Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions

Jakob Söhl

Statistical Laboratory University of Cambridge

joint with R. Nickl

Dynstoch, Rennes, 9 June 2015

Outline

Diffusion Observed at Low Frequency

Prior Distributions

Contraction Result

Main Ideas of Proof Information Theoretic Distance Concentration Inequality

General Contraction Theorem

Nonparametric Estimation for Diffusions

Diffusion process

$$dX(t) = b(X_t) dt + \sigma(X_t) dW_t, \quad t \geqslant 0,$$

with drift coefficient b, diffusion coefficient σ and Brownian motion W Discrete low-frequency observations

$$X_0, X_{\Delta}, \dots, X_{n\Delta}, \qquad n \to \infty, \ \Delta > 0 \text{ fixed}$$

Goal: Nonparametric estimation of b and σ

Minimax Optimal Estimation

Gobet, Hoffmann & Reiß (2004): minimax optimal nonparametric estimation of σ and b

Reflected diffusion on [0,1], smoothness class for s > 1:

$$\left\{ (\sigma,b) \in H^{s}([0,1]) \times H^{s-1}([0,1]) \left| \|\sigma\|_{H^{s}} \leqslant C, \|b\|_{H^{s-1}} \leqslant C, \inf_{x} \sigma(x) \geqslant c \right. \right\}$$

ill-posed problem with rates

$$\sigma \qquad b \\
n^{-s/(2s+3)} \qquad n^{-(s-1)/(2s+3)}$$

in $L^2([\alpha, \beta])$ with $0 < \alpha < \beta < 1$

Bayesian Estimation

Bayesian estimation methods:

Roberts & Stramer (2001), Papaspiliopoulos, Pokern, Roberts & Stuart (2012), Pokern, Stuart & van Zanten (2013), van der Meulen, Schauer & van Zanten (2014), van Waaij & van Zanten (2015), . . .

Previous analysis of Bayesian methods restricted to $\sigma\equiv 1$ and consistency in a weak topology:

van der Meulen & van Zanten (2013), Gugushvili & Spreij (2014), Koskela, Spano & Jenkins (2015)

Wavelet Series Priors I

 ψ_{lk} boundary corrected Daubechies wavelets, $0 < \alpha < \beta < 1$, $\mathcal{I} = \{(I, k) : \psi_{lk} \text{ supported in } [\alpha, \beta]\}$

Model diffusion coefficient σ by

$$\log(\sigma^{-2}(x)) = \sum_{(I,k)\in\mathcal{I}} \frac{2^{-I(s+1/2)}}{I^2} u_{Ik} \psi_{Ik}(x), \qquad u_{Ik} \sim^{iid} U(-B,B).$$

Comments:

- Could replace uniform distributions U(-B,B) by any distribution with bounded support and density bounded away from zero.
- Could truncate sum in I at $L_n \to \infty$ sufficiently fast.
- By connection between Hölder norms and wavelet series $\log(\sigma^{-2})$ is modelled as typical s-Hölder smooth function (with a 'convenient' log-factor) .

Wavelet Series Priors II

Model invariant density μ through

$$H(x) = \sum_{(I,k)\in\mathcal{I}} \frac{2^{-I(s+3/2)}}{I^2} \bar{u}_{Ik} \psi_{Ik}(x), \qquad \bar{u}_{Ik} \sim^{iid} U(-B,B),$$
$$\mu = e^H / \int e^H.$$

Drift coefficient b indirectly given by

$$2b = (\sigma^2)' + \sigma^2(\log \mu)'.$$

Overall Prior is given by

$$\Pi = \mathcal{L}(\sigma^2, ((\sigma^2)' + \sigma^2 H')/2)).$$

Comments:

- Priors on b, σ^2 are not independent.
- Invariant density is modelled explicitely.

