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Motivation: Synchronization in Nature

An ubiquitous presence...
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Cointegration: Unit Roots
Consider a p-dim process

xt = A1xt−1 + · · ·+ Akxt−k + εt ,

where Ai ∈ Rp×p and εt ∈ Rp.

The associated characteristic polynomial for xt is

C (z) = det(Ip − A1z − · · · − Akz
k), z ∈ C.

If C (z) 6= 0 for |z | ≤ 1 the process is stationary.

If C (z) = 0 for |z | = 1, the process contains a unit root, and it is
nonstationary.
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Cointegration: Unit Roots
1D example: simple random walk

xt = xt−1 + εt , εt ∼ N (0, σ)

Since the charateristic polynomial for xt

C (z) = 1− z , z ∈ C

has a root |z | = 1, xt has a unit root of multiplicity 1, it is thus
integrated of order 1: I (1) and we say that xt has a stochastic
trend.

A process with a unit root of multiplicity d is I (d).

For xt an I (d) process, ∆xt is I (d − 1) thus ∆dxt is I (0).
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Cointegration: Vector Error Correction
Assume xt ∈ Rp is I (1) and rewrite

xt = A1xt−1 + · · ·+ Akxt−k + εt ,

as

∆xt = Πxt−1 + Γ1∆xt−1 + · · ·+ Γk−1∆xt−k+1 + εt ,

where

Π = −(Ip − A1 − · · · − Ak)

Γj = −(Aj+1 + · · ·+ Ak), j = 1, . . . k − 1.

If xt is I (1) then ∆xt is I (0) and thus Πxt−1 must be I (0)!
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Cointegration: Vector Error Correction
3 possibilities for rank(Π) = r :

Π has full rank p.

Π has reduced rank 0 < r < p.

Π has rank 0.

r = p ⇒ that xt must be I (0).

r = 0⇒ no stationary relations of xt .

0 < r < p ⇒ r stationary combinations of xt variables.
We then say that xt is a cointegrated process.
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Cointegration: Parameters
If Π has rank 0 < r < p, then

Π = αβ′,

where α, β ∈ Rp×r and rank r < p.

We then have

(α′α)−1α′Πxt = (α′α)−1α′αβ′xt = β′xt

is I (0).

Hence the r linearly independent columns of β correspond to r
stationary linear combinations of xt .

Note also that α and β are not uniquely identified!
This implies only linear restrictions as hypotheses.
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Cointegration: Dissection of Trends

Consider the simple example

xt = (x1t , x2t)
′

∆xt = αβ′xt−1 + εt

β = (1,−1)′,

Here β⊥ = (1, 1)′ is the
orthogonal complement to β,
such that β′β⊥ = 0.

Same concept for α⊥.

α′⊥
∑t

i=1 εi are stochastic trends,
β′xt are stationary trends.

x2

x1

α

xt−1 xt

β′xt

sp(β⊥)

α′⊥
∑t

i=1 εi
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Cointegration: ∆xt → dxt
Consider the diffusions

dxt = Πxtdt + dWt

dx̃t = Π̃x̃tdt + dW̃t .

An example from [Kessler & Rahbek, 2001] show that with

Π =

(
0 0
0 0

)
Π̃ =

(
0 −2π/δ

2π/δ 0

)
,

then

exp(Πδ) = exp(Π̃δ) = I2, δ ∈ R.

And also that the diffusion terms for xt and x̃t are
indistinguishable.
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Cointegration: ∆xt → dxt
Hence, the sampling frequency of the data, can affect whether we
can conclude on a model with rank(Π) = 0 or rank(Π) = 2.

However for reduced rank matrices Π = αβ′ and Π̃ = ab′, they
conclude that

sp(α) = sp(a)

sp(β) = sp(b).

Thus we use Johansens method for determining rank(Π), then β
and simultaneously provides MLE for the remaining
parameters.
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Oscillators
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Oscillators: A Definition
Assume a bivariate process zt = (xt , yt)

′, such that we observe
something like this

idx * dt

x X
t

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

idx * dt

y Y
t

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 1 2 3 4 5 6 7 8 9 10

t

We define the phase process
φt ∈ R through the SDE

dφt = µtdt + σdWt .

