}\right),$$

$$\underline{N}_{h}^{[1],\sharp} = h^{2}\underline{b}(x_{2},h\tilde{\xi}_{2},s(x_{2},h\tilde{\xi}_{2})) + h^{2}\mathcal{J}_{h}\underline{\nu}^{2}(x_{2},h\tilde{\xi}_{2}) + \underline{r}_{h}^{\sharp},$$

We introduce

$$\mathfrak{M}_{h}^{\sharp} = \mathsf{Op}_{h}^{w}\left(\mathsf{M}_{h}^{\sharp}\right),$$

 $\mathsf{M}_h^{\sharp} = h^2 \underline{b}(x_2, h\tilde{\xi}_2, s(x_2, h\tilde{\xi}_2)) + h^2 \mathcal{J}_h \underline{\nu}^2(x_2, h\tilde{\xi}_2) + h^2 g^{\star}(h, \mathcal{J}_h, x_2, h\tilde{\xi}_2).$

Corollary

If ε and the support of g^* are small enough, for all $\eta > 0$, the spectra of $\underline{\mathfrak{M}}_h^{[1],\sharp}$ and \mathfrak{M}_h^{\sharp} below $b_0 h^2 + \mathcal{O}(h^{2+\eta})$ coincide modulo $\mathcal{O}(h^{\infty})$.

Spectral reduction

We replace \mathcal{J}_h by h:

$$\mathfrak{M}_{h}^{[1],\sharp} = \mathsf{Op}_{h}^{w}\left(\mathsf{M}_{h}^{[1],\sharp}\right),$$

with

$$\mathsf{M}_{h}^{[1],\sharp} = h^{2}\underline{b}(x_{2},h\tilde{\xi}_{2},s(x_{2},h\tilde{\xi}_{2})) + h^{3}\underline{\nu}^{2}(x_{2},h\tilde{\xi}_{2}) + h^{2}g^{*}(h,h,x_{2},h\tilde{\xi}_{2}).$$

Corollary

If ε and the support of g^* are small enough, we have

(a) For $c \in (0,3)$, the spectra of \mathfrak{M}_h^{\sharp} and $\mathfrak{M}_h^{[1],\sharp}$ below $b_0 h^2 + c\sigma^{\frac{1}{2}} h^3$ coincide modulo $\mathcal{O}(h^{\infty})$ (here $\sigma = \nu^4(0,0)$)).

(b) If $c \in (0,3)$, the spectra of $\mathcal{L}_{\hbar,\mathbf{A}}$ and $\mathcal{M}_{\hbar}^{[1],\sharp} = \mathfrak{M}_{\hbar}^{[1],\sharp}$ below $b_0\hbar + c\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.

Preliminaries

Go back to $\hbar: \mathfrak{M}_{h}^{[1],\sharp}$ is written as

$$\mathcal{M}^{[1],\sharp}_{\hbar} = \mathsf{Op}^{w}_{\hbar} \left(\mathsf{M}^{[1],\sharp}_{\hbar}
ight),$$

with

$$\mathsf{M}_{\hbar}^{[1],\sharp} = \hbar \underline{b}(x_2,\xi_2,s(x_2,\xi_2)) + \hbar^{\frac{3}{2}} \underline{\nu}^2(x_2,\xi_2) + \hbar g^{\star}(\hbar^{\frac{1}{2}},\hbar^{\frac{1}{2}},x_2,\xi_2).$$

We perform a last Birkhoff normal form for the operator $\mathcal{M}_{\hbar}^{[1],\sharp}$ as soon as $(x_2, \xi_2) \mapsto \underline{b}(x_2, \xi_2, s(x_2, \xi_2))$ admits a unique and non degenerate minimum at $(0, 0) \Rightarrow$

Assumption 4

The function *b* admits a unique and positive minimum at 0 and it is non degenerate.

Yuri A. Kordyukov (Ufa)

イロト イポト イラト イラ

Taylor expansion

$$\mathcal{M}^{[1],\sharp}_{\hbar}=\mathsf{Op}^{\textit{w}}_{\hbar}\left(\mathsf{M}^{[1],\sharp}_{\hbar}
ight),$$
 with

$$\mathsf{M}_{\hbar}^{[1],\sharp} = \hbar \underline{b}(x_2,\xi_2,s(x_2,\xi_2)) + \hbar^{\frac{3}{2}} \underline{\nu}^2(x_2,\xi_2) + \hbar g^{\star}(\hbar^{\frac{1}{2}},\hbar^{\frac{1}{2}},x_2,\xi_2).$$

By using a Taylor expansion, we get,

$$\begin{split} M_{\hbar}^{[1],\sharp} &= \hbar b_0 + \frac{\hbar}{2} \mathsf{Hess}_{(0,0)} \underline{b}(x_2,\xi_2,s(x_2,\xi_2)) + \hbar^{\frac{3}{2}} \nu^2(0,0) + c x_2 \hbar^{\frac{3}{2}} + d\xi_2 \hbar^{\frac{3}{2}} \\ &+ \hbar \mathcal{O}((\hbar^{\frac{1}{2}},z_2)^3), \end{split}$$

where $c = \partial_{x_2} \nu^2(0,0)$ and $d = \partial_{\xi_2} \nu^2(0,0)$.

