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Magnetic potential and magnetic field

@ Magnetic potential : X; € R? and a; € R,
X; _ Qi
Aa,- = TEQ

with polar coordinates (r, 8) referred to X;.

@ Magnetic field :
B := Curl Ag' = 01A2 — LA

@ For a closed path 7 going once around X; in the clockwise direction,

1

27 AX dx = a;.

In R2\ {X;}, B = 0.
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Aharonov-Bohm operators

o X=(Xy,...,Xn) and @ = (a1, ...,apn);

o AX =Y, A%,
@ Q open, bounded and piecewise C* and Qx := Q\ {X1,..., Xn};

Hy == (iV + AX)*:
Eigenvalue problem :

Hxu = JAuin Qx;
u = 0on0%Q;

Sequence of eigenvalues : (Ax(X, a)).
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Motivation : minimal partitions

The domain Q and an integer k > 1 are given. We consider D = (Dx, ..., Dy)
with D; N Dj = (). We try to solve the following optimization problem :

24(Q) = inf{ max Al(D;)}.

D |1<i<k

Minimal partitions for this problem exist and are very regular. In particular, if D is
minimal
)\1(D1) == )\1(Dk).

(Bucur—Buttazzo—Henrot 1998, Conti—Terracini—Verzini 2005, Caffarelli-Lin 2007,
Helffer—Hoffmann-Ostenhof-Terracini 2009)

If a minimal partition can be colored with only two colors, it is a nodal partition
(for the Dirichlet Laplacian). This occurs only for an eigenfunction associated with
A () (Courant-sharp situation). Conversly, if an eigenfunction associated with
Ak(€) has k nodal domains, they realize a minimal partition.
(Helffer—Hoffmann-Ostenhof-Terracini, 2009)
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Example : the disk

OC
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Theorem (Helffer— Hoffmann-Ostenhof, 2013)

Let us assume that D = {Ds,..., D} is a minimal k-partition of Q. There exist a
finite number of points X1, ..., Xy in R? such that D is the nodal partition
associated with an eigenfunction u of the operator Hx, with X = (X; ..., Xy) and

a=(1/2,...,1/2).
Furthermore, the eigenfunction u is associated with the eigenvalue A\, (X, ).

To build the magnetic potential, we have to add poles :

@ at each singular point of the boundary of D where an odd number of curves
meet ;

@ in each hole with an odd number of curves touching its boundary.
Applications :
o Sk(Q) = ichEO ian:(Xl.,.”,XN) Lk (Qx)

@ numerical search for minimal partitions
(Bonnaillie-Noél-Helffer—Hoffmann-Ostenhof-Vial) ;

@ the number of odd multiple points tends to +o00 as k — 400 (Helffer, 2015).
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Quadratic form and Friedrichs extension

For u € C°(Qx), gx(u) == [ |(iV + AX) u’2 dx.
Qx is the completion of C2°(Q2x) under the norm associated with gx.

According to Friedrichs extension theorem, there is a unique positive
self-adjoint extension of (iV + Aé)2 (differential operator acting on
C2°(Qx)) with domain contained in Qx.

This extension is called the Aharonov-Bohm operator and is denoted by Hx.
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Gauge invariance

@ A gauge transformation on Qx acts on pairs vector field-function as
(A, u) — (A*,u*), with

A* A+ Vo,
ut = e'%u,

where ¢ is a real-valued function on Qx (possibly multivalued).

@ A gauge transformation does not change the magnetic field B = Curl A, nor
the probability distribution |u|?.

e If A and A* are two gauge equivalent magnetic potentials in C>°(Qx,R?),
the operators Hp and Ha« are unitarily equivalent.

@ The potential A and A’ are gauge equivalent, if and only if,

1

E v

(A'(x) = A(x)) dx

is an integer for any loop ~ contained in Qx . (Helffer—Hoffmann-Ostenhof,
M.&T.—Owen, 1999)
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Hardy inequality

Proposition (Laptev—Weidl, 1998, Alziary—Fleckinger-Pellé—Takac,
2003)

If a; € Z, p > 0,and u e C®(Q\ {X;}),
/ ﬁdx<c |(iV+AXi) U|2 dx
be—xil<p X = Xil2 T Jiexii< “ 7
where
I
" infaez [0 — aif?

Corollary
If X; # X; and o; ¢ 7, then Qx C HE(Q).
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Proof

Use polar coordinates centered at X;

1
1(iV + A% uf® = |9,u® + 100y +a) uf?.

. P 27
/ |(iV+A%) u|2 dxdy > / rdr/ d—f (i + @) ul®.
B(X:,p) ! Jo Jo F
We write

u(r,0) = Z cn(r)e™ then dpu(r, ) = Z —inca(r)e™.

nez neZ

According to Parseval’s Formula ,

|ul? / g
dxdy = 27 cn(r rdr
/B(x,-,p) re 0o 2|

nez

, 2 dg
. 2
/ rdr/ — [(i09 + o) ul :27r/ E In — af?|ca(r)]?
0 0 r neZ
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Characterization of the form domain

If u € [2(Q), (iV + AX) u € D'(Qx, C2). We define

Hx(Q) :={ue 3(Q) : (iV+AX)ue X(Q)}.

