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I will discuss two joint works: Last, Peccati and Schulte (PTRF,
2016+), and Bachmann and Peccati (EJP, 2016) .

Common thread: a connection with Mehler’s formula, providing
a mixture-type representation of the Ornstein-Uhlenbeck semi-
group on the Poisson space.

Use of Malliavin/Stein techniques.

Connections with the theory of geometric stabilization — Penrose
and Yukich (2001), see also Kesten and Lee (1996).

Our concentration bounds complete e.g. results by Wu (2000),

Houdré and Privault (2002), and Breton, Houdré and Privault
(2007).
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* For every t > 1, 1, is a Poisson measure on R4 (d > 1), with
intensity ¢ x Lebesgue.

* We denote by F; = F}(n) a generic square-integrable functional
of n;, write m(t) = E[F], v(t) = Var F;, and

7 EF, —m(t)

o v(t)l/2

*x We shall write n = ny, ' = Fy, m = m(1), ... and so on.
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FRAMEWORK

* For every t > 1, 1, is a Poisson measure on R (d > 1), with
intensity ¢t x Lebesgue.

* We denote by F; = Fj(n;) a generic square-integrable functional
of n, write m(t) = E[F}], v(t) = Var F}, and

~ Ft — m(t)
RETOLEN

* We shall write n = 1y, F' = Fy, m = m(1), ... and so on.

3/22



* Goal 1: If v(t) > ot, as t — oo, we look for “optimal” Berry-
Esseen bounds of the type

dioi(Fy, N) := sup |P(F, < 2) — P(N < z)‘ <t V2,
z€ER

where N ~ .47(0,1). Tool: second order Poincaré inequalities.

*x Goal 2: In a non dynamic setting, we look for (exponential and
Gaussian) concentration bounds on upper and lower tails

P(Ff m > /) f‘(Ff m < f/'>. r > 0.

Tool: logarithmic Sobolev inequalities.
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GOALS

* Goal 1: If v(t) > ot, as t — oo, we look for “optimal” Berry-
Esseen bounds of the type

dKOl(ﬁtaN) ‘= Sup P(ﬁt < Z) - ]P)(N < Z)‘ < Ct—l/Qa
z€R

where N ~ .47(0,1). Tool: second order Poincaré inequalities.

* Goal 2: In a non dynamic setting, we look for (exponential and
Gaussian) concentration bounds on upper and lower tails

]P’(F—mzr), ]P’(F—mg—r), r > 0.

Tool: logarithmic Sobolev inequalities.
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* Recall that every F' € L?(c(n)) admits a unique chaotic decom-
position of the type

F)+ Y L(fa).

n>1

* Define the Ornstein-Uhlenbeck semigroup {75 : s > 0} by

T,F = E( +Z T Lo (fn)-

« For a functional I of i and 2 € R?, define

D.F(n) = F(n+6;) — F(n)

(add-one cost operator).
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CHAOS AND MALLIAVIN OPERATORS

* Recall that every F' € L?(o(n)) admits a unique chaotic decom-
position of the type

F)+ 3 L(f).

n>1

* Define the Ornstein-Uhlenbeck semigroup {7 : s > 0} by

T.F =E(F)+ > e ™I(fn)

n>1
* For a functional F' of n and = € R, define
DyF(n) = F(n+d;) — F(n)

(add-one cost operator).



SOME REMARKABLE RELATIONS

* (Integration by parts) Consider the restriction of D to the space

dom D := {F 'E |:/(DJ;F)2d.”L’:| < oo},
as well as its adjoint §. Then, for ¢ € dom ¢

E[5(¢)F] = E / () D, F da.
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SOME REMARKABLE RELATIONS

* (Integration by parts) Consider the restriction of D to the space

dom D := {F 'E |:/(DJ;F)2d.”L’:| < oo},
as well as its adjoint §. Then, for ¢ € dom ¢
E[5(¢)F] = E / () D, F da.
* Let L be the the generator of {7}, then
L=—-6D.
x The pseudo-inverse of L is written L~!, and we have
o0
—DL7'F :/ e *Ts DF ds.
0
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MEHLER’S FORMULA

Theorem (Mehler’s formula)

For every s > 0, define 7](3) to be a e~ °—thinning of n, and let 77(5) be
an independent Poisson measure with intensity (1 — e~*)x Lebesgue.
The Ornstein-Uhlenbeck semigroup {Ts : s > 0} can be represented as
follows:

T,F(n) :==E |F(n + 7)) |n] .
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BERRY-ESSEEN BOUNDS: GAUSSIAN FRAMEWORK

* Recall the usual Poincaré-Chernoff-Nash inequality: for a d-
dimensional standard Gaussian vector X = (X1, ..., X4) and for
every smooth mapping f : R — R,

Var f(X) < E[[[Vf(X)]fa]-
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* The first example of a second order Poincaré estimate appears
in Chatterjee (2007):
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BERRY-ESSEEN BOUNDS: GAUSSIAN FRAMEWORK

* Recall the usual Poincaré-Chernoff-Nash inequality: for a d-
dimensional standard Gaussian vector X = (X1, ..., X4) and for
every smooth mapping f : R — R,

Var f(X) < E[[[Vf(X)]fa]-

* The first example of a second order Poincaré estimate appears
in Chatterjee (2007):

drv (f(X),N) < CE[|[Hessf(X)[g,]'/* x B[V £(X)lga]/*.

