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OVERVIEW

ı I will discuss two joint works: Last, Peccati and Schulte (PTRF,
2016+), and Bachmann and Peccati (EJP, 2016) .

ı Common thread: a connection with Mehler’s formula, providing
a mixture-type representation of the Ornstein-Uhlenbeck semi-
group on the Poisson space.

ı Use of Malliavin/Stein techniques.
ı Connections with the theory of geometric stabilization – Penrose

and Yukich (2001), see also Kesten and Lee (1996).
ı Our concentration bounds complete e.g. results by Wu (2000),

Houdré and Privault (2002), and Breton, Houdré and Privault
(2007).
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FRAMEWORK

ı For every t Ø 1, ÷t is a Poisson measure on Rd (d Ø 1), with
intensity t ◊ Lebesgue.

ı We denote by Ft = Ft(÷t) a generic square-integrable functional
of ÷t, write m(t) = E[Ft], v(t) = Var Ft, and

ÂFt = Ft ≠ m(t)
v(t)1/2 .

ı We shall write ÷ = ÷1, F = F1, m = m(1), ... and so on.
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GOALS

ı Goal 1: If v(t) Ø ‡t, as t æ Œ, we look for “optimal” Berry-
Esseen bounds of the type

dKol( ÂFt, N) := sup
zœR

---P( ÂFt Æ z) ≠ P(N Æ z)
--- Æ C t≠1/2,

where N ≥ N (0, 1). Tool: second order Poincaré inequalities.
ı Goal 2: In a non dynamic setting, we look for (exponential and

Gaussian) concentration bounds on upper and lower tails

P
1
F ≠ m Ø r

2
, P

1
F ≠ m Æ ≠r

2
, r > 0.

Tool: logarithmic Sobolev inequalities.
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CHAOS AND MALLIAVIN OPERATORS

ı Recall that every F œ L2(‡(÷)) admits a unique chaotic decom-
position of the type

F = E(F ) +
ÿ

nØ1
In(fn).

ı Define the Ornstein-Uhlenbeck semigroup {Ts : s Ø 0} by

TsF = E(F ) +
ÿ

nØ1
e≠nsIn(fn).

ı For a functional F of ÷ and x œ Rd, define

DxF (÷) = F (÷ + ”x) ≠ F (÷)

(add-one cost operator).
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SOME REMARKABLE RELATIONS

ı (Integration by parts) Consider the restriction of D to the space

dom D :=
;

F : E
5⁄

(DxF )2dx
6

< Œ
<

,

as well as its adjoint ”. Then, for Ï œ dom ”

E[”(Ï)F ] = E
⁄

Ï(x)DxF dx.

ı Let L be the the generator of {Ts}, then

L = ≠”D.

ı The pseudo-inverse of L is written L≠1, and we have

≠DL≠1F =
⁄ Œ

0
e≠sTs DF ds.
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MEHLER’S FORMULA

Theorem (Mehler’s formula)
For every s Ø 0 , define ÷(s) to be a e≠s–thinning of ÷, and let ÷̂(s) be
an independent Poisson measure with intensity (1 ≠ e≠s)◊ Lebesgue.
The Ornstein-Uhlenbeck semigroup {Ts : s Ø 0} can be represented as
follows:

TsF (÷) := E
Ë
F (÷(s) + ÷̂(s)) | ÷

È
.
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BERRY-ESSEEN BOUNDS: GAUSSIAN FRAMEWORK

ı Recall the usual Poincaré-Chernoff-Nash inequality: for a d-
dimensional standard Gaussian vector X = (X1, ..., Xd) and for
every smooth mapping f : Rd æ R,

Var f(X) Æ E[ÎÒf(X)Î2
Rd ].

ı The first example of a second order Poincaré estimate appears
in Chatterjee (2007):

dT V (f(X), N) Æ C E[ÎHessf(X)Î4
op]1/4 ◊ E[ÎÒf(X)Î4

Rd ]1/4.

