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Introduction

The model

Consider a complete probability space (Ω,F ,P) with a filtration
{Ft}t∈R+ , where R+ := [0,+∞). F0 contains all the P-null sets of
F , and {Ft}t∈R+ is right continuous.

Xt , t ≥ 0 is a finite-state time-homogeneous Markov chain with
transition intensity matrix Q and state space S := {1, · · · , d}.
The Markov-modulated diffusion process is the unique solution to

Mt = M0 +

∫ t

0
b(Xs ,Ms)ds +

∫ t

0
σ(Xs ,Ms)dBs ,

where B is a standard Brownian motion. See assumptions.
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Introduction

Assumptions

(A.1) Lipschitz continuity: there is K > 0 such that ∀i ∈ S, x , y ∈ R

|b(i , x)− b(i , y)|+ |σ(i , x)− σ(i , y)| ≤ K |x − y |, .

(A.2) Linear growth: there K > 0 such that

|b(i , x)|+ |σ(i , x)| ≤ K (1 + |x |), ∀i ∈ S, x ∈ R.

(A.3) Irreducibility: the Markov chain Xt is irreducible and has an
invariant probability measure π = (π(1), · · · , π(d)).
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Introduction

MM diffusion with slowly jumping chain

Time
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Introduction

MM diffusion with faster jumping chain

Time
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Introduction

Objective: large deviations principle for ε→ 0 (LDP)

I Study the above SDE under scaling: Scale Q to Q/ε =: Qε;
X ε
t is the Markov chain with transition intensity matrix Qε.

I At the same time small-noise large deviations (Freidlin and
Wentzell [4]). Scaling of the function σ(· , · ) to

√
εσ(· , · ).

The resulting process Mε
t is the unique strong solution to

Mε
t = Mε

0 +

∫ t

0
b(X ε

s ,M
ε
s )ds +

√
ε

∫ t

0
σ(X ε

s ,M
ε
s )dBs .

We assume Mε
0 ≡ 0, whereas X ε

0 starts at an arbitrary x ∈ S.

I Investigate the LDP for the joint process (Mε, νε), where

νε(ω; t, i) =

∫ t

0
1{X εs (ω)=i}ds.



Large deviations for MM diffusion processes 9/ 48

Introduction

Additional notions

I MT is the space of functions ν on [0,T ]× S satisfying
ν(t, i) =

∫ t
0 Kν(s, i)ds, where

∑d
i=1 Kν(s, i) = 1, Kν(s, i) ≥ 0,

and Kν(·, i) Borel measurable. The metric on MT is

dT (µ, ν) = sup
0≤t≤T ,i∈S

∣∣∣∣∫ t

0
Kµ(s, i)ds −

∫ t

0
Kν(s, i)ds

∣∣∣∣ .
I CT = {f ∈ C[0,T ](R) : f (0) = 0} with the uniform metric ρT .

I The product metric ρT × dT on CT ×MT is defined by

(ρT × dT )((ϕ, ν), (ϕ′, ν ′)) := ρT (ϕ,ϕ′) + dT (ν, ν ′).

B(CT ×MT ) is the Borel σ-algebra generated by ρT × dT .
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General notions

Large deviations principle (LDP)

Let X be a Polish space with metric ρ and Borel σ-algebra B(X).

Definition 1 (Varadhan [8])

A family of probability measures Pε on (X,B(X)) is said to obey
the LDP with a rate function I (·) : X→ [0,∞] satisfying:

1. There exists x ∈ X such that I (x) <∞; I is lsc; for every
c <∞ the set {x : I (x) ≤ c} is compact in X.

2. For every closed set F ⊂ X,
lim supε→0 ε logPε(F ) ≤ − infx∈F I (x).

3. For every open set O ⊂ X,
lim infε→0 ε logPε(O) ≥ − infx∈O I (x).
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General notions

Exponential tightness

Definition 2 (Den Hollander [3], Puhalskii [7])

A family of probability measures Pε on (X,B(X)) is said to be
exponentially tight, if for every L <∞, there exists a compact set
KL ⊂ X such that

lim sup
ε→0

ε logPε(X \ KL) ≤ −L.
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General notions

Local LDP

Definition 3 (Puhalskii [7], Liptser and Puhalskii [5])