* In Nourdin, Peccati and Reinert (2010): extension to functionals
F of a general Gaussian field X,

drv(F,N) < CE[|D*F||g,]"/* x E[| DF|[*]"/*,

where D stands for the Malliavin derivative.

8/22



* We shall build on the following Poincaré inequality: for every
F e L (a(n)),

Var F < E {/Rd(DmF)2da:} .

x Note that we are looking for optimal rates, and that the estimates
on the Gaussian space typically yield suboptimal results.

% In the Poisson framework, it is much easier to work with the
Wasserstein distance dyy; however, the usual relation dg, <
2+/dyy would yield suboptimal bounds.

% One additional difficulty in the Poisson setting is that linear func-
tionals of a Poisson measure are in general very far from being
Gaussian.
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A BOUND BASED ON STEIN’S METHOD

The following bound is due to Eichelsbacher and Thile (2013)
(building on Schulte (2012)), and is based on a subtle use of Stein’s
method:
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The following bound is due to Eichelsbacher and Thile (2013)
(building on Schulte (2012)), and is based on a subtle use of Stein’s
method: for every F' € L?(o(n)) with mean zero and variance 1,

diol(F,N) <EJ1 — /(DmF)(—DIL_lF) dz|
+ ”?FE/(DwF)QwaL—le da
1
+ iE/(DIF)2|F||DxL_1F| da

+supE /(Dxl{F > 1Y)(D.F)| Dy L~ F| da.
t .
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A BOUND BASED ON STEIN’S METHOD

The following bound is due to Eichelsbacher and Thile (2013)
(building on Schulte (2012)), and is based on a subtle use of Stein’s
method: for every F' € L?(o(n)) with mean zero and variance 1,
dio(F,N) <E|1 - /(DmF)(—DIL_lF) dz|
V2
+ T”E /(DwF)Q]DwL_lF] da
1
+ iE/(DIF)2|F||DxL_1F| da
+supE /(Dxl{F > 1Y)(D.F)| Dy L~ F| da.
t .

Similar bounds in the binomial setting: Lachi¢ze-Rey and Peccati
(Ann. Appl. Probab., 2016+).
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GENERAL SECOND ORDER POINCARE INEQUALITIES

Theorem (Last, Peccati and Schulte, 2016+)

Let F € L?(o(n)) be centered and such that Var F = 1. Let
N ~ A4(0,1). Then,

dgot(F,N) <v1+y +73+7+ 75+ 7

or, in a dynamic setting,

drol(Ft, N) <t X (vi +72+73+ 71+ 75+ 76)-
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THE BOUNDS

Here,

71:4\// [B(Dyy F)(Day )] 2 [B(D2, 4, F)2(D2, 4, F)?) s dvadas,

1/2
Y2= |:/E z1, mg I2 3 )2 d:l/‘ldxgdl‘g 5

- / E|D,F|? dz,

=3 (B! / B da.

o el
|

/6 (Do, F)Y P ED2. , F)Y? + 3[E(D2. . F)* dwydzs

1/2

T1,T2 1,22



APPLICATION: THE NEAREST NEIGHBOUR GRAPH

* For every ¢, we consider the restriction of 7; to a compact window
H < R? We build the associated k-nearest neighbour graph as
follows: two distinct points x, y in 1y N H are linked by an edge if
and only if x is one of the k-nearest neighbours of ¥, or y is one
of the k-nearest neighbours of x.
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APPLICATION: THE NEAREST NEIGHBOUR GRAPH

* For every ¢, we consider the restriction of 7; to a compact window
H < R? We build the associated k-nearest neighbour graph as
follows: two distinct points x, y in 1y N H are linked by an edge if
and only if x is one of the k-nearest neighbours of ¥, or y is one
of the k-nearest neighbours of x.

* Here is an example for k£ = 1 (courtesy of M. Schulte)
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APPLICATION: THE NEAREST NEIGHBOUR GRAPH
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LENGTH OF THE NEAREST NEIGHBOUR GRAPH

We wish to establish an upper bound (for @ € [0, 1]) of the type
L —E(LY) F, — E(F))
Zt ) = LA <
dKOl ( Var1/2 Lta 7N dKOl Var1/2 Ft 7N — a(t)7

where
L= Y eyl R=tLg
zrvyz,yEnNH

(in such a way that Var F}; > o,t, see Penrose and Yukich (2001)).