ı In Nourdin, Peccati and Reinert (2010): extension to functionals
F of a general Gaussian field X ,

dT V (F, N) Æ C E[ÎD2FÎ4
op]1/4 ◊ E[ÎDFÎ4]1/4,

where D stands for the Malliavin derivative.
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TOWARDS THE POISSON FRAMEWORK

ı We shall build on the following Poincaré inequality: for every
F œ L2(‡(÷)),

Var F Æ E
;⁄

Rd
(DxF )2dx

<
.

ı Note that we are looking for optimal rates, and that the estimates
on the Gaussian space typically yield suboptimal results.

ı In the Poisson framework, it is much easier to work with the
Wasserstein distance dW ; however, the usual relation dKol Æ
2
Ô

dW would yield suboptimal bounds.
ı One additional difficulty in the Poisson setting is that linear func-

tionals of a Poisson measure are in general very far from being
Gaussian.
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A BOUND BASED ON STEIN’S METHOD

The following bound is due to Eichelsbacher and Thäle (2013)
(building on Schulte (2012)), and is based on a subtle use of Stein’s
method: for every F œ L2(‡(÷)) with mean zero and variance 1,

dKol(F, N) Æ E
--1 ≠

⁄
(DxF )(≠DxL≠1F ) dx

--

+
Ô

2fi

8 E
⁄

(DxF )2|DxL≠1F | dx

+ 1
2E

⁄
(DxF )2|F ||DxL≠1F | dx

+ sup
t

E
⁄

(Dx1{F > t})(DxF )|DxL≠1F | dx.

Similar bounds in the binomial setting: Lachièze-Rey and Peccati
(Ann. Appl. Probab., 2016+).
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GENERAL SECOND ORDER POINCARÉ INEQUALITIES

Theorem (Last, Peccati and Schulte, 2016+)
Let F œ L2(‡(÷)) be centered and such that Var F = 1. Let
N ≥ N (0, 1). Then,

dKol(F, N) Æ “1 + “2 + “3 + “4 + “5 + “6,

or, in a dynamic setting,

dKol(Ft, N) Æ t ◊ (“1 + “2 + “3 + “4 + “5 + “6).
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THE BOUNDS

Here,

“1=4
Û⁄ #

E(Dx1F )2(Dx2F )2$1/2#
E(D2

x1,x3F )2(D2
x2,x3F )2$1/2

dx1dx2dx3,

“2=
5 ⁄

E(D2
x1,x3F )2(D2

x2,x3F )2 dx1dx2dx3

61/2
,

“3=
⁄

E|DxF |3 dx,

“4=
1
2

#
EF 4$1/4

⁄ #
E(DxF )4$3/4

dx,

“5=
5 ⁄

[E(DxF )4 dx
61/2

,

“6=
5 ⁄

6
#
[E(Dx1F )4$1/2#

[E(D2
x1,x2F )4$1/2 + 3[E(D2

x1,x2F )4 dx1dx2

61/2
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APPLICATION: THE NEAREST NEIGHBOUR GRAPH

ı For every t, we consider the restriction of ÷t to a compact window
H µ Rd. We build the associated k-nearest neighbour graph as
follows: two distinct points x, y in ÷t fl H are linked by an edge if
and only if x is one of the k-nearest neighbours of y, or y is one
of the k-nearest neighbours of x.

ı Here is an example for k = 1 (courtesy of M. Schulte)
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LENGTH OF THE NEAREST NEIGHBOUR GRAPH

We wish to establish an upper bound (for – œ [0, 1]) of the type

dKol

A
L–

t ≠ E(L–
t )

Var1/2 L–
t

, N

B

= dKol

A
Ft ≠ E(Ft)
Var1/2 Ft

, N

B

Æ a(t),

where
L–

t :=
ÿ

x≥y;x,yœ÷tflH

Îx ≠ yÎ–, Ft = t–/dL–
t

(in such a way that Var Ft Ø ‡–t, see Penrose and Yukich (2001)).