A family of probability measures Pε on (X,B(X)) is said to obey
the local LDP with a rate function I (·) if for every x ∈ X

lim sup
δ→0

lim sup
ε→0

ε logPε({y ∈ X : ρ(x , y) ≤ δ}) ≤ −I (x), (1)

lim inf
δ→0

lim inf
ε→0

ε logPε({y ∈ X : ρ(x , y) ≤ δ}) ≥ −I (x). (2)
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General notions

LDP and local LDP

Since X is a Polish space, Definition 1(1) implies exponential
tightness. Definition 1(2,3) guarantee that Pε satisfies the local
LDP. The converse is also valid and is the key for our main result.

Theorem 4 (Puhalskii [7], Liptser and Puhalskii [5])

If a family of probability measures Pε on (X,B(X)) is exponentially
tight and obeys the local LDP with a rate function I , then it obeys
the LDP with the rate function I .
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General notions

LDP on a dense subset

A local LDP on a dense subset of X implies the local LDP on X.

Lemma 5 (Borovkov and Mogulskĭı [2])

(i) If (1) is fulfilled for all x̃ ∈ X̃, where X̃ is dense in X and
function I (x) is lower semi-continuous, then it holds for all x ∈ X.
(ii) If for every x ∈ X with I (x) <∞ there exists a sequence
x̃n ∈ X̃ converging to x and I (x̃n)→ I (x), then (2) for x̃ ∈ X̃
implies the same for all x ∈ X.



Large deviations for MM diffusion processes 16/ 48

Main results

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP
The case inf i ,x σ

2(i , x) > 0
The general case



Large deviations for MM diffusion processes 17/ 48

Main results

Rate function for the Markov chain

The rate function corresponding to νε is defined as

ĨT (ν) :=

∫ T

0
sup
u∈U

[
−

d∑
i=1

(Qu)(i)

u(i)
Kν(s, i)

]
ds, ν ∈MT ,

where

(Qu)(i) =
∑d

j=1 Qiju(j), for i ∈ S, U = Rd
++.

NB: ĨT (ν) is a time varying variation on the usual rate function for
large deviations of Markov chains [3, Theorem IV.14].
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Main results

Rate function for Mε

Let HT = {ϕ ∈ CT : ϕ(t) =
∫ t

0 ϕ
′(s)ds, with ϕ′ ∈ L2[0,T ]}

(Cameron-Martin space).

The rate function corresponding to Mε is

IT (ϕ, ν) :=


1

2

∫ T

0

[ϕ′t − b̂t(ν, ϕt)]2

σ̂2
t (ν, ϕt)

dt if ϕ ∈ HT ,

∞ otherwise.

where

b̂t(ν, x) :=
d∑

i=1

b(i , x)Kν(t, i)

σ̂t(ν, x) :=

(
d∑

i=1

σ2(i , x)Kν(t, i)

)1/2

.
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Main results

Main theorem

Let P ◦ (Mε, νε)−1 denote P((Mε, νε) ∈ ·), a family of probability
measures on (CT ×MT ,B(CT ×MT )).
The marginals P ◦ (Mε)−1 and P ◦ (νε)−1 are families of probability
measures on (CT ,B(CT )) and (MT ,B(MT )) respectively.

Theorem 6
For every T > 0, the family P ◦ (Mε, νε)−1 obeys the LDP in
(CT ×MT , ρT × dT ) with the rate function

LT (ϕ, ν) = IT (ϕ, ν) + ĨT (ν).
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Main results

Two corollaries

The following two results are a consequence of the contraction
principle.

Corollary 7

The family P ◦ (Mε)−1 obeys the LDP with the rate function
infν∈MT

LT (ϕ, ν).

Corollary 8

The family P ◦ (νε)−1 obeys the LDP in (MT , dT ) with the rate
function ĨT (ν).



Large deviations for MM diffusion processes 21/ 48

Sketch proof of the main theorem

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP
The case inf i ,x σ

2(i , x) > 0
The general case



Large deviations for MM diffusion processes 22/ 48

Sketch proof of the main theorem

Structure of the proof of the main theorem I

Prove exponential tightness of P ◦ (Mε, νε)−1, i.e., for every
L <∞, there exists a compact set KL ⊂ CT ×MT such that

lim sup
ε→0

ε logP ((Mε, νε) ∈ CT ×MT \ KL) ≤ −L.