LENGTH OF THE NEAREST NEIGHBOUR GRAPH

We wish to establish an upper bound (for @ € [0, 1]) of the type
L —E(LY) F, — E(F))
Zt ) = LA <
dKOl ( Var1/2 Lta 7N dKOl Var1/2 Ft 7N — a(t)7

where
Ip= Y eyl F=t/Lg
zrvyz,yEnNH

(in such a way that Var F}; > o,t, see Penrose and Yukich (2001)).

Previous findings for a = 1:
Avram and Bertsimas (1993), a(t) = O((log t)'+3/4¢=1/4)
Penrose and Yukich (2005), a(t) = O((logt)3¢—1/2).



A GENERAL BERRY-ESSEEN BOUND

Proposition (Last, Peccati and Schulte, 2016+)
Let F;, € L*(o(n)), t > 1, and assume there are finite constants
1, P2, ¢ > 0 such that

E|D,Fy|**P < ¢, E|D2 , Fi|*P2 <,

x1,T2

Moreover, assume that VarFy;/t > v, t > 1, withv > 0 and that

m:= sup t/IP’(Dg,,yFt 4 0)p2/(16+4p2) gy 0,
zeH, t>1

Let N ~ A4(0,1). Then,

F, — E(F) ) C
dgol| —=—= N | < —, t=>1
K l( v/ VarF; Vit
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* Our result requires to bound a quantity of the type

sup ¢ / P(D2 ,F, # 0)% dy
z€H, t>1

* Assume that there exist radii of stabilization { R;(z,n;)}, verify-

mng

D, Fi(m) = DoFy (0 Bz, Ri(z,m)) ).

x Then, it suffices to show that

sup / tP{Ry(z,m) < ||z —yl| or

z,t .
Ri(z,mt + 6y) # Re(z,m)} )7(/,1/ < 00.
This is very close to the add-one cost stabilization by Penrose

and Yukich (2001).
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This strategy works very well with the k-nng, yielding the following
estimate:

Proposition (Last, Peccati and Schulte, 2016+)

Let N ~ A4 (0,1). There exists a finite constant C,, such that

LY — B(L? C,
(]1(0/ “L““rﬁ§“l‘2'.j\v < ~
Var'/~ L¢
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BACK TO NNG

This strategy works very well with the k-nng, yielding the following
estimate:

Proposition (Last, Peccati and Schulte, 2016+)
Let N ~ A(0,1). There exists a finite constant Cy, such that

Ly — E(L) C
dio tith < Za
frol ( Varl/2 ¢ ) Vi
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LOGARITHMIC SOBOLEV INEQUALITIES

Write
®(z) = xlogz

By approximation, and exploiting the fact that the mapping
(z,y) = y(¥'(z +y) — ()

is convex, Mehler’s formula can be used to provide an intrinsic proof of
the following fundamental inequality

Theorem (Log-Sobolev Inequality; Wu, 2000)
Let G = G(n) > 0 be integrable. Then,

E[®(G)] — ®(E[G]) < E / (D,®(G) — ¥ (G)D,G) da.
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* When applied to random variables of the type G = e, log-
Sobolev + ‘Herbst argument’ yield concentration estimates (typi-
cally, exponential) on F', provided F' is Lipschitz and

/(DHEF)2 dx <c
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CONCENTRATION

* When applied to random variables of the type G = e, log-
Sobolev + ‘Herbst argument’ yield concentration estimates (typi-
cally, exponential) on F', provided F' is Lipschitz and

/(DxF)de <c

Problem: these assumptions are often not adapted to a geometric
setting.

* In Bachmann and Peccati (EJP, 2016): combine Log-Sobolev
with Mecke’s formula, in order to deduce concentration estimates
involving quantities of the type

V= [(F0) = Py 6.))n(da),

that are indeed amenable to geometric analysis. Close in spirit to
Boucheron, Lugosi and Massart (2003).
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REPRESENTATIVE STATEMENT

Theorem (Bachmann and Peccati, 2016)
Assume that DF > 0 and V' < ¢, then

PIF>m+r]<e /%, r>0.
Assume that F > 0, DF > 0and V < cF* (a € [0,2)), then

1—a/2 _ ., 1—a/2)2
-

]P’[FZm—i—r]Sexp{— 5
C




REPRESENTATIVE STATEMENT

Theorem (Bachmann and Peccati, 2016)
Assume that DF > 0 and V' < ¢, then

PIF>m+r]<e /%, r>0.
Assume that F > 0, DF > 0and V < cF* (a € [0,2)), then

1—a/2 _ ., 1—a/2)2
-

]P’[FZm—i—r]Sexp{— 5
C

Applications to: length power functionals, subgraph counting (also,
Bachmann and Reitzner, 2015), intrinsic proof of the convex distance
inequality for Poisson measures (Reitzner, 2013), U-statistics,
component counts (Bachmann, 2015).
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