

Parametric inference for discrete observations of diffusion processes with mixed effects

Catherine Larédo (1)

Joint work with Maud Delattre (2) & Valentine Genon-Catalot (3)

- (1) Laboratoire MalAGE, I.N.R.A. and LPMA, Université Denis Diderot, CNRS-UMR 7599, (2) AgroParisTech, France,
- (3) UMR CNRS 8145, Laboratoire MAP5, Université Paris Descartes, Sorbonne Paris Cité

June 8, 2016

DYNSTOCH 2016, June 8-10

General set-up

- Statistical inference for repeated measurements over time (time series data) on several experimental units.
- Among classical examples: Pharmacokinetics (PK)/ pharmacodynamics (PD) experiments:

Two sources of stochasticity

- (1) Intrinsic randomness of individual dynamics: e.g. system noise.
- (2) Population effects: Variation between individuals or experimental units (longitudinal data).

Diffusion process on \mathbb{R} with random effects

$$\begin{cases}
dX(t) &= b(X(t), \Phi)dt + \sigma(X(t), \Psi)dW(t), \\
X(0) &= x, \\
x \in \mathbb{R}, t \in [0, T].
\end{cases} \tag{1}$$

(Φ, Ψ) deterministic unknown \Rightarrow Classical inference

- (1) Continuous observation on [0,T]
- (e.g. Kutoyants, Lipster & Shiryaev.
- $\star \Psi$ identified on one sample path \Rightarrow Assumption ψ known.
- \star Inference for ϕ : possible if $T \to \infty$.
- (2) Discrete observations on [0,T]: sampling Δ ($n\Delta = T$, n obs.)
- \star T fixed, $n \to \infty$: estimation of Ψ (Genon-Catalot & Jacod)
- \star T and $n \to \infty$: estimation of (Φ, Ψ) (e.g. Kessler).

Φ, Ψ random variables independent of W

Aim: estimation of unknown parameters in the distribution of (Φ, Ψ)

Repeated observations of discretized processes

Model: N i.i.d. processes $(X_i(t))$

$$\begin{cases} dX_i(t) = b(X_i(t), \Phi_i)dt + \sigma(X_i(t), \Psi_i)dW_i(t), \\ X_i(0) = x, \\ x \in \mathbb{R}, t \in [0, T], i = 1, \dots, N, \end{cases}$$

- $(\Phi_i, \Psi_i), i = 1, ..., N$: *i.i.d.* random variables.
- W_i , i = 1, ..., N: independent Wiener processes.
- $((\Phi_i, \Psi_i), i = 1, ..., N)$ and $W_i, i = 1, ..., N$ independent.

Estimation of unknown parameters in the distribution of (Φ, Ψ)

- Fixed time interval [0, T] with $T = n\Delta$, and $t_j = jT/n, j = 1, \ldots, n$.
- Observations: $(X_{i,n} := (X_i(t_j), j = 1, ..., n), i = 1, ..., N)$.

General References

- Nie & Yang (2005), Nie (2006, 2007). Theoretical likelihood study. Rely on many abstract assumptions impossible to check in practice.
- Donnet, S. Samson, A. (2008). Review for mixed effects SDEs.
- Picchini, De Gaetano & Ditlevsen (2008, 2010); Picchini & Ditlevsen (2011) (approximations of the likelihood, no theoretical results)
- Delattre, Genon-Catalot & Samson (2012, 2015, 2016);
 Genon-Catalot & Larédo (2016); Delattre, Genon-Catalot & Larédo (2016,a,b) (parametric, likelihood methods).

References on applications based on data sets of PK/PD dynamics

- Overgaard, Jonsson, Tornøe & Madsen (2005)
- Berglund, Sunnake, Adiels, Jirstrand & Wennberg (2011)
- Leander, J., Almquist, J., Ahlstrom, C., Gabrielsson, J. & Jirstrand,
 M. (2015) (concrete models and real data + many references therein)

Likelihood for SDE with mixed effects

Parametric distribution for the (Φ_i, Ψ_i) : $\nu_{\vartheta}(d\varphi, d\psi)$)