Steps:

I P ◦ (Mε, νε)−1 is exponentially tight if P ◦ (Mε)−1 and
P ◦ (νε)−1 are so.

I Exponential tightness of P ◦ (Mε)−1 in Proposition 9 below.

I For any ν ∈MT , its derivative Kν(s, i) is bounded by 1,
hence MT is equicontinuous. Moreover, MT is bounded and
closed and the Arzelà-Ascoli theorem implies that MT is
compact. We can take KL = MT for P ◦ (νε)−1.
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Sketch proof of the main theorem

Structure of the proof of the main theorem II

Show that P ◦ (Mε, νε)−1 obeys the local LDP with rate function
LT (ϕ, ν): for every (ϕ, ν) ∈ CT ×MT ,

the upper bound

lim sup
δ→0

lim sup
ε→0

ε logP(ρT (Mε, ϕ)+dT (νε, ν) ≤ δ) ≤ −LT (ϕ, ν),

and the lower bound

lim inf
δ→0

lim inf
ε→0

ε logP(ρT (Mε, ϕ) + dT (νε, ν) ≤ δ) ≥ −LT (ϕ, ν).
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Sketch proof of the main theorem

Structure of the proof of the main theorem III

Steps for proving the local LDP:

I Prove the local LDP on a dense subset of CT ×MT .

I Prove the upper bound: Proposition 17.

I The lower bound is first proved in Proposition 20 under the
condition inf i ,x σ

2(i , x) > 0.

I Then the condition is lifted in Proposition 22 by a
perturbation argument.
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Exponential tightness

Exponential tightness of P ◦ (Mε)−1

Proposition 9

For every T > 0, the family P ◦ (Mε)−1 is exponentially tight on
(CT ,B(CT )).

The technique to prove the proposition borrows elements from
Liptser [5]. We also use two auxiliary results adapted from Aldous
and from Liptser and Pukhalskii [6], applied to Y = Mε.
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Exponential tightness

Auxiliary result I

Let ΓT be the family of Ft-stopping times with values in [0,T ].

Proposition 10 (Aldous [1])

Let, for each ε > 0, Y ε : Ω× [0,T ]→ R be an {Ft}t≤T -adapted
continuous process, so with paths in CT . If

(i) lim
K ′→∞

lim sup
ε→0

ε logP
(
Y ε∗
T ≥ K ′

)
= −∞,

and

(ii) lim
δ→0

lim sup
ε→0

ε log sup
τ∈ΓT

P

(
sup
t≤δ
|Y ε
τ+t − Y ε

τ | ≥ η

)
= −∞, ∀η > 0,

then P ◦ (Y ε)−1 is exponentially tight.
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Exponential tightness

Auxiliary result II, needed for (ii)

Lemma 11 (Liptser and Pukhalskii [6])

Let Y = (Yt)t≥0 be a continuous semimartingale with Y0 = 0,
Y = A + M, A is the predictable process of locally bounded
variation, M the local martingale.

Assume that for T > 0 there exists a convex function H with
H(0) = 0 and a nonnegative random variable ξ such that for all
λ ∈ R and t ≤ T

λAt + λ2〈M〉t/2 ≤ tH(λξ), a.s..

Then, for all c > 0 and η > 0,

P(Y ∗T ≥ η) ≤ P(ξ > c) + exp

{
− sup
λ∈R

[λη − TH(λc)]

}
.
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Upper bound for the local LDP

Auxiliary result III

Let M+
T be the subset of MT such that Kν(s, i) > 0, and M++

T be
the subset of M+

T such that Kν(·, i) ∈ C∞[0,T ],∀i ∈ S.

Lemma 12
M++

T is dense in MT .

Lemma 13
Fix s ∈ [0,T ] and ν ∈M++

T . Then there is an optimizer u∗(s, ·) of

inf
u∈U

[
d∑

i=1

(Qu)(i)

u(i)
Kν(s, i)

]

such that u∗(·, i) ∈ C∞[0,T ], for all i ∈ S.
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Upper bound for the local LDP

Step functions

Let ST denote the space of all step functions on [0,T ] of the form,
for k ∈ N and real numbers λ0, · · · , λk ,

λ(t) = λ01{t=0}(t)+
k∑

i=0

λi1(ti ,ti+1](t), 0 = t0 < · · · < tk+1 = T .