Diagonalization of the Hessian

There exists a linear symplectic change of variables that diagonalizes the Hessian, so that, if L_{\hbar} is the associated unitary transform,

$$L_{\hbar}^{*}\mathcal{M}_{\hbar}^{[1],\sharp}L_{\hbar}=\mathsf{Op}_{\hbar}^{w}\left(\hat{M}_{\hbar}^{[1],\sharp}
ight),$$

with

$$\hat{M}_{\hbar}^{[1],\sharp} = \hbar b_0 + \frac{\hbar}{2} \theta(x_2^2 + \xi_2^2) + \hbar^{\frac{3}{2}} \nu^2(0,0) + \hat{c} x_2 \hbar^{\frac{3}{2}} + \hat{d} \xi_2 \hbar^{\frac{3}{2}} + \hbar \mathcal{O}((\hbar^{\frac{1}{2}}, z_2)^3),$$

where

$$\theta = \sqrt{\det \operatorname{\mathsf{Hess}}_{(0,0)} b(x_2, \xi_2, s(x_2, \xi_2))} = = \sqrt{\frac{\det \operatorname{\mathsf{Hess}}_{q_0} b}{\operatorname{\mathsf{Hess}}_{q_0} b(\mathbf{B}, \mathbf{B})}}$$

イロト イポト イヨト イヨト

Algebraic transformations

$$\begin{split} \theta(x_2^2 + \xi_2^2) + \hat{c}x_2\hbar^{\frac{1}{2}} + \hat{d}\xi_2\hbar^{\frac{1}{2}} \\ &= \theta\left(\left(x_2 - \frac{\hat{c}\hbar^{\frac{1}{2}}}{\theta}\right)^2 + \left(\xi_2 - \frac{\hat{d}\hbar^{\frac{1}{2}}}{\theta}\right)^2\right) - \hbar\frac{\hat{c}^2 + \hat{d}^2}{\theta}. \\ &\hat{c}^2 + \hat{d}^2 = \|(\nabla_{x_2,\xi_2}\nu^2)(0,0)\|^2. \end{split}$$

There exists a unitary transform $\hat{U}_{\hbar^{\frac{1}{2}}}$, which is in fact an \hbar -FIO whose phase admits a Taylor expansion in powers of $\hbar^{\frac{1}{2}}$:

$$\hat{U}_{\hbar^{\frac{1}{2}}}^{*}L_{\hbar}^{*}\mathcal{M}_{\hbar}^{[1],\sharp}L_{\hbar}\hat{U}_{\hbar^{\frac{1}{2}}}=:\underline{\mathcal{F}}_{\hbar}=\mathsf{Op}_{\hbar}^{w}\left(\underline{F}_{\hbar}\right),$$

where

$$\underline{F}_{\hbar} = \hbar b_{0} + \hbar^{\frac{3}{2}} \nu^{2}(0,0) - \frac{\|(\nabla_{x_{2},\xi_{2}}\nu^{2})(0,0)\|^{2}}{2\theta} \hbar^{2} + \hbar \left(\frac{\theta}{2}|z_{2}|^{2} + \mathcal{O}((\hbar^{\frac{1}{2}},z_{2})^{3})\right)$$

Birkhoff normal form

We have $\underline{\mathcal{F}}_{\hbar} = \mathsf{Op}_{\hbar}^{w} (\underline{F}_{\hbar})$

$$\underline{F}_{\hbar} = \hbar b_0 + \hbar^{\frac{3}{2}} \nu^2(0,0) - \frac{\|(\nabla_{x_2,\xi_2} \nu^2)(0,0)\|^2}{2\theta} \hbar^2 + \hbar \left(\frac{\theta}{2} |z_2|^2 + \mathcal{O}((\hbar^{\frac{1}{2}},z_2)^3)\right)$$

A Birkhoff normal form $\Rightarrow \mathcal{F}_{\hbar}$ acting on $L^{2}(\mathbb{R}_{x_{2}})$ given by

$$\mathcal{F}_{\hbar} = b_0 \hbar + \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} - \frac{\zeta}{2\theta} \hbar^2 + \hbar \left(\frac{\theta}{2} \mathcal{K}_{\hbar} + k^* (\hbar^{\frac{1}{2}}, \mathcal{K}_{\hbar}) \right), \ \mathcal{K}_{\hbar} = \hbar^2 D_{x_2}^2 + x_2^2;$$