- Conditional likelihood of $X_{i,n}$ given $(\Phi_i = \varphi, \Psi_i = \psi) : L_n(X_{i,n}, \varphi, \psi)$ $L_n(X_{i,n}, \varphi, \psi) = \text{Likelihood based on } X_i^{\varphi,\psi}(t)$ $d X_i^{\varphi,\psi}(t) = b(X_i^{\varphi,\psi}(t), \varphi)dt + \sigma(X_i^{\varphi,\psi}(t), \psi) dW_i(t), X_i^{\varphi,\psi}(0) = x.$
- ② Integrate with respect to $\nu_{\vartheta}(d\varphi, d\psi)$) this conditional likelihood:

$$L_n(X_{i,n},\vartheta) = \int L_n(X_{i,n},\varphi,\psi)\nu_{\vartheta}(d\varphi,d\psi)$$
 : likelihood of $X_{i,n}$, (2)

3 Exact likelihood for $(X_{i,n}, i = 1, ..., N)$: $L_N(\vartheta) = \prod_{i=1}^N L_n(X_{i,n}, \vartheta)$.

Two main difficulties

- * Discrete observations: untractable $L_n(X_{i,n}, \varphi, \psi) \Rightarrow \mathsf{Approximations}$.
- \star Integration w.r.t. $\nu_{\vartheta}(d\varphi,d\psi)$): no closed form in general
- \Rightarrow Choice of specific models $b(.,.), \sigma(.,.)$ and distributions $\nu_{\vartheta}(.,.)$.

Model under study: Linear mixed effects

N stochastic processes $(X_i(t); t \ge 0), i = 1, ..., N$ on \mathbb{R} .

$$\begin{cases}
dX_i(t) = \Phi'_i b(X_i(t)) dt +, \Psi_i \sigma(X_i(t)) dW_i(t), \\
X_i(0) = X, \\
x \in \mathbb{R}, t \in [0, T].
\end{cases}$$
(3)

- (W_1, \ldots, W_N) : N independent Wiener processes.
- $((\Phi_i, \Psi_i), i = 1, ..., N)$ N i.i.d. r.v. on $\mathbb{R}^d \times (0, +\infty)$, indep. of $(W_i), i = 1, ... N$.
- $b(.) = (b_1(.), \dots b_d(.))'$ and $\sigma(.)$ known; x known.
- Observations: $\{X_{i,n}=(X_i(t_j),j=1,\ldots,n),i=1,\ldots N\}$ with $(n,N)\to\infty$.

Random effects

Two cases not included in previous works.

Two cases of mixed effects

- \bullet $\Phi_i = \phi$ unknow; $\Psi_i = \Gamma_i^{-1/2}$ with $\Gamma_i \sim G(a, \lambda) \Rightarrow \tau = (\lambda, a, \phi)$.

Next talk (Valentine)

- $\Psi_i = \Gamma_i^{-1/2}$ with $\Gamma_i \sim G(a, \lambda)$.
- Given $\Gamma_i = \gamma$, $\Phi_i \sim \mathcal{N}_d(\mu, \gamma^{-1}\Omega)$.

Approximate conditional likelihood for (X_i)

- Derived from the Euler scheme $(Y_{i,n})$ of (X_i) with $\Delta = T/n$.
- $Y_{i,n}(t_i) = Y_{i,n}(t_{i-1}) + \Delta \Phi_i' \ b(Y(t_{i-1})) + \sqrt{\Delta} \Gamma_i^{-1/2} \sigma(Y(t_{i-1})) + \epsilon_{i,i}$
- $((\epsilon_{i,i}), j = 1, \ldots, n)$ i.i.d $\mathcal{N}(0,1)$.

Conditionally on $\Phi_i = \varphi, \Psi_i = \psi$,

$$\mathcal{L}_{n}(X_{i,n},\gamma,\varphi) = \gamma^{n/2} \exp\left[-\frac{\gamma}{2}(S_{i,n} + \varphi' V_{i,n}\varphi - 2\varphi' U_{i,n})\right], \quad \text{where}$$

$$S_{i,n} = S_{i} = \frac{1}{\Delta} \sum_{j=1}^{n} \frac{(X_{i}(t_{j}) - X_{i}(t_{j-1}))^{2}}{\sigma^{2}(X_{i}(t_{j-1}))},$$

$$V_{i,n} = V_{i} = \left(\sum_{j=1}^{n} \Delta \frac{b_{k}(X_{i}(t_{j-1}))b_{\ell}(X_{i}(t_{j-1}))}{\sigma^{2}(X_{i}(t_{j-1}))}\right)_{1 \leq k,\ell \leq d},$$

$$U_{i,n} = U_{i} = \left(\sum_{j=1}^{n} \frac{b_{k}(X_{i}(t_{j-1}))(X_{i}(t_{j}) - X_{i}(t_{j-1}))}{\sigma^{2}(X_{i}(t_{j-1}))}\right)_{1 \leq k \leq d},$$