For any ϕ ∈ CT , we introduce the following notation∫ T

0
λ(s)dϕs :=

k∑
i=0

λi [ϕT∧ti+1
− ϕT∧ti ].
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Upper bound for the local LDP

Stochastic exponential I, first density

Put

Nε
t :=

1√
ε

∫ t

0
λ(s)σ(X ε

s ,M
ε
s )dBs , λ ∈ ST ,

which has the stochastic exponential

E(Nε)t = exp

(
Nε
t −

1

2
〈Nε〉t

)
.
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Upper bound for the local LDP

(Nonrandom) lower bound on the first density

Lemma 14
For every (ϕ, ν) ∈ CT ×MT and every λ ∈ ST , δ > 0, there exists
a positive constant Kλ,ϕ,T not depending on ε or δ such that

E(Nε)T ≥ exp

(
1

ε

(∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂s(ν, ϕs)ds

−
∫ T

0

λ2(s)

2
σ̂2
s (ν, ϕs)ds

)
− δ

ε
Kλ,ϕ,T

)

on the set {ρT (Mε, ϕ) + dT (νε, ν) ≤ δ}.
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Upper bound for the local LDP

Stochastic exponential II, second density
Let U denote the space of functions on [0,T ]× S continuously
differentiable in s ∈ [0,T ] and infs∈[0,T ],i∈S u(s, i) > 0.

For any u(·, ·) ∈ U,

N̂ε
t = u(t,X ε

t )−u(0,X ε
0)−

∫ t

0

∂

∂s
u(s,X ε

s )ds−
∫ t

0
(Qεu)(s,X ε

s )ds

is a local martingale. We define

Ñε
t :=

∫ t

0

1

u(s−,X ε
s−)

dN̂ε
s .

Then

E(Ñε)t =
u(t,X ε

t )

u(0,X ε
0)

exp

(
−
∫ t

0

∂
∂s u(s,X ε

s ) + (Qεu)(s,X ε
s )

u(s,X ε
s )

ds

)
.
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Upper bound for the local LDP

(Nonrandom) lower bound on the second density

Lemma 15
For every ν ∈MT , every u ∈ U and every γ, δ > 0, there exist
positive constants Cu, C ′u, Ku and KQ,u not depending on ε or δ
such that

E(Ñε)T ≥ Ku exp

(
− (Cuδ + γ + C ′uT +

1

ε
(KQ,uδ + γ))d

− 1

ε

∫ T

0

d∑
i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds

)
on the set {ρT (Mε, ϕ) + dT (νε, ν) ≤ δ}.
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Upper bound for the local LDP

Use of the lemmas

As E(Ñε)TE(Nε) is a supermartingale, EE(Ñε)TE(Nε)T ≤ 1.

Then Lemmas 12, 14, 15 imply

P(ρT (Mε, ϕ) + dT (νε, ν) ≤ δ) ≤ exponential upper bound.

Optimizing over λ ∈ ST and other parameters lead to the upper
bound in the local LDP on CT ×M++

T .
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Upper bound for the local LDP

Auxiliary result IV

Lemma 16
Let νη, ν ∈MT with kernels K η

ν and Kν such that
K η
ν (·, i)→ Kν(·, i) a.e. as η → 0 on [0,T ] for each i ∈ S. Then

(i) ĨT (νη)→ ĨT (ν) as η → 0;

(ii) IT (ϕ, νη)→ IT (ϕ, ν) as η → 0, ∀ϕ ∈ HT , if
inf i ,x σ

2(i , x) > 0.
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Upper bound for the local LDP

Upper bound in the local LDP on CT ×MT

Lemmas 5 and 16 and lower semicontinuity of the rate functions
then lead to

Proposition 17

For every (ϕ, ν) ∈ CT ×MT ,

lim sup
δ→0

lim sup
ε→0

ε logP(ρT (Mε, ϕ)+dT (νε, ν) ≤ δ) ≤ −LT (ϕ, ν).
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Lower bound for the local LDP

The case inf i,x σ
2(i, x) > 0

Stochastic exponential III

Observe:

The rate function IT (ϕ, ν) is finite for every (ϕ, ν) ∈ HT ×MT if
inf i ,x σ

2(i , x) > 0 (Temporary assumption).