Proposition

i. Hx(Q) C L2(Q) compactly;

ii. there is a trace operator o : Hx(Q) — L2(09) ;
iii. u€ Qx if, and only if, u € Hx(Q) and you = 0.

Corentin Léna (UNITO) Eigenvalues of AB operators 22 May 2015 14 / 35



Continuity and consequences

The function X — A\ (X, ) is continuous.

Theorem J

Applications :
@ Me(X,a) = M(Xo, ) = \k(Q);

«

0 Me(X1, X2,1/2,1/2) — Me(Xo, 1) = M(Q).
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Non-concentration inequality

Proposition
There exists C such that for all xo € Q and r > 0,

[l 2800,y < CrlIVullZziqy for all u € Hy(Q)

and
62280,y < Cr (V7 + AX) ula(qy for all u € Qx

Proof : Sobolev injection, diamagnetic inequality.
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Main Lemma

Let X" — X € R?N (X! — X; for all 1 < i < N).

Lemma
If
@ Hxnu" = \"u" with u™ € Qxn,
C ||U"||L2(Q) =1L
o\ — A,
then there exist a subsequence (A7, u") and u € Qx such that

e u" — u strongly in L2(Q) and almost everywhere in €,
@ Hyu= \u.
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Proof of the lemma |

We define

and
Qm i =Q\ Sm; .

Then (uy, ) € Hx(S2m) for n large enough, bounded.
By compact injection, there exists a subsequence converging
o weakly in Hx(Qm);
e strongly in L%(Q,,);
@ almost everywhere in Q,,.
By diagonal extraction, we find a subsequence (u") converging
@ almost everywhere on Q;
o weakly in Hx(Q,,) and strongly in L2(Q,,) for all m.

We define u(x) := limp_, oo u"(x) almost everywhere.
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Proof of the lemma Il

/ e |? < / |u"|* = 1 therefore u € [%(Q).
Jm JQ

/ (17 + AX) u | < 2/
Qrm Qm

and therefore

n, 2 n, 2
(iV—&—A’é”)u‘ +/Q ‘A’;"—Aél u™|?

m

/ |(iV+ AY) u|2 < sup A9 for all m.
Qe

q>1

Therefore (iV + AX) u (which is in D’ (Qx,C?)) is in L?(2). We can show that
You = 0, therefore u € Qx. We have easily Hxu = Au. It remains to show that
u # 0. By the non-concentration inequality,

/ |u""|2§%/|(iV+A§) u""‘Qéﬂsup)\q.
Q

Sm m g>1

From this we deduce that u" — u strongly in L?(R), in particular ||ul|,2(q) = 1.
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Proof of the result

Lemma

limsup A (X", @) < M\e(X, @).

n—-+oo
Proof : min-max formula
) iV — AX 2
M(X @) = inf max 1= 20‘)UH
P19k €CE° () uEvect(pa,..., k) [ ull

Let us consider the first eigenvalue. The first lemma implies that

liminf A1 (X", &) > A (X, ).

n——+oo

The second lemma then give

lim A (X", a) = A (X, ).

n—-+4o00

We prove the general theorem by induction.
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Statement of the result

We assume that X is such that X; # X; and X; ¢ 9Q. We write

t=(ti,to,...,toy_1, tan) € RZN

and
X(t) = (Xl -+ (l’l, tg), o XN+ (t2N717 th)).

Theorem

If M\e(X, ) is simple , the function t — \(X(t), ) is analytic in a neighborhood
of 0.

(Bonnaillie-Noél-Noris—Nys—Terracini, 2013)
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Analytic family of forms

We define V; a vector field with value :
o (tai—1,t2i) at X;;

@ zero outside of a small neighborhood of the X;'s.

We define :
o & x> x+ V(x);
U: CP(2x) — C (%))
° L2Q) - L2(Q)

u — ,/J(bel)uo(b[l;
o ri(u) == gx) (Uru) for all u € C(Qx).
Direct estimates shows that there exist 0 < a < 1 and b > 0 such that

r(u) — ax(u)] < agx(u) + bl ul|Z2(q).

According to Kato's theory on analytic families of quadratic forms, we have the
conclusion of the theorem.
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© Half-integer fluxes
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Conjugation operator (Helffer—Hoffmann-Ostenhof, M.&T.~Owen, 1999)

@ We assume that X is such that X; # X; and X; ¢ 09, and furthermore that
aj € %Jerorall 1<i<N.

@ In that case, we can identify a class of functions for which the notion of
nodal set is meaningful.