9 / 29

Approximate conditional likelihood for (X_i) (2)

$$S_{i,n} = S_i = \frac{1}{\Delta} \sum_{j=1}^n \frac{(X_i(t_j) - X_i(t_{j-1}))^2}{\sigma^2(X_i(t_{j-1}))},$$

$$V_{i,n} = V_i = \left(\sum_{j=1}^n \Delta \frac{b_k(X_i(t_{j-1}))b_\ell(X_i(t_{j-1}))}{\sigma^2(X_i(t_{j-1}))}\right)_{1 \le k, \ell \le d},$$

$$U_{i,n} = U_i = \left(\sum_{j=1}^n \frac{b_k(X_i(t_{j-1}))(X_i(t_j) - X_i(t_{j-1}))}{\sigma^2(X_i(t_{j-1}))}\right)_{1 \le k \le d},$$

As
$$n \to \infty$$
, $S_{i,n}/n \to \Gamma_i^{-1}$ in probability; $V_{i,n} \to \left(\int_0^T \frac{b_k(X_i(s))b_\ell(X_i(s))}{\sigma^2(X_i(s))} \ ds\right)_{1 \le k, \ell \le d} = V_i(T) \text{ a.s. };$ $U_{i,n} \to \left(\int_0^T \frac{b_k(X_i(s))}{\sigma^2(X_i(s))} \ dX_i(s)\right)_{1 \le k \le d} = U_i(T) \text{ in probability.}$

Case (1): Random effects in the drift coefficient

$$\Psi_i = \psi = \gamma^{-1/2}$$
 unknown and $\Phi_i \sim \mathcal{N}_d(\mu, \gamma^{-1}\Omega) \Rightarrow \theta = (\gamma, \mu, \Omega)$

Proposition: Approximate likelihood for $(X_{i,n})$

If $b(.), \sigma(.)$ bounded, C^2 and $V_i(T)$ positive definite a.s., then

$$\mathcal{L}_{n}(X_{i,n},\vartheta) = \gamma^{n/2} (\det(I_{d} + V_{i} \Omega))^{-1/2} \exp{-\frac{\gamma}{2}} (S_{i} + T_{i}(\mu,\Omega)) \text{ with }$$

$$T_{i}(\mu,\Omega) = (\mu - V_{i}^{-1} U_{i})' R_{i}^{-1} (\mu - V_{i}^{-1} U_{i}) - U_{i}' V_{i}^{-1} U_{i}),$$

$$R_{i,n} = R_{i} = V_{i,n}^{-1} + \Omega.$$

Approximate Loglikelihood for $(X_i \ i = 1, \dots, N)$

$$\ell_{N,n}(\vartheta) = \frac{Nn}{2}\log\gamma - \frac{1}{2}\sum_{i=1}^{N}\log\det(I_d + V_i|\Omega) - \frac{\gamma}{2}\sum_{i=1}^{N}(S_i + T_i(\mu,\Omega)).$$

- * Formula $\mathcal{L}_n(X_{i,n},\vartheta)$ holds if Ω . is singular.
- * Possibility to have both fixed and random effects in the drift coefficient.