Assumptions on σ_0 and μ_0

We define the Hölder-type space

$$\begin{split} \mathcal{C}^t([0,1]) := \{f \in C([0,1]) : \|f\|_{\mathcal{C}^t} < \infty\} \,, \quad \text{where} \\ \|f\|_{\mathcal{C}^t} := \sum_{k=0}^{\lfloor t \rfloor} \|D^k f\|_{\infty} + \sup_{h>0} \sup_{x \in [0,1]} \frac{|D^{\lfloor t \rfloor} f(x+h) - D^{\lfloor t \rfloor} f(x)|}{h^{t-\lfloor t \rfloor} \log(1/h)^{-2}}. \end{split}$$

Assume diffusion coefficient $\sigma_0 \in \mathcal{C}^s$ is of form

$$\log \sigma_0^{-2}(x) = \sum_{(l,k) \in \mathcal{I}} \tau_{lk} \psi_{lk}(x), \quad x \in [0,1], \quad \text{ with } 2^{l(s+1/2)} l^2 |\tau_{lk}| \leqslant B.$$

Assume invariant density $\mu_0 \in \mathcal{C}^{s+1}$ is of form

$$\log \mu_0(x) = \sum_{(I,k) \in \mathcal{I}} \nu_{Ik} \psi_{Ik}(x), \quad x \in [0,1], \quad \text{ with } 2^{I(s+3/2)} I^2 |\nu_{Ik}| \leqslant B.$$

Contraction Theorem

For $s \geqslant 2$ we define Θ_s by

$$\left\{ (\sigma,b): \|\sigma\|_{\mathcal{C}^s} \leqslant D, \|b\|_{\mathcal{C}^{s-1}} \leqslant D, \inf_x \sigma(x) \geqslant d, \text{ boundary conditions} \right\}$$

Theorem

 $(X_t:t\geqslant 0)$ reflected diffusion with $(\sigma_0,b_0)\in\Theta_s$. σ_0 and μ_0 as above. Π wavelet series prior. Then for all $0<\alpha<\beta<1$ there exists $\gamma>0$ such that in the $L^2([\alpha,\beta])$ -norm

$$\Pi\left((\sigma, b): \begin{array}{ll} n^{-s/(2s+3)} \|\sigma^2 - \sigma_0^2\|_{L^2} > \log^{\gamma} n & \text{or} \\ n^{-(s-1)/(2s+3)} \|b - b_0\|_{L^2} > \log^{\gamma} n & X_0, \dots, X_{n\Delta} \end{array} \right) \to 0$$

under $\mathbb{P}_{\sigma_0 b_0}$ as $n \to \infty$.

Bound on Information Theoretic Distance

Information theoretic distance

$$\mathsf{KL}((\sigma_0,b_0),(\sigma,b)) := \mathbb{E}_{\sigma_0b_0}\left[\log\left(\frac{p_{\sigma_0b_0}(\Delta,X_0,X_\Delta)}{p_{\sigma b}(\Delta,X_0,X_\Delta)}\right)\right],$$

 $p_{\sigma b}$ transition density, expectation $\mathbb{E}_{\sigma_0 b_0}$ w.r.t. stationary distribution Need good bound on KL:

$$\begin{split} \mathsf{KL}((\sigma_0,b_0),(\sigma,b)) &\lesssim \|p_{\sigma b} - p_{\sigma_0 b_0}\|_{L^2}^2 \\ &\lesssim \|P_{\Delta}^{\sigma b} - P_{\Delta}^{\sigma_0 b_0}\|_{HS}^2 \\ &\lesssim \|e^{\Delta/L_{\sigma b}^{-1}} - e^{\Delta/L_{\sigma_0 b_0}^{-1}}\|_{HS}^2 \\ &\lesssim \|L_{\sigma b}^{-1} - L_{\sigma_0 b_0}^{-1}\|_{HS}^2, \end{split}$$

where $P_{\Delta}^{\sigma b}$ transition operator and $L_{\sigma b}$ infinitesimal generator.

Bound on Information Theoretic Distance II

Infinitesimal generator $L_{\sigma b}f(x) = \frac{1}{2}\sigma^2(x)f''(x) + b(x)f'(x)$

Inverse of infinitesimal generator

$$L_{\sigma b}^{-1}f(x) = \int K_{\sigma b}(x,z)f(z)\mu_0(z)\,\mathrm{d}z$$

Bound distance between integral kernels

$$\begin{split} \mathsf{KL}((\sigma_0, b_0), (\sigma, b)) &\lesssim \|L_{\sigma b}^{-1} - L_{\sigma_0 b_0}^{-1}\|_{\mathsf{HS}}^2 \\ &\lesssim \int \int (\mathcal{K}_{\sigma b} - \mathcal{K}_{\sigma_0 b_0})^2 (x, z) \mu_0(x) \mu_0(z) \, \mathrm{d}x \, \mathrm{d}z \\ &\lesssim \|\mu_{\sigma b} - \mu_{\sigma_0 b_0}\|_{L^2([0, 1])}^2 + \left\|\frac{1}{\sigma^2} - \frac{1}{\sigma_0^2}\right\|_{(B_{1-}^{1-})^*}^2 + \|b - b_0\|_{(B_{1\infty}^2)^*}^2 \,, \end{split}$$

with dual spaces of Besov spaces $B_{1\infty}^1$ and $B_{1\infty}^2$.