Here $k^{\star} \in \mathcal{C}^{\infty}_{0}(\mathbb{R}^{2})$ a compactly supported function with $k^{\star}(\hbar^{\frac{1}{2}}, Z) = \mathcal{O}((\hbar + |Z|)^{\frac{3}{2}}),$

$$\sigma = \nu^{4}(0,0) = \frac{1}{2}\partial_{3}^{2}b(0,0,0) = \frac{\operatorname{Hess}_{q_{0}}b(\mathbf{B},\mathbf{B})}{2b_{0}^{2}},$$

and

$$\zeta = \| (\nabla_{x_2,\xi_2} \nu^2)(0,0) \|^2$$

The third Birkhoff normal form

Theorem

Under Assumption 4, there exists a unitary \hbar -Fourier Integral Operator $Q_{\hbar^{\frac{1}{2}}}$ whose phase admits an expansion in powers of $\hbar^{\frac{1}{2}}$ such that

$$Q_{\hbar^{\frac{1}{2}}}^*\mathcal{M}_{\hbar}^{[1],\sharp}Q_{\hbar^{\frac{1}{2}}}=\mathcal{F}_{\hbar}+\mathcal{G}_{\hbar},$$

where

(a) \mathcal{F}_{\hbar} acting on $L^{2}(\mathbb{R}_{x_{2}})$ given by

$$\mathcal{F}_{\hbar} = b_0 \hbar + \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} - \frac{\zeta}{2\theta} \hbar^2 + \hbar \left(\frac{\theta}{2} \mathcal{K}_{\hbar} + k^{\star} (\hbar^{\frac{1}{2}}, \mathcal{K}_{\hbar}) \right), \ \mathcal{K}_{\hbar} = \hbar^2 D_{x_2}^2 + x_2^2;$$

(b) the remainder is in the form $\mathcal{G}_{\hbar} = \mathsf{Op}_{\hbar}^{w}(G_{\hbar})$, with $G_{\hbar} = \hbar \mathcal{O}(|z_{2}|^{\infty})$.

< ロ > < 同 > < 回 > < 回 >

Comparison of the spectra

Corollary

If ε and the support of k^* are small enough, we have

(a) For all $\eta \in (0, \frac{1}{2})$, the spectra of $\mathcal{M}_{\hbar}^{[1],\sharp}$ and \mathcal{F}_{\hbar} below $b_0\hbar + \mathcal{O}(\hbar^{1+\eta})$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.

(b) (⇔ Main Theorem 1)

For all $c \in (0,3)$, the spectra of $\mathcal{L}_{\hbar,\mathbf{A}}$ and \mathcal{F}_{\hbar} below $b_0\hbar + c\sigma^{\frac{1}{2}}\hbar^{\frac{3}{2}}$ coincide modulo $\mathcal{O}(\hbar^{\infty})$.

The spectral analysis of

$$\mathcal{F}_{\hbar} = b_0 \hbar + \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} - \frac{\zeta}{2\theta} \hbar^2 + \hbar \left(\frac{\theta}{2} \mathcal{K}_{\hbar} + k^* (\hbar^{\frac{1}{2}}, \mathcal{K}_{\hbar}) \right), \ \mathcal{K}_{\hbar} = \hbar^2 D_{x_2}^2 + x_2^2;$$

is straightforward, and (b) implies Main Theorem 2.

Eigenvalue asymptotics

Main Theorem 2

Let $(\lambda_m(\hbar))_{m \ge 1}$ be the non decreasing sequence of the eigenvalues of $\mathcal{L}_{h,\mathbf{A}}$. For any $c \in (0,3)$, let

$$\mathsf{N}_{\hbar,c} := \{ m \in \mathbb{N}^*; \quad \lambda_m(\hbar) \leqslant \hbar b_0 + c \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} \}.$$

Then the cardinal of $N_{\hbar,c}$ is of order $\mathcal{O}(\hbar^{-\frac{1}{2}})$, and there exist $v_1, v_2 \in \mathbb{R}$ and $\hbar_0 > 0$ such that

$$\begin{split} \lambda_m(\hbar) = \hbar b_0 + \sigma^{\frac{1}{2}} \hbar^{\frac{3}{2}} + \left[\theta(m - \frac{1}{2}) - \frac{\zeta}{2\theta} \right] \hbar^2 \\ + \upsilon_1(m - \frac{1}{2}) \hbar^{\frac{5}{2}} + \upsilon_2(m - \frac{1}{2})^2 \hbar^3 + \mathcal{O}(\hbar^{\frac{5}{2}}) \,, \end{split}$$

uniformly for $\hbar \in (0, \hbar_0)$ and $m \in N_{\hbar,c}$.