Estimating equations for $\vartheta = (\gamma, \mu, \Omega)$

Derived from the "pseudo score function":

$$\mathcal{G}_{N,n}(\vartheta) = \left(\frac{\partial}{\partial \gamma} \ell_{N,n}(\vartheta), \frac{\partial}{\partial \mu} \ell_{N,n}(\vartheta), \frac{\partial}{\partial \Omega} \ell_{N,n}(\vartheta)\right)'$$

We study the estimators defined by the estimating equation:

$$\mathcal{G}_{N,n}(\tilde{\vartheta}_{N,n}) = 0. \tag{4}$$

$$\frac{\partial}{\partial \gamma} \ell_{N,n}(\vartheta) = \frac{Nn}{2\gamma} - \frac{1}{2} \sum_{i=1}^{N} (S_i + T_i(\mu, \Omega)),$$

$$\nabla_{\mu} \ell_{N,n}(\vartheta) = \gamma \sum_{i=1}^{N} A_{i,n} \text{ with } A_{i,n} = R_i^{-1}(V_i^{-1}U_i - \mu),$$

$$\nabla_{\Omega} \ell_{N,n}(\vartheta) = -\frac{1}{2} \sum_{i=1}^{N} R_i^{-1} + \frac{\gamma}{2} \sum_{i=1}^{N} A_{i,n} A'_{i,n}.$$

Study of estimators

Different rates of convergence for γ and μ , Ω . Set q=1+2d

$$D_{N,n} \begin{pmatrix} \frac{1}{\sqrt{Nn}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\sqrt{N}} I_d & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \frac{1}{\sqrt{N}} I_d \end{pmatrix}, \quad \mathcal{I}(\vartheta) = \begin{pmatrix} \frac{1}{2\gamma^2} & \mathbf{0} \\ \hline \mathbf{0} & I(\vartheta) \end{pmatrix}, \quad (5)$$

(H1): Assume that $b(.), \sigma(.) \in C^2$ bounded; $\sigma(.) \geq \sigma_0 > 0$.

(H2) $V_i(T)$ positive definite a.s..

Theorem 1

Assume (H1)-(H2)and $I(\vartheta)$ invertible. Then if $N, n \to \infty$ and $N/n \to 0$, there exists a solution $\tilde{\vartheta}_{N,n}$ with probability tending to 1 which is consistent and such that.

$$D_{N,n}^{-1}(\tilde{\vartheta}_{N,n}-\vartheta)\to_{\mathcal{D}}\mathcal{N}_q(0,\mathcal{I}^{-1}(\vartheta)) \text{ under } \mathbb{P}_{\vartheta_0}.$$

 $I(\vartheta)$: explicit covariance matrix (detailed next slide).

Study of estimators (2)

Set
$$R_i(T; \mathbf{\Omega}) = V_i(T)^{-1} + \mathbf{\Omega}$$
;
 $B_i(T; \mathbf{\Omega}) = R_i^{-1}(T; \mathbf{\Omega})$
 $A_i(T; \boldsymbol{\mu}, \mathbf{\Omega}) = B_i(T; \mathbf{\Omega})(V_i(T)^{-1}U_i(T) - \boldsymbol{\mu})$.
 $I(\theta)$: explicit expression depending on A_i , R_i .

$$I(\theta) = \left(\begin{array}{cc} \gamma \mathbb{E}_{\theta} B_1(T; \Omega) & \gamma \mathbb{E}_{\theta} A_1(T; \mu, \Omega)' \ B_1(T; \Omega) \\ \gamma \mathbb{E}_{\theta} B_1(T; \Omega) A_1(T; \mu, \Omega) & \mathbb{E}_{\theta} \left(\gamma A_1(T; \mu, \Omega) A_1(T; \mu, \Omega)' - \frac{1}{2} B_1(T; \Omega) \right) \end{array} \right).$$

Delattre et al. (2013) : $I(\vartheta)$ covariance matrix of

$$\begin{pmatrix} \gamma A_1(T; \mu, \Omega) \\ \frac{1}{2} (\gamma A_1(T; \mu, \Omega) A_1(T; \mu, \Omega)' - B_1(T; \Omega) \end{pmatrix}$$

Comments

- Theorem holds if Ω singular: Possible to include mixed effects in the drift coefficient.
- Fixed and random effects in the drift: Same rates of convergence.
- **3** Possible to estimate γ from one trajectory. (by $n/S_{i,n}$) (large bias).
- No loss of information from the discrete observations: Continuous observations $(X_i(t), i=1,\ldots N)$ (γ known, d=1): Delattre et al.(2013): M.L.E $\hat{\theta}_{N,n}$ strongly consistent and same asymptotic variance for $\hat{\theta}_{N,n}$ and $\tilde{\theta}_{N,n}$.
- **Solution** Loss of efficiency w.r.t. direct observations of $\Phi_i \sim \mathcal{N}_2(\mu, \gamma^{-1}\omega^2)$: Fisher information $J_0(\mu, \omega^2)$.