Concentration of Frequentist Estimators

For $\hat{\sigma}$ and \hat{b} estimators by Gobet, Hoffmann & Reiß (2004) we have:

Theorem

There exists R > 0 such that for n large enough we have uniformly over Θ_s , $s \ge 2$,

$$\mathbb{P}\left(\begin{array}{c} \|\hat{\sigma}^2-\sigma^2\|_{L^2([\alpha,\beta])}\geqslant Rn^{-s/(2s+3)} \text{ or } \\ \|\hat{b}-b\|_{L^2([\alpha,\beta])}\geqslant Rn^{-(s-1)/(2s+3)} \end{array}\right)\leqslant \exp\left(-Dn^{1/(2s+3)}\right).$$

This means exponential concentration of $\hat{\sigma}$ and \hat{b} at minimax rates $n^{-s/(2s+3)}$ and $n^{-(s-1)/(2s+3)}$, respectively.

Concentration Inequality

Bernstein-type inequality

There exists $\kappa > 0$ such that for all reflected diffusions $\mathrm{d} X_t = b(X_t)\,\mathrm{d} t + \sigma(X_t)\,\mathrm{d} W_t,\ t\in[0,\infty)$ with $(\sigma,b)\in\Theta:=\Theta_2$ and arbitrary initial distribution, $\forall f:[0,1]\to\mathbb{R}$ bounded, $\forall s>0$ and $\forall n\in\mathbb{N}$,

$$\mathbb{P}\left(\left|\sum_{j=0}^{n-1} (f(X_{j\Delta}) - \mathbb{E}_{\mu}[f])\right| > s\right)$$

$$\leqslant \kappa \exp\left(-\frac{1}{\kappa} \min\left(\frac{s^2}{n\|f\|_{L^2(\mu)}^2}, \frac{s}{\log(n)\|f\|_{\infty}}\right)\right).$$

Concentration Inequality for Suprema of Empirical Processes

Class of functions $\mathcal{F} = \{f_i : i \in I\}$ with $0 \in \mathcal{F}$ and dim I = d

$$V^2 = \kappa n \sup_{f \in \mathcal{F}} \|f\|_{L^2(\mu)}^2 \text{ and } U = \kappa \log n \sup_{f \in \mathcal{F}} \|f\|_{\infty}$$

Theorem

For $\tilde{\kappa} = 18$ and for all $x \geqslant 0$ we have

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}\left|\sum_{i=0}^{n-1}(f(X_{j\Delta})-\mathbb{E}_{\mu}[f])\right|\geqslant \tilde{\kappa}\left(\sqrt{V^2(d+x)}+U(d+x)\right)\right)\leqslant 2\kappa e^{-x}.$$

Follows from chaining and previous concentration inequality.

Concentration inequality builds on results by Adamczak (2008) for Markov chains based on regeneration approach.

Regeneration Approach

 X_0, X_1, \ldots Markov chain on (S, \mathcal{B}) with transition probability P(x, A)

C called atom if $P(x,A) = \nu(A)$ for all $x \in C$. Markov chain regenerates when $X_n \in C$. Lower bound on transition density instead of atom.

(A1) Minorization condition. $\exists C \in \mathcal{B}, \ \tilde{\beta} > 0$ and probability measure ν on (S,\mathcal{B}) such that $\forall x \in C$ and $\forall A \in \mathcal{B}$

$$P(x,A) \geqslant \tilde{\beta}\nu(A),$$

and $\forall x \in S$ there $\exists n \in \mathbb{N}$ such that $P^n(x, C) > 0$.

