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Model I

Let Θ ⊂ Rd, Θ-compact. We aim at estimating the unknown drift
parameter θ ∈ Θ of a jump diffusion process Xθ given by

Xθ
t = Xθ

0 +

∫ t

0
b(θ,Xθ

s ) ds+

∫ t

0
σ(Xθ

s ) dWs +

∫ t

0
γ(Xθ

s−) dLs

where t ∈ R+, W = (Wt)t≥0 is a one-dimensional Brownian motion
and L a pure jump Lévy process with Lévy measure ν, such that

∫
{0<|z|≤1}

|z|ν(dz) <∞.



Sampling scheme

High frequency data with an observation time going to infinity:

0 ≤ t0 ≤ . . . ≤ tn Xθ
t0 , . . . , X

θ
tn

such that

∆n := max{ti − ti−1 : 1 ≤ i ≤ n} → 0, as n→∞;

tn →∞ and tn = O(n∆n).

Goals:
I efficient estimation of the drift parameter,
I minimal conditions on the sampling step ∆n.



Literature about the high frequency inference for diffusion
with jumps

I [Masuda (13)]: Gaussian quasi-likelihood estimators
I [Shimizu and Yoshida (06)]: contrast-type estimation function,

jumps of compound Poisson type.
I [Shimizu (06)]: include more general driving Lévy processes.
I [Tran(14)]: LAN property for drift and diffusion parameters via

Malliavin calculus.
I [Mai(2014)]: drift estimation for Lévy-driven

Ornstein-Uhlenbeck.

except [Mai(2014)], joint estimation of the drift, diffusion and jump
part parameters is considered;
under condition which is at best

n∆2
n → 0.



I The estimation of the volatility is feasible on a compact
interval,

I the estimation of the drift and the jump law requires a growing
time window.

I Due to the Poisson structure of the jump part the estimation
of the jump parameter can be well separated from those of the
drift and the diffusion.

We focus on the estimation of the drift parameter only; and
construct a consistent, asymptotically normal and efficient
estimator, under conditions

n∆3−ε
n → 0.

Remark: the condition n∆3
n → 0 was found by

[Florens-Zimrou(89)] and [Yoshida(92)] in the case of drift
estimation for continuous diffusions.
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The equation of the model can be rewritten as

Xθ
t = Xθ

0+

∫ t

0
b(θ,Xθ

s ) ds+

∫ t

0
σ(Xθ

s ) dWs+

∫ t

0

∫
R
γ(Xθ

s−)zµ(ds, dz)

where µ is the Poisson random measure on [0,∞)× R,

Lt =

∫ t

0

∫
R
zµ(ds, dz)

is the Lévy process with Lévy-Khintchine triplet (0, 0, ν) such that∫
{0<|z|≤1}

|z|dν(z) <∞.

Xθ
0 , W and L are independent.



Assumption ( Existence)

Assumption ( Irreducibility)

Assumption ( Non-degeneracy)
There exists some α > 0, such that σ2(x) ≥ α for all x ∈ R.

Assumption ( Identifiability)

Assumption ( Hölder-continuity of the drift and its 1,2
derivatives with respect to θ.)

Assumption ( Subpolynomial growth of all Hölder constants)



Assumption ( Jumps)
The jump coefficient γ is bounded from below;
If ν(R) =∞,

∫
0<|z|≤1 |z|ν(dz) <∞, the Lévy measure ν is

absolutely continuous with respect to the Lebesgue measure, and γ
is upper bounded.

Assumption ( Ergodicity)

(i) For all q > 0,
∫
|z|>1 |z|

qν(dz) <∞.

(ii) For all θ ∈ Θ there exists a constant C > 0 such that
xb(θ, x) ≤ −C|x|2, if |x| → ∞.

(iii) |γ(x)|/|x| → 0 as |x| → ∞.
(iv) |σ(x)|/|x| → 0 as |x| → ∞.
(v) ∀θ ∈ Θ, ∀q > 0 we have E|Xθ

0 |q <∞.

The last Assumption ensure the existence of unique invariant
distribution πθ, as well as the ergodicity of the process Xθ,
similarly to [Masuda(2007)].



Lemme
For all θ ∈ Θ, Xθ admits a unique invariant distribution πθ and the
ergodic theorem holds:
1. for every measurable function g : R→ R satisfying
πθ(g) <∞, we have a.s.

lim
t→∞

1

t

∫ t

0
g(Xθ

s )ds = πθ(g).

2. For all q > 0, πθ(|x|q) <∞.
3. For all q > 0, supt∈RE[|Xθ

t |q] <∞.
4. Moreover,

lim
t→∞

1

t

∫ t

0
E[|Xθ

s |q]ds = πθ(|x|q).
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Construction of the estimator

The likelihood function is given by

Lt(θ,X) =
dP θt
dP 0

t

(X) =

exp

(∫ t

0
σ(Xs)

−2b(θ,Xs) dX
c
s −

1

2

∫ t

0
σ(Xs)

−2b(θ,Xs)
2 ds

)
.