Example of Brownian motion with drift

$$dX_i(t) = \Phi_i dt + \gamma^{-1/2} dW_i(t); \ \ X_i(0) = 0.$$

$$I(\theta) = \begin{pmatrix} \frac{\gamma}{\frac{1}{T} + \omega^2} & 0 \\ 0 & \frac{1}{2(\frac{1}{\pi} + \omega^2)^2} \end{pmatrix} \text{to compare with } J_0(\mu, \omega^2) = \begin{pmatrix} \frac{\gamma}{\omega^2} & 0 \\ 0 & \frac{1}{2\omega^4} \end{pmatrix}.$$

15 / 29

Assessment of the method on various examples

Ex. 1. Ornstein-. Uhlenbeck diffusion with one random effect.

$$dX_i(t) = \phi_i X_i(t) dt + \frac{1}{\sqrt{\gamma}} dW_i(t), X_i(0) = 0, \ \phi_i \underset{i.i.d}{\sim} \mathcal{N}(\mu, \frac{\omega^2}{\gamma})$$

Ex. 2. Diffusion with bounded $b(.), \sigma(.)$.

$$dX_i(t) = \phi_i X_i(t)^2 / (1 + X_i(t)^2) dt + \frac{1}{\sqrt{\gamma}} dW_i(t), X_i(0) = 0, \ \phi_i \sim_{i,i,d} \mathcal{N}(\mu, \frac{\omega^2}{\gamma})$$

Ex. 3. O.U diffusion with one fixed and one random effects.

$$dX_i(t) = (\rho X_i(t) + \phi_i)dt + \frac{1}{\sqrt{\gamma}}dW_i(t), X_i(0) = 0, \ \phi_i \underset{i.i.d}{\sim} \mathcal{N}(\mu, \frac{\omega^2}{\gamma})$$

Ex. 4. O-U diffusion with two independent random effects.

$$dX_{i}(t) = (\phi_{i1}X_{i}(t) + \phi_{i2})dt + \frac{1}{\sqrt{\gamma}}dW_{i}(t), X_{i}(0) = 0 ;$$

$$\phi_{i1} \underset{i.i.d}{\sim} \mathcal{N}(\mu_1, \frac{\omega_1^2}{\gamma}) , \ \phi_{i2} \underset{i.i.d}{\sim} \mathcal{N}(\mu_2, \frac{\omega_2^2}{\gamma})$$

Details on the simulations

- **①** Choice of SDEME model : Diffusion; random effects ; sampling Δ ; nb of obs. n ($T = n\Delta$); nb of paths N
- **2** Each scenario: generation of 100 data sets \Rightarrow Empirical mean and standard deviations in the tables.
- **②** Each data set: (1) draw the random effects; (2) Diffusion process path: either exact or obtained with a Euler scheme with $\delta=0.001$
- Comparison with direct observations of the random effects .

Ornstein-Uhlenbeck diffusion with one random effect

$$N = 50 \qquad N = 1000 \qquad n = 1000 \qquad n = 500 \qquad n = 1000 \qquad n = 500 \qquad n = 1000 \qquad n$$

Table: Example 1. Empirical mean and standard deviation (in brackets) of the parameter estimates from 100 datasets for different values of N and n. Estimates based on the ϕ_i 's (ϕ) and estimates based on the SDE (X) are given.

$$dX_i(t) = \phi_i X_i(t) dt + rac{1}{\sqrt{\gamma}} dW_i(t), X_i(0) = 0 \;,\; \phi_i \sim \mathcal{N}(\mu, rac{\omega^2}{\gamma})$$

$$dX_i(t) = (\rho X_i(t) + \phi_i)dt + \frac{1}{\sqrt{\gamma}}dW_i(t), \phi_i \sim_{i.i.d} \mathcal{N}(\mu, \frac{\omega^2}{\gamma})$$

1.00 (0.04) 1.00 (0.05)

1.00 (0.22)

1.00 (0.21)

$$(\mu_0 = 1, \omega_0^2 = 0.4, \gamma_0 = 4, \rho_0 = -0.1)$$

1.00 (0.03)