Previous findings for – = 1:
Avram and Bertsimas (1993), a(t) = O((log t)1+3/4 t≠1/4)
Penrose and Yukich (2005), a(t) = O((log t)3dt≠1/2).
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A GENERAL BERRY-ESSEEN BOUND

Proposition (Last, Peccati and Schulte, 2016+)
Let Ft œ L2(‡(÷t)), t Ø 1, and assume there are finite constants
p1, p2, c > 0 such that

E|DxFt|4+p1 Æ c, E|D2
x1,x2Ft|4+p2 Æ c,

Moreover, assume that VarFt/t > v, t Ø 1, with v > 0 and that

m := sup
xœH, tØ1

t
⁄

P(D2
x,yFt ”= 0)p2/(16+4p2) dy < Œ.

Let N ≥ N (0, 1). Then,

dKol

3
Ft ≠ E(Ft)Ô

VarFt
, N

4
Æ CÔ

t
, t Ø 1.
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CONNECTIONS WITH STABILIZATION THEORY

ı Our result requires to bound a quantity of the type

sup
xœH, tØ1

t
⁄

P(D2
x,yFt ”= 0)— dy

ı Assume that there exist radii of stabilization {Rt(x, ÷t)}, verify-
ing

DxFt(÷t) = DxFt

1
÷t fl Bd(x, Rt(x, ÷t))

2
.

ı Then, it suffices to show that

sup
x,t

⁄
tP {Rt(x, ÷t) Æ Îx ≠ yÎ or

Rt(x, ÷t + ”y) ”= Rt(x, ÷t)}— dy < Œ.

This is very close to the add-one cost stabilization by Penrose
and Yukich (2001).
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BACK TO NNG

This strategy works very well with the k-nng, yielding the following
estimate:

Proposition (Last, Peccati and Schulte, 2016+)
Let N ≥ N (0, 1). There exists a finite constant C– such that

dKol

A
L–

t ≠ E(L–
t )

Var1/2 L–
t

, N

B

Æ C–Ô
t
.
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LOGARITHMIC SOBOLEV INEQUALITIES

Write
�(x) = x log x

By approximation, and exploiting the fact that the mapping

(x, y) ‘æ y(�Õ(x + y) ≠ �Õ(x))

is convex, Mehler’s formula can be used to provide an intrinsic proof of
the following fundamental inequality

Theorem (Log-Sobolev Inequality; Wu, 2000)
Let G = G(÷) > 0 be integrable. Then,

E[�(G)] ≠ �(E[G]) Æ E
⁄

(Dx�(G) ≠ �Õ(G)DxG) dx.
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CONCENTRATION

ı When applied to random variables of the type G = e⁄F , log-
Sobolev + ‘Herbst argument’ yield concentration estimates (typi-
cally, exponential) on F , provided F is Lipschitz and

⁄
(DxF )2 dx Æ c

Problem: these assumptions are often not adapted to a geometric
setting.

ı In Bachmann and Peccati (EJP, 2016): combine Log-Sobolev
with Mecke’s formula, in order to deduce concentration estimates
involving quantities of the type

V =
⁄

(F (÷) ≠ F (÷ ≠ ”x))2 ÷(dx),

that are indeed amenable to geometric analysis. Close in spirit to
Boucheron, Lugosi and Massart (2003).
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REPRESENTATIVE STATEMENT

Theorem (Bachmann and Peccati, 2016)
Assume that DF Ø 0 and V Æ c, then

P[F Ø m + r] Æ e≠r2/c, r > 0.

Assume that F Ø 0, DF Ø 0 and V Æ cF – (– œ [0, 2)), then

P[F Ø m + r] Æ exp
I

≠((r + m)1≠–/2 ≠ m1≠–/2)2

2c

J

, r > 0.

Applications to: length power functionals, subgraph counting (also,
Bachmann and Reitzner, 2015), intrinsic proof of the convex distance
inequality for Poisson measures (Reitzner, 2013), U -statistics,
component counts (Bachmann, 2015).
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ADVERTISING
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