We define the log-likelihood function as

`t(θ) := lnLt(θ,X).

The problem is that Xc is unobserved !

Our aim is to approximate `t(θ) from discrete sample and thus
define some contrast.



Define the increment’s operator ∆n
i :

∆n
i X = Xti −Xti−1 , ∆n

i X
c = Xc

ti −X
c
ti−1

∆n
i Id = ti − ti−1.

Let ε ∈ (0, 1/2) and denote

vn = ∆1/2−ε
n , n ≥ 1.

`ntn(θ) =

n∑
i=1

b(θ,Xti−1)

σ(Xti−1)2
∆n
i X1{|∆n

i X|≤vn} −
1

2

n∑
i=1

b(θ,Xti−1)2

σ(Xti−1)2
∆n
i Id.

Finally, we define an estimator θ̂n of the true value θ? as

θ̂n ∈ argmax
θ∈Θ

`ntn(θ)

and in the sequel we call it the filtered MLE (FMLE).
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Main results

without further assumptions on n, ∆n and vn.

Théorème (Consistency)
The FMLE θ̂n is consistent in probability:

θ̂n
P−→ θ?, n→∞.



Define the asymptotic Fisher information by

I(θ) =

(∫
R

∂θib(θ, x)∂θjb(θ, x)

σ2(x)
πθ(dx)

)
1≤i,j≤d

. (1)

Assumption
For all θ ∈ Θ, I(θ) is non-degenerated.



Théorème (Asymptotic normality: finite activity :ν(R) <∞)

If n∆3−ε
n → 0,

√
n∆

1−ε/2
n

(∫
|z|≤2vn

ν(dz)
)1−ε/2

→ 0 and
√
n∆

1/2
n

∫
|z|<2vn

|z|ν(dz)→ 0 as n→∞, then

t1/2n (θ̂n − θ?)
L→ N(0, I−1(θ?)), n→∞,

Furthermore, the FMLE θ̂n is asymptotically efficient in the sense
of the Hàjek-Le Cam convolution theorem.

Remarque
If ν has a bounded Lebesgue density, all the conditions reduce to
n∆3−4ε

n → 0.



Théorème (Asymptotic normality: general case: ν(R) <=∞)
If n∆3−ε

n → 0,

√
n∆n

(∫
|z|≤3vn/γmin

|z|ν(dz)

)1−ε/2

→ 0

and
√
n∆3/2−2ε

n

(∫
|z|≥3vn/γmin

ν(dz)

)1−ε/2

→ 0

as n→∞, then

t1/2n (θ̂n − θ?)
L→ N(0, I−1(θ?)), n→∞,

Furthermore, the FMLE θ̂n is asymptotically efficient in the sense
of the Hàjek-Le Cam convolution theorem.
In the case where ν admits a bounded Lebesgue density, all the
conditions on the ∆n and n of the Theorem became n∆3−ε̃

n → 0
for some ε̃ > 0 .



Example (tempered stable jumps)
The Lévy measure in this case has an unbounded and
non-integrable density given by

ν(dz) = C|z|−(1+α)e−λ|z|dz

with λ > 0 and C > 0 satisfies the conditions of the previous
Theorem if 0 < α < 1.
The conditions on n, ∆n and ν can now be summarized as
n∆2−α−ε̃

n → 0 for some ε > 0. We observe that a higher
Blumenthal-Getoor index α requires a faster convergence ∆n to
zero. This is in line with the intuition that when the intensity of
small jumps increases (i.e. α increases) more and more frequent
observations are needed to have a sufficient performance of the
jump filter.
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Jump filtering

Proposition (jump filtering: finite activity)

(i) without any assumption on the way that ∆n → 0 as n→∞,

1

n∆n
sup
θ∈Θ

∣∣∣∣∣
∫ tn

0
f(θ,Xs) dX

c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X1|∆n

i X|≤vn

∣∣∣∣∣ P−→ 0;

(ii) if n∆3−ε
n → 0,

√
n∆

1−ε/2
n

(∫
|z|≤2vn

ν(dz)
)1−ε/2

→ 0 and
√
n∆

1/2
n

∫
|z|≤2vn

|z|ν(dz)→ 0 as n→∞, then for any θ ∈ Θ,

1√
n∆n

∣∣∣∣∣
∫ tn

0
f(θ,Xs) dX

c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X1|∆n

i X|≤vn

∣∣∣∣∣ P−→ 0.



The case of infinite activity is treated in the following proposition.