1.00 (0.15)

1.00 (0.03)

0.99(0.14)

$$dX_i(t) = (\phi_{i1}X_i(t) + \phi_{i2})dt + \frac{1}{\sqrt{\gamma}}dW_i(t)$$

N = 50

$$(\mu_{1,0} = -0.1, \mu_{2,0} = 1, \omega_{1,0}^2 = 0.04, \omega_{2,0}^2 = 0.4, \gamma_0 = 4)$$

N = 100

Results for random effects in the drift coefficient

- RESULTS: satisfactory overall.
- Three designs : (N, n) = (50, 500); (100, 500); (100, 1000):
- Model parameters estimated with very little bias.
- Increasing N and n reduces the bias and the standard deviation.
- N = 100, n = 100 :estimations similar to those based direct observation of the random effects.
- Good results in Ex. 3 with both random and fixed effects in the drift.
- Gives evidence of the validity of our method for singular covariance matrix Ω of the random effects.

Case (2): Random effect in the diffusion coefficient

- $\Phi_i = \varphi$ unknown; $\Psi_i = \Gamma_i^{-1/2}$ with $\Gamma_i \sim G(a, \lambda)$
- Parameter: $\tau = (\lambda, a, \varphi)$
- Conditionally on $\Phi_i = \varphi, \Psi_i = \psi$, approximate likelihood for $(X_{i,n})$:

$$\mathcal{L}_{n}(X_{i,n},\gamma,\varphi) = \gamma^{n/2} \exp\left[-\frac{\gamma}{2}(S_{i,n} + \varphi' V_{i,n}\varphi - 2\varphi' U_{i,n})\right].$$

• Integrating w.r.t the Γ_i :

$$\widetilde{\Lambda}_n(X_i,\tau) = \frac{\lambda^a \Gamma(a + (n/2))}{\Gamma(a)(\lambda + \frac{1}{2}(S_i - 2\varphi' U_i + \varphi' V_i \varphi))^{a + (n/2)}},$$
 (6)

• For the N paths approximate loglikelihood,

$$\widetilde{\ell}_{N,n}(\tau) = \sum_{i=1}^{N} \log \widetilde{\Lambda}_n(X_i, \tau).$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト . 差 . め Q (C)

Recap of the terms in the likelihood

$$S_{i,n} = S_i = \frac{1}{\Delta} \sum_{j=1}^n \frac{(X_i(t_j) - X_i(t_{j-1}))^2}{\sigma^2(X_i(t_{j-1}))},$$

$$V_{i,n} = V_i = \left(\sum_{j=1}^n \Delta \frac{b_k(X_i(t_{j-1}))b_\ell(X_i(t_{j-1}))}{\sigma^2(X_i(t_{j-1}))}\right)_{1 \le k, \ell \le d},$$

$$U_{i,n} = U_i = \left(\sum_{j=1}^n \frac{b_k(X_i(t_{j-1}))(X_i(t_j) - X_i(t_{j-1}))}{\sigma^2(X_i(t_{j-1}))}\right)_{1 \le k \le d},$$

As
$$n \to \infty$$
, $S_{i,n}/n \to \Gamma_i^{-1}$ in probability; $V_{i,n} \to \left(\int_0^T \frac{b_k(X_i(s))b_\ell(X_i(s))}{\sigma^2(X_i(s))}\right)_{1 \le k,\ell \le d} = V_i(T) \text{ a.s. };$ $U_{i,n} \to \left(\int_0^T \frac{b_k(X_i(s))}{\sigma^2(X_i(s))} \, dX_i(s)\right)_{1 \le k \le d} = U_i(T) \text{ in probability.}$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Estimating au

$$\widetilde{G}_{N,n}(\tau) = \left(\frac{\partial}{\partial \lambda} \widetilde{\ell}_{N,n}(\tau) \right) \left(\frac{\partial}{\partial a} \widetilde{\ell}_{N,n}(\tau) \right) \left(\frac{\partial}{\partial \varphi} \widetilde{\ell}_{N,n}(\tau)\right)'. \tag{7}$$