We can now define zt as

xt = γt cos(φt)
yt = γt sin(φt),

for some none-negative amplitude
process γt .
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Oscillators: Multivariate Phase Process
We generalize to a system of p oscillators, with
phase/amplitude-processes φt , γt ∈ Rp:

dφt =
(
f (φt) + µt

)
dt + ΣdWt , (1)

with f (φt) : Rp → Rp, µt ∈ Rp, Σ = diag(σ1, . . . , σp) and dWt a
p-dimensional Wiener process.

Compare with the Kuramoto model, a classical model of coupled
phases:

dφit =
(αi

p

p∑
j=1

sin(φjt − φit) + µi

)
dt + σidWit , i = 1, . . . , p.

Eq. (1) covers Kuramoto! �

We must restrict to a linear f (φt) = Πφt for now... /
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Oscillating Systems: Cointegrated Phases
So we make the following assumption

f (φt) = Πφt = αβ′φt

where rank(Π) = r < p, such that α, β ∈ Rp×r have full column
rank.

With this assumption, φt is a cointegrated process and we derive
the data generating process

dzit =

(
−σ2i

2 −
(
g(zt)i + µi

)
g(zt)i + µi

−σ2i
2

)
zitdt +

(
0 −σi
σi 0

)
zitdWit + zit

dγit
γit

,

where dWit and dγit are uni-variate processes, and

g(zt) = f (φt) = αβ′φt is p × 1

such that g(zt)i denotes the i ’th component of g(zt).
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Simulation
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Simulation: Unwrapped phases
We solve for zt numerically, then obtain φt as

φit = atan2(yit , xit) + 2πkit ,

with kit the number of rotations at time t for zit , and
atan2(yit , xit) ∈ [0, 2π).

This way we get the unwrapped phases φt ∈ Rp.
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Simulation: Models
Four different systems

Π0 =

0 0 0
0 0 0
0 0 0

 Π1 =

−0.5 0.5 0
0 0 0
0 0 0


Π2 =

−0.5 0.5 0
0.5 −0.5 0
0 0 0

 Π3 =

−0.5 0.25 0.25
0.25 −0.5 0.25
0.25 0.25 −0.5



φ1t

φ2t

φ3t

Π0 :

φ1t

φ2t

φ3t

Π1 :

φ1t

φ2t

φ3t

Π2 :

φ1t

φ2t

φ3t

Π3 :
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Simulation: Phases

t

φ t
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(a) Π0 model.
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(b) Π1 model.
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(c) Π2 model.
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(d) Π3 model.
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Simulation: Rank tests for rank(Π)

Johansen rank tests.

Model Hr Test values p-value

Π0 r = 0 14.94 0.751
r ≤ 1 6.73 0.519
r ≤ 2 0.17 0.635

Π1 r = 0 52.50 0.000
r ≤ 1 5.61 0.489
r ≤ 2 0.78 0.306

Π2 r = 0 64.78 0.000
r ≤ 1 6.57 0.305
r ≤ 2 0.00 0.983

Π3 r = 0 77.39 0.000
r ≤ 1 33.24 0.000
r ≤ 2 0.01 0.899

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Systems — DYNSTOCH, June 9th, 2016
Slide 17/26



Simulation: Rank tests for rank(Π)

Johansen rank tests.

Model Hr Test values p-value

Π0 r = 0 14.94 0.751
r ≤ 1 6.73 0.519
r ≤ 2 0.17 0.635

Π1 r = 0 52.50 0.000
r ≤ 1 5.61 0.489
r ≤ 2 0.78 0.306

Π2 r = 0 64.78 0.000
r ≤ 1 6.57 0.305
r ≤ 2 0.00 0.983

Π3 r = 0 77.39 0.000
r ≤ 1 33.24 0.000
r ≤ 2 0.01 0.899

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Systems — DYNSTOCH, June 9th, 2016
Slide 17/26



Simulation: Π1 model
Fitted model Π1 with unrestricted α, β:

Para-
meter

True
value

Unrestricted α, β
Estimate Std. Error p value

α1 -0.5 -0.471 0.072 < 0.001
α2 0 0.074 0.075 0.329
α3 0 -0.121 0.077 0.117
β1 1 1
β2 -1 -1.028
β3 0 0.031
µ1 6 6.321 0.214 < 0.001
µ2 5 4.810 0.224 < 0.001
µ3 5 5.209 0.230 < 0.001
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Hα,β : α = Aψ, with A = (1, 0, 0)′

