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A short introduction to Stein’s method

Theorem (Stein’s Lemma)
Let Z ∼ N (0, 1). Then

Ef ′(Z)−EZf(Z) = 0

for all functions such that the above expectations exist. Conversely,
every random variable satisfying this equation for a large enough class
of functions f is necessarily the standard normal distribution.

• The operator (Af)(x) = f ′(x)− xf(x) characterises the normal
distribution.
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• The Stein equation

f(x)−Ef(Z) = Ahf (x)

is solved by the Stein solution

hf (x) = e
x2

2

∫ x

−∞
(f(y)−Ef(Z))e−

y2

2 dy.

• Assume we want to bound supf∈F |Ef(X)−Ef(Z)|. Using the
Stein equation we can bound supf∈F |EAhf (X)| instead