Proposition (jump filtering: infinite activity)
Suppose that L is of infinite activity and Assumptions on jumps
hold.
(i) Statement (i) of the previous Proposition holds;
(ii) if n∆3−ε

n → 0,

√
n∆n

(∫
|z|≤3vn/γmin

|z|ν(dz)

)1−ε/2

→ 0

and
√
n∆3/2−ε

n

(∫
|z|≥3vn/γmin

ν(dz)

)1−ε/2

→ 0

as n→∞, then for any θ ∈ Θ, the convergence (ii) of the
previous Proposition holds.



Lemme (Euler scheme)

(i) as n→∞,

sup
θ∈Θ

1

n∆n

∣∣∣∣∣
∫ tn

0
f(θ,Xs) dX

c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X

c

∣∣∣∣∣ P−→ 0;

(ii) if n∆3−ε
n → 0, then, as n→∞, ∀θ ∈ Θ

1√
n∆n

∣∣∣∣∣
∫ tn

0
f(θ,Xs) dX

c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X

c

∣∣∣∣∣ P−→ 0.
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Cox-Ingersoll-Ross (CIR) processes with jumps

Let (Nt)t≥0 be a Poisson process with intensity λ = 1 and (Zi)i∈N
are i.i.d. exponential with rate η, independents of N ,

Lt =

Nt∑
i=1

Zi, for t ≥ 0.

CIR process (Xt) is defined by

Xt = (θ1 − θ2Xt) dt+ σ
√
Xt dWt + dLt,

where θ1, θ2, σ > 0,



FMLE is given as the solution θ̂CIR
n = (θ̂CIR

1,n , θ̂
CIR
2,n ) to the following

set of linear equations in the parameters θ1 and θ2.

θ1 =
θ2tn −

∑n
i=1X

−1
ti

∆n
i X1|∆n

i X|≤vn
In(X,−1)

,

θ2 =
θ1tn −

∑n
i=1 ∆n

i X1|∆n
i X|≤vn

In(X, 1)
,

where

In(X, p) :=

n∑
i=1

Xp
ti

∆n
i Id for p ∈ R.

We obtain for θ̂CIR
2,n the FMLE

θ̂CIR
2,n =

(∑n
i=1X

−1
ti

∆n
i X1|∆n

i X|≤vn − In(X,−1)
∑n

i=1 ∆n
i X1|∆n

i X|≤vn

)
(In(X,−1)In(X, 1)− tn)

.



σ = 0.25 σ = 0.5
tn n mean std dev jumps filt mean std dev jumps filt
5 200 1.7 0.22 6.8 1.7 0.28 8.0

400 1.9 0.12 5.1 1.8 0.2 6.6
800 2.0 0.09 4.5 1.9 0.17 5.6

10 500 1.7 0.15 12 1.7 0.21 15
1000 1.9 0.08 9.7 1.8 0.14 12
1500 1.9 0.06 9.5 1.9 0.13 11

20 1000 1.8 0.13 25 1.6 0.16 30
2000 1.9 0.06 19 1.8 0.11 24
3000 2.0 0.04 19 1.9 0.09 22

Table : Monte Carlo estimates of mean and standard deviation of θ̂CIR
2,n

for a CIR process with Gaussian component and compound Poisson
jumps with intensity λ = 1 and true drift parameter θ2 = 2.



Hyperbolic diffusions with jumps

dXt = − θXt

(1 +X2
t )1/2

dt+ σ dWt + dLt, X0 = x.

Where θ > 0 and σ > 0 are unknown and we aim at estimating θ.
(Lt)t≥0 is an α-stable process with Lévy-Khintchine triplet (0, 0, ν)
with ν(dx) = dx/|x|1+α.
Discretization and jump filtering leads to :

θ̂hyp
n = −

n∑
i=1

Xti

(1 +X2
ti

)1/2
∆n
i X1|∆n

i X|≤vn

(
n∑
i=1

X2
ti

(1 +X2
ti

)

)−1



α = 0.5 α = 1
tn n mean std dev jumps filt mean std dev jumps filt
5 600 1.7 0.53 26 1.6 0.62 37

1200 1.9 0.54 27 1.8 0.60 40
1500 1.9 0.57 26 1.9 0.66 41

10 1000 1.6 0.33 51 1.5 0.40 71
2000 1.8 0.34 53 1.7 0.38 79
4000 1.9 0.35 50 1.9 0.43 85

20 2000 1.6 0.23 104 1.6 0.27 142
4000 1.8 0.24 106 1.7 0.28 158
8000 1.9 0.23 101 1.9 0.30 170

Table : Monte Carlo estimates of mean and standard deviation from 500
samples of θ̂hyp

n for a hyperbolic diffusion process with Gaussian
component and α-stable jumps and true drift parameter θ = 2
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Conclusion

our work shows that by focusing on the drift estimation the
condition n∆2

n → 0 can be relaxed.

is in accordance with the condition n∆3
n → 0 of

[Florens-Zimrou(89)] and [Yoshida(92)] in the case of drift
estimation for continuous diffusions.
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Thank you for your attention!
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