Estimators $\widetilde{\tau}_{N,n}$ such that $G_{N,n}(\widetilde{\tau}_{N,n}) = 0$. Central random variable approximating Γ_i^{-1} :

$$\zeta_i(\tau) = \zeta_i = \frac{\lambda + \frac{1}{2} \left(S_i - 2\varphi U_i + \varphi^2 V_i \right)}{a + (n/2)}.$$
 (8)

Three estimating equations $(\psi(z) = \Gamma'(z)/\Gamma(z))$:

$$\frac{\partial}{\partial \lambda} \widetilde{\ell}_{N,n}(\tau) = \sum_{i=1}^{N} \left(\frac{a}{\lambda} - \zeta_{i}^{-1} \right), \frac{\partial}{\partial \varphi} \widetilde{\ell}_{N,n}(\tau) = \sum_{i=1}^{N} \zeta_{i}^{-1} (U_{i} - \varphi V_{i}).$$

$$\frac{\partial}{\partial a} \widetilde{\ell}_{N,n}(\tau) = \sum_{i=1}^{N} (\log \lambda - \psi(a) - \log \zeta_{i}) + N(\psi(a + (n/2)) - \log(a + (n/2))),$$

Need to control the moments of $\zeta_i(\tau)$ and $\zeta_i^{-1}(\tau)$

Convergence theorem

Theorem 2

Assume (H1)-(H2). If a>5 and N,n tend to infinity with $N/n\to 0$. Then, there exists a solution $\widetilde{\tau}_{N,n}$ to the estimating equations with probability tending to 1, consistent and such that $\sqrt{N}(\widetilde{\tau}_{N,n}-\tau)$ converges in distribution under \mathbb{P}_{τ} to $\mathcal{N}_3(0,\mathcal{V}^{-1}(\tau))$ where $I_0(\lambda,a)$ is defined and

$$\mathcal{V}(\tau) = \left(\begin{array}{c|c} I_0(\lambda, a) & \mathbf{0} \\ \hline \mathbf{0} & \mathbb{E}_{\tau} \left(\Gamma \int_0^T \frac{b^2(X(s))}{\sigma^2(X(s))} ds \right) \end{array}\right).$$

For the first two components of $\widetilde{\tau}_{N,n}$, the constraint $N/n^2 \to 0$ is enough.

 $I_0(\lambda, a)$: Fisher information of direct observations of Γ_i

$$I_0(\lambda, a) = \begin{pmatrix} \frac{a}{\lambda^2} & -\frac{1}{\lambda} \\ -\frac{1}{\lambda} & \Psi'(a) \end{pmatrix}$$

4□ > 4□ > 4≡ > 4≡ > 9<</p>

Comments

- Estimator of (λ, a) based on the indirect obs. (X_i) asympt. equivalent to the MLE of (λ, a) based on the Γ_i 's if $N/n^2 \to 0$.
- Contrary to Case (1), same rates of convergence for (λ, a) and φ .
- Estimation of fixed φ, γ for N paths: $dX_i(t) = \varphi b(X_i(t)) dt + \gamma^{-1/2} \sigma(X_i(t)) dW_i(t), X_i(0) = x, i = 1, \dots, N.$

$$\hat{\varphi}_{N,n} = \frac{\sum_{i=1}^{N} U_i}{\sum_{i=1}^{N} V_i}, \quad \hat{\gamma}_{N,n} = \frac{nN}{\sum_{i=1}^{N} S_i + \hat{\varphi}_{N,n}^2 V_i - 2\hat{\varphi}_{N,n} U_i}.$$

- $\sqrt{Nn}(\hat{\gamma}_{N,n}-\gamma) \to \mathcal{N}(0,2\gamma^2)$.
- If $N/n \to 0$, $\hat{\varphi}_{N,n} \sqrt{N}(\hat{\varphi}_{N,n} \varphi)$ converge in distribution to $\mathcal{N}(0, (\gamma \mathbb{E} V(T))^{-1})$.
- Result obtained for $\tilde{\varphi}_{N,n}$ in Theorem 2 not surprising.