(A2) Drift condition. $\exists \lambda < 1, \ K < \infty$ constants and $V : S \to [1, \infty)$ s.t.

$$PV(x) \leqslant \begin{cases} \lambda V(x), & \text{if } x \notin C, \\ K, & \text{if } x \in C. \end{cases}$$

(A3) Strong aperiodicity condition. $\exists \beta > 0$ such that $\tilde{\beta}\nu(C) \geqslant \beta$

Small Ball Probability Condition

 $\mathcal{B}\subseteq\Theta$ with a σ -field \mathcal{S} , Π prior distribution on \mathcal{S} , $(\sigma_0,b_0)\in\Theta$, $\varepsilon_n\to0$, $\sqrt{n}\varepsilon_n\to\infty$, and \mathcal{C} , r fixed constants Suppose Π satisfies

$$\Pi(B_{\varepsilon_n,r})\geqslant e^{-Cn\varepsilon_n^2},$$

where

$$\begin{split} B_{\varepsilon,r} &= \bigg\{ (\sigma,b) \in \mathcal{B} : \mathsf{KL}((\sigma_0,b_0),(\sigma,b)) \leqslant \varepsilon^2, \\ &\quad \mathsf{Var}_{\sigma_0b_0} \left(\log \frac{p_{\sigma b}(\Delta,X_0,X_\Delta)}{p_{\sigma_0b_0}(\Delta,X_0,X_\Delta)} \right) \leqslant 2\varepsilon^2, \\ &\quad \mathsf{K}(\mu_{\sigma_0b_0},\mu_{\sigma b}) \leqslant r, \mathsf{Var}_{\sigma_0b_0} \left(\log \frac{\mu_{\sigma b}(X_0)}{\mu_{\sigma_0b_0}(X_0)} \right) \leqslant 2r \bigg\}. \end{split}$$

with transition density $p_{\sigma b}$ and invariant density $\mu_{\sigma b}$.

General Contraction Theorem

Ghosal, Ghosh & van der Vaart (2000)-type theorem

X reflected diffusion started in stationary distribution Small ball probability condition: C, L, r constants so that

$$\Pi\left(B_{\varepsilon_n,r}\right)\geqslant e^{-Cn\varepsilon_n^2},$$

and $\Pi(\mathcal{B}\backslash\mathcal{B}_n)\leqslant Le^{-(C+4)n\varepsilon_n^2}$ for some sequence $\mathcal{B}_n\subseteq\mathcal{B}$

Tests: Sequence of tests $\Psi_n \equiv \Psi(X_0, \dots, X_{n\Delta})$ and of metrics d_n such that for M > 0 large enough,

$$\mathbb{E}_{\sigma_0b_0}[\Psi_n] \to_{n \to \infty} 0, \quad \sup_{(\sigma,b) \in \mathcal{B}_n: d_n((\sigma,b),(\sigma_0,b_0)) \geqslant M\varepsilon_n} \mathbb{E}_{\sigma b}[1-\Psi_n] \leqslant Le^{-(C+4)n\varepsilon_n^2}.$$

Give posterior contraction: Then the posterior $\Pi(\cdot|X_0,\ldots,X_{n\Delta})$ satisfies

$$\Pi((\sigma,b):d_n((\sigma,b),(\sigma_0,b_0))>M\varepsilon_n|X_0,\ldots,X_{n\Delta})\to 0$$

under $\mathbb{P}_{\sigma_0 b_0}$, as $n \to \infty$.

References

Adamczak, R. (2008): A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. *Electron. J. Probab.* 13(34), 1000-1034.

Ghosal S., Ghosh, J.K. and van der Vaart, A.W. (2000): Convergence rates of posterior distributions. *Ann. Statist.* 28, 500–531.

Gobet, E., Hoffmann, M. and Reiß, M. (2004): Nonparametric estimation of scalar diffusions based on low frequency data. *Ann. Statist.* 32(5), 2223-2253.

Nickl, R. and Söhl, J. (2015): Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. *Arxiv:1510.05526*, submitted.

References

Adamczak, R. (2008): A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. *Electron. J. Probab.* 13(34), 1000-1034.

Ghosal S., Ghosh, J.K. and van der Vaart, A.W. (2000): Convergence rates of posterior distributions. *Ann. Statist.* 28, 500–531.

Gobet, E., Hoffmann, M. and Reiß, M. (2004): Nonparametric estimation of scalar diffusions based on low frequency data. *Ann. Statist.* 32(5), 2223-2253.

Nickl, R. and Söhl, J. (2015): Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. *Arxiv:1510.05526*, submitted.

Thank you for your attention!