β = Bξ, with B = (1,−1, 0)′
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Simulation: Π1 model
Fitted model Π1 under Hα,β (p-value is 0.365):

Para-
meter

True
value

Restricted α, β
Estimate Std. Error p value

α1 -0.5 -0.469 0.072 < 0.001
α2 0 0
α3 0 0
β1 1 1
β2 -1 -1
β3 0 0
µ1 6 6.066 0.180 < 0.001
µ2 5 5.006 0.188 < 0.001
µ3 5 4.886 0.193 < 0.001

Conclusion: We recover the correct uni-directional coupling
structure.
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Simulation: Π2 model
Fitted model Π2 with unrestricted α, β:

Para-
meter

True
value

Unrestricted α, β
Estimate Std. Error p value

α1 -0.5 -0.437 0.103 < 0.001
α2 0.5 0.593 0.105 < 0.001
α3 0 -0.190 0.110 0.083
β1 1 1
β2 -1 -0.989
β3 0 -0.012
µ1 6 6.160 0.164 < 0.001
µ2 5 4.777 0.167 < 0.001
µ3 5 5.134 0.176 < 0.001
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Simulation: Π2 model
Fitted model Π2 under Hα,β (p-value is 0.187):

Para-
meter

True
value

Unrestricted α, β
Estimate Std. Error p value

α1 -0.5 -0.497 0.101 < 0.001
α2 0.5 0.497 0.103 < 0.001
α3 0 0
β1 1 1
β2 -1 -1
β3 0 0
µ1 6 6.129 0.144 < 0.001
µ2 5 5.013 0.148 < 0.001
µ3 5 4.886 0.155 < 0.001

Conclusion: We recover the correct bi-directional coupling
structure.
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Simulation: Π3 model
Fitted model Π3 with unrestricted α, β:

Para-
meter

True
value

Unrestricted β
Estimate Std. Error p value

α11 -0.50 -0.248 0.074 0.001
α21 0.25 0.374 0.064 < 0.001
α31 0.25 0.184 0.076 0.015
α12 0.25 0.226 0.065 0.001
α22 -0.50 -0.033 0.078 0.673
α32 0.25 -0.301 0.067 < 0.001
β11 1 1
β21 0 -1.409
β31 -1 0.410
β12 0 -0.865
β22 1 0.344
β32 -1 1.209
µ1 6 6.196 0.194 < 0.001
µ2 5 4.712 0.199 < 0.001
µ2 5 5.152 0.204 < 0.001
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Simulation: Π3 model
Look at the estimated Π̂:

Π̂ = α̂β̂′ =

−0.444 0.272 0.171
0.346 −0.539 0.193
0.076 0.363 −0.439


vs

Π3 =

−0.5 0.25 0.25
0.25 −0.5 0.25
0.25 0.25 −0.5



∑3
j=1 Π̂ij ≈ 0.

Identification of α, β can be problematic...
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Simulation: Conclusions
Cointegration analysis findings:

Model Description Conclusion

Π0 Independent Independent oscillators.

Π1 Uni-directional coupling Uni-directional coupling.

Π2 Bi-directional coupling Bi-directional coupling,
equal coupling strength.

Π3 Fully coupled Unclear*.

*: We cannot identify the true parameters for the model fit, but
the data does admit a restriction to the true proportions of the
parameter matrices.
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Outlook
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Outlook: Challenges
Interpret cointegration models for coupled oscillators.

Derive a non-linear cointegration mechanism to model
Kuramoto.

Derive a framework with non-linear deterministic trends for
the model.
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Outlook: Piecewise Linear Cointegration
To replicate the Kuramoto model, we consider a piecewise linear
approximation (in 2-dim systems).

From a practical perspective, it is easier to approximate sin(x) for
x ∈ [−π2 ,

3π
2 ), since then

sin(x) ≈

{
x for x ≤ π

2

−x + π for x > π
2

.

Wrapping β′φt onto [−π2 ,
3π
2 ) yields two cointegration

regimes:

α sin(β′φt) ≈

{
αβ′φt for β′φt ≤ π

2

−αβ′φt + απ for β′φt > π
2

.

This is work in progress to derive the necessary assumptions and
technicalities!
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Thank you!

Jacob Østergaard

ostergaard@math.ku.dk
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