@ We have 2¢a; € Z for all 1 < j < N, therefore there exists ¢ such that
Vi =2AX.

e Unitary antilinear operator : Kx : u s e'?T.

o HXOKX:KXOHX-

@ Definition of a Kx-real function : Kxu = u.
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Geometric interpretation : covering (Helffer—Hoffmann-Ostenhof,
M.&T.—Owen, 1999)

/)

Corentin Léna (UNITO) Eigenvalues of AB operators 22 May 2015 27 / 35



Geometric interpretation : antisymmetric functions
(Helffer—Hoffmann-Ostenhof, M.&T.—Owen, 1999)

v 2(Q) - 2(Q)

u =  uoo
o S := ker(X — Id) (symmetric functions) and A := ker(X + Id)
(antisymmetric functions).

° L2(§>:S@A

o —A Laplace-Beltrami operator on Q, ~AoY=Yo (—3)

@ The eigenvalues of —3|3 are the eigenvalues of the Dirichlet Laplacian, the
eigenvalues of —A‘A are the eigenvalues of Hx with flux 1/2.

@ More precisely, the mapping u — e~"#/2 give a correspondence between _
Kx-real eigenfunctions of Hx and real antisymmetric eigenfunctions of —A.
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Nodal set

Theorem (Alziary— Fleckinger-Pellé-Takag, 2003)

If uis a Kx-real eigenfunction of Hx and X; a pole, there exist me N, f and g
C-functions such that

o f(X;) #0,
o u(x) =|x — Xj|"3f(x),
o (iV+AX(x)) u(x) = |x — X;|"2g(x),

@ 2m + 1 is the number of nodal lines meeting at X;.
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Critical points

Theorem

Assume that A\((X, ) is simple and has a Kx-real eigenfunction with at least 3
nodal lines meeting at X;. Let v € R?,

X(t) = (Xy,..., Xi + tv,..., Xn) and Ae(t) := A(X(2), ).

Then
(0) = 0.

(Noris—Terracini, 2009, Bonnaillie-Noé&l-Noris—Nys—Terracini, 2013)
To prove this, we construct a family of diffeomorphisms ¢, ; that depends on the
additional parameter h > 0. Using the Feynman-Hellmann formula, we compute
A} (0) (which does not depend on h) as an integral /(h) depending on h (integral
of a function supported on a disk of size h centered at X;). We then use the local
estimates on u, with m > 1, to show that lim,_,o /(h) =0.
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Theorem

Let us assume that Q) is a connected open set, k a positive integer, and D a
minimal k-partition of Q. We denote by X = (Xi, ..., Xy) and

a=(1/2 ..., 1/2) poles and fluxes as defined in the magnetic characterization.
Let us additionally assume that the eigenvalue A\, (X, &) is simple. The point X is
then critical for the function Y — M\ (Y, «), which is defined and analytic in a
neighborhood of X .
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Proof of the theorem

We recall that Y — A (Y, @) is analytic in a neighborhood of X, and that,
according to the magnetic characterization, there exists a Kx-real eigenfunction u
whose nodal partition is D.

We now show that the gradient of Y — Ax(Y, a) with respect to each variable X;
is zero at X.

o If X; e R?\ Q, we have A\((Y,a) = \(X, ) for Y = (Y1, ..., Yn) such
that Y; = X; for j # i and Y; is in the same connected component of R?\ Q
as X; (we use a gauge transformation).

o If X; € Q, at least three nodal lines of u meet at X;. Therefore, according to
our results, X; is a critical point for the function

Y — )\k((Xl-, A ,X,'_l, Y./Xi+1’ e ,XN),a).
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Example : sector with a pole on the axis (Bonnaillie-Nogl)

Figure : Aharonov-Bohm problem with symmetry.
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Generalization : symmetric domains
(Bonnaillie-Noél-Helffer—Hoffmann-Ostenhof, 2009)

We assume that € is simply connected and that the line {x, = 0} is an axis of
symmetry .

We consider an Aharonov-Bohm operator with one pole X = (x,0) € {x, = 0}
and o =1/2.

We note QT =QN{x >0}, " =90N{x >0}, and QN {x =0} = (0, M).
We now consider two eigenvalue problems with mixed boundary conditions.

—Au = NPN(x)uin QF, —Au = MP(x)uin QF,
u = 0Oon [0, X]UTT, Ohu = 0on (0,X),
Oau = 0on (X, M); u = Oon[X,MuUTT.

The spectrum of —Afm is the reunion (counted with multiplicities) of the

sequences (APV(x))k>1 and (AMP(x))k>1. Real eigenfunctions of —A correspond
to Kx-real eignfunctions of fAf/T
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Search for a 3-partition (Bonnaillie-Nogl)

Figure : Nodal set of a third
eigenfunction of an Aharonov-Bohm
operator.

Figure : Eigenvalue X\3(X,1/2) as a
function of x.

There is a point of inflexion for x ~ 0.64, that corresponds to three nodal lines
meeting at X = (x,0).
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