Assessment of the method on various examples

Several models are simulated:

Ex. 5. Brownian motion with drift and random diffusion coefficient

$$dX_i(t) = \rho dt + \Gamma_i^{-1/2} dW_i(t), X_i(0) = 0, \ \Gamma_i \underset{i.i.d}{\sim} G(a, \lambda)$$

Ex. 6. Ornstein-Uhlenbeck with random diffusion coef.

$$dX_i(t) = \rho X_i(t)dt + \Gamma_i^{-1/2}dW_i(t), X_i(0) = x , \ \Gamma_i \underset{i.i.d}{\sim} G(a,\lambda)$$

Ex. 7. Diffusion with varying $\sigma(.)$

$$dX_i(t) = \rho X_i(t)dt + \Gamma_i^{-1/2} \sqrt{1 + X_i(t)^2} dW_i(t), X_i(0) = x , \ \Gamma_i \underset{i.i.d}{\sim} G(a, \lambda)$$

Results given in Tables 5-7.

Estimations based on the processes and estimations based on direct observations of the random effects are compared

$$dX_i(t) = \rho dt + \Gamma_i^{-1/2} dW_i(t)$$

			N = 50			N = 100				
		n = 500	n = 1000	n = 10000	n = 500	n = 1000	n = 10000			
		$(a_0 = 8, \lambda_0 = 2, \rho_0)$								
X	\tilde{a}	6.03	7.03	8.32	6.05	6.88	8.14			
		(0.73 - 1.57)	(0.91 - 1.57)	(1.80 - 1.57)	(0.44 - 1.11)	(0.73 - 1.11)	(1.11 - 1.11)			
	$\tilde{\lambda}$	1.50	1.76	2.08	1.51	1.71	2.04			
		(0.20 - 0.40)	(0.24 - 0.40)	(0.44 - 0.40)	(0.12 - 0.29)	(0.19 - 0.29)	(0.30 - 0.29)			
	$\tilde{\rho}$	-0.99	-1.00	-1.00	-1.00	-1.00	-1.00			
		(0.03 - 0.03)	(0.02 - 0.02)	(0.01 - 0.01)	(0.02 - 0.02)	(0.02 - 0.02)	(0.01 - 0.01)			
ψ	â	8.23	8.57	8.42	8.38	8.32	8.27			
		(1.77 - 1.57)	(1.76 - 1.57)	(2.15 - 1.57)	(1.16 - 1.11)	(1.35 - 1.11)	(1.31 - 1.11)			
	$\hat{\lambda}$	2.06	2.14	2.10	2.09	2.07	2.07			
		(0.46 - 0.40)	(0.45 - 0.40)	(0.53 - 0.40)	(0.30 - 0.29)	(0.34 - 0.29)	(0.34 - 0.29)			

Table 1: Example 5. Empirical mean and, in brackets, (empirical standard deviation - theoretical standard deviation) of the parameter estimates from 100 datasets for different values of N and n. Estimates based on the ψ_i 's (ψ) and estimates based on the SDE (X) are given.

$$dX_i(t) = \rho X_i(t) dt + \Gamma_i^{-1/2} dW_i(t), \ \Gamma_i \underset{i.i.d}{\sim} G(a, \lambda)$$

		N = 50			N = 100				
		n = 500	n = 1000	n = 10000	n = 500	n = 1000	n = 10000		
	$(a_0 = 8, \lambda_0 = 2, \rho_0)$								
X	\tilde{a}	6.18 (0.66)	6.79(0.99)	8.20 (1.61)	6.02(0.50)	6.70(0.63)	7.91(1.04)		
	$\tilde{\lambda}$	1.52(0.17)	1.69(0.27)	2.03(0.42)	1.49(0.14)	1.66(0.16)	1.96(0.25)		
	$\tilde{\rho}$	-1.00 (0.10)	-1.01 (0.06)	-0.99 (0.02)	-1.00 (0.06)	-1.00 (0.04)	-1.00 (0.01)		
ψ	\hat{a}	8.71 (1.80)	8.12 (1.94)	8.20 (1.61)	8.16 (1.30)	8.10 (1.19)	8.10 (1.16)		
	$\hat{\lambda}$	2.16(0.45)	2.04(0.51)	2.07(0.47)	2.04(0.33)	2.02(0.30)	2.03(0.29)		

Table 1: Example 6. Empirical mean and standard deviation (in brackets) of the parameter estimates from 100 datasets for different values of N and n. Estimates based on the ψ_i 's (ψ) and estimates based on the SDE (X) are given.