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Nonparametric Estimation for Diffusions

Diffusion process
dX(t) = b(Xe)dt + o(Xe)dW,, t >0,
with drift coefficient b, diffusion coefficient o and Brownian motion W
Discrete low-frequency observations
Xo, Xa, -y Xon, n— oo, A > 0 fixed

Goal: Nonparametric estimation of b and o



Minimax Optimal Estimation

Gobet, Hoffmann & ReiB (2004):
minimax optimal nonparametric estimation of o and b

Reflected diffusion on [0, 1], smoothness class for s > 1:
{(06) € H¥(10,1]) x H==1(10,1]) |lloll s < €, [bll e < Coinfo(x) > ¢ }

ill-posed problem with rates

o b
nfs/(2s+3) nf(sfl)/(2s+3)

in L?([a, B]) with0 < a < B <1



Bayesian Estimation

Bayesian estimation methods:

Roberts & Stramer (2001), Papaspiliopoulos, Pokern, Roberts & Stuart
(2012), Pokern, Stuart & van Zanten (2013), van der Meulen, Schauer &
van Zanten (2014), van Waaij & van Zanten (2015), ...

Previous analysis of Bayesian methods restricted to 0 = 1 and

consistency in a weak topology:
van der Meulen & van Zanten (2013), Gugushvili & Spreij (2014),
Koskela, Spano & Jenkins (2015)



Wavelet Series Priors |

1 boundary corrected Daubechies wavelets, 0 < o < 3 < 1,
T ={(l,k) : Yy supported in [c, 5]}

Model diffusion coefficient o by

72 o—I(s+1/2) .
log(c™*(x)) = Z Tulkwlk(x), uk ~" U(-B, B).
(Lk)eT

Comments:

e Could replace uniform distributions U(—B, B) by any distribution
with bouded support and density bounded away from zero.

e Could truncate sum in / at L, — oo sufficiently fast.

e By connection between Holder norms and wavelet series log(o2) is

modelled as typical s-Holder smooth function (with a ‘convenient’
log-factor) .



Wavelet Series Priors |l

Model invariant density p through

2—/(s+3/2)

H(x) = Z ——— (), @k ~" U(-B,B),

2
(I,k)e
Yy /
Drift coefficient b indirectly given by
2b = (0°)' + o (log 1)’
Overall Prior is given by
N = L(c? ((¢?) +o°H")/2)).

Comments:
e Priors on b, o2 are not independent.

e Invariant density is modelled explicitely.



Assumptions on o and g

We define the Holder-type space

C'([0,1]) := {f € C([0,1]) : ||fllc: < oo}, where

Lt]
DU f(x + h) — DUtIF(x)|

flloe = Dkf oo T SuU su |

Ifllc gll [ hobxclny b1 log(1/h) 2

Assume diffusion coefficient og € C® is of form

logog?(x) = > mutu(x), x€[0,1], with 2P|, < B.
(1,k)eZ

Assume invariant density pg € C5™1 is of form

log fo(x) = Y vithw(x), x €[0,1],  with 2T/ Py, | < B.
(I,k)ez



Contraction Theorem

For s > 2 we define ©4 by

{(a, b) : lolles < D, ||blles—1 < D,info(x) = d, boundary conditions}
Theorem
(X; : t = 0) reflected diffusion with (o9, by) € ©s. o and pg as above.
M wavelet series prior. Then for all 0 < a < 8 < 1 there exists v > 0
such that in the L2([c, 3])-norm

n=s/(2st3)||62 — 2|2 > log” n or
I_I( (O’7 b) . nf(sfl)/(25+3)||b_ b0||L2 > |og’yn X07"'7XI1A —>O

under Py, p, as n — 00.



Bound on Information Theoretic Distance

Information theoretic distance

Poobo (A, Xo, Xa)

KL b b)) :=E, | e )
((007 0)7 (07 )) o0bo |:Og ( Pab(A,XO,XA)
Pob transition density, expectation E 5, w.r.t. stationary distribution

Need good bound on KL:

KL((007 bO), (07 b)) S ”pdb — Poobg ”%2
< |1PRE — P2
— -1
< |t bos — e/ oom |2,

S Lob = Loghy s

where Pgb transition operator and L, infinitesimal generator.