Let (ϕ, ν) ∈ HT ×MT and put

N̄ε
t :=

1√
ε

∫ t

0

ϕ′s − b̂s(ϕs , ν)

σ̂(ϕs , ν)
dBs =:

∫ t

0
h(s)dBs .

with stochastic exponential

E(N̄ε)t = exp

(
N̄ε
t −

1

2
〈N̄ε〉t

)
.
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Lower bound for the local LDP

The case inf i,x σ
2(i, x) > 0

Martingale property

Let, as before,

E(Ñε)t =
u(t,X ε

t )

u(0,X ε
0)

exp

(
−
∫ t

0

∂
∂s u(s,X ε

s ) + (Qεu)(s,X ε
s )

u(s,X ε
s )

ds

)
.

Lemma 18
For every (ϕ, ν) ∈ HT ×MT and u(·, ·) ∈ U, the process
{E(Ñε)tE(N̄ε)t}t∈[0,T ] is a martingale if inf i ,x σ

2(i , x) > 0.

Hence, with a special u∗ one can define a probability measure
Pu∗ ∼ P through dPu∗ = Eu∗T E(N̄ε)TdP, Eu∗ = E(Ñε) for u = u∗.
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Lower bound for the local LDP

The case inf i,x σ
2(i, x) > 0

(Nonrandom) lower bound on the reciprocal second density

Lemma 19
For every ν ∈MT , every u ∈ U and every γ, δ > 0, there exist
positive Cu, C ′u, K ′u and KQ,u not depending on ε or δ such that

[E(Ñε)T ]−1 ≥ K ′u exp

(
− (Cuδ + γ + C ′uT +

1

ε
(KQ,uδ + γ))d

+
1

ε

∫ T

0

d∑
i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds

)
on the set {ρT (Mε, ϕ) + dT (νε, ν) ≤ δ}.

We will use this for the special, optimal u∗.
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Lower bound for the local LDP

The case inf i,x σ
2(i, x) > 0

Lower bound if inf i ,x σ
2(i , x) > 0

By Lemma 18 one has for Bδ = {ρT (Mε, ϕ) + dT (νε, ν) ≤ δ}

P(Bδ) =

∫
Bδ

[
Eu∗T E(N̄ε)T

]−1
dPu∗

and then by Lemma 19

P(Bδ) ≥ exponential lower bound× Pu∗(some set),

which eventually leads to

Proposition 20

For every (ϕ, ν) ∈ HT ×MT , if inf i ,x σ
2(i , x) > 0,

lim inf
δ→0

lim inf
ε→0

ε logP(ρT (Mε, ϕ) + dT (νε, ν) ≤ δ) ≥ −LT (ϕ, ν).
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Lower bound for the local LDP

The general case

Perturbed process

Next we drop the assumption inf i ,x σ
2(i , x) > 0.

Given γ > 0, we consider the perturbed SDE

Mε,γ
t =

∫ t

0
b(X ε

s ,M
ε,γ
s )ds +

√
ε

∫ t

0
σ(X ε

s ,M
ε,γ
s )dBs +

√
εγWt ,

where Wt is a Brownian motion, independent of Bt and X ε
t .

Mε,γ and Mε are ‘superexponentially close’:

Lemma 21
For every T > 0 and η > 0,

lim
γ→0

lim sup
ε→0

ε logP (ρT (Mε,γ ,Mε) > η) = −∞.
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Lower bound for the local LDP

The general case

Final lower bound for the local LDP

Combining the case inf i ,x σ
2(i , x) > 0, Proposition 20 (‘true’ for

the quadratic variation in the perturbed case), Lemma 21 and
letting γ → 0 leads to

Proposition 22

For every (ϕ, ν) ∈ CT ×M,

lim inf
δ→0

lim inf
ε→0

ε logP(ρT (Mε, ϕ) + dT (νε, ν) ≤ δ) ≥ −LT (ϕ, ν).
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Lower bound for the local LDP

The general case
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Lower bound for the local LDP

The general case
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Lower bound for the local LDP

The general case

Thank you!
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