Bound on Information Theoretic Distance |l

Infinitesimal generator L,f(x) = 302(x)f"(x) + b(x)f'(x)

Inverse of infinitesimal generator

L1 (x) = / K. o(x, 2)F(2)p10(2) dz
Bound distance between integral kernels
KL((00, bo), (0, b)) < IIL75 — Loy s

S [ [t~ Ko 2l o) ez

2

1 1 2
S liob — UaoboH%?([O,l]) + ng “ o2 +b— bo”(Bfoo)* )
oll(BL, )

with dual spaces of Besov spaces Bi _ and B7_.



Concentration of Frequentist Estimators

For & and b estimators by Gobet, Hoffmann & ReiB (2004) we have:

Theorem
There exists R > 0 such that for n large enough we have uniformly

over O, s > 2,

162 = 02l 2o a1y > R~/ or (~Dme=+)
. , < — :
P ( ||b B b||L2([a,[3]) > Rn—(s—1)/(25+3) < exp Dn

This means exponential concentration of & and b at minimax rates
n—s/(2s+3) and n=(s—1)/(25+3) respectively.



Concentration Inequality

Bernstein-type inequality

There exists k > 0 such that for all reflected diffusions

dX; = b(X;) dt + o(X¢) dW,, t € [0, 00) with (o, b) € © := O, and
arbitrary initial distribution, Vf : [0,1] — R bounded, Vs > 0 and
Vn e N,

1

P ':)(f(xm) ~E,{1D)] > <)

< Kexp L min s* °
<kexp | —— mi , .
kM Al Tog(m) 7l

[




Concentration Inequality for
Suprema of Empirical Processes

Class of functions F = {f; : i € I} with 0 € F and dim/ = d
V? = wnsuprer ||f]|72,) and U = &log nsupser ||l

Theorem
For £ = 18 and for all x > 0 we have

(sup ’ Z f(Xja)—EL[f]) ‘ (\/m+ U(d +x) )) < 2ke™.

Jj=0

Follows from chaining and previous concentration inequality.

Concentration inequality builds on results by Adamczak (2008) for
Markov chains based on regeneration approach.



Regeneration Approach

Xo, X1, ... Markov chain on (S, B) with transition probability P(x, A)

C called atom if P(x, A) = v(A) for all x € C. Markov chain regenerates
when X, € C. Lower bound on transition density instead of atom.

(A1) Minorization condition. 3C € B, > 0 and probability measure v
on (S, B) such that Vx € C and VA € B

P(x,A) > Bu(A),

and Vx € S there 3n € IN such that P"(x, C) > 0.
(A2) Drift condition. 3\ < 1, K < oo constants and V' : S — [1,0) s.t.

AV(x), ifx¢C,
PV(XK{ K. if x € C.

(A3) Strong aperiodicity condition. 38 > 0 such that fv(C) > S



Small Ball Probability Condition

B C © with a o-field S, N prior distribution on S, (09, by) € ©, €, — 0,
V/ne, — o0, and C, r fixed constants
Suppose [1 satisfies

n(s.,,) > e,

where

B.,= {(a, b) € B : KL((00, bo), (o, b)) < €2,

po‘b(A;X07XA) ) g 2527
po’obo(Avx()aXA)

lu‘ab(XO) > }
K(ftogbys thob) < 1, Varg log —~—— | < 2r5p.
(H obgs K b) obo ( g ,Uaobo(XO)

Var gy, (Iog

with transition density p,5 and invariant density fip.



General Contraction Theorem
Ghosal, Ghosh & van der Vaart (2000)-type theorem

X reflected diffusion started in stationary distribution
Small ball probability condition: C, L, r constants so that

N(B.,,) > e ™,

and M(B\B,) < Le~ (€9l for some sequence B, C B

Tests: Sequence of tests W, = W(Xy, ..., X,a) and of metrics d, such
that for M > 0 large enough,

Eogbo[Wn] =000 0, sup Eop[1-V,] < Le(CHAmer,
(0,b)EBr:dn((a,b),(00,by)) = Me,

Give posterior contraction: Then the posterior M(-| Xy, ..., X,a) satisfies
n((CT, b) : dn((CT, b)a (UOa bO)) > M5n|X0a s aXnA) —0

under Py p,, as n — 00.
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Thank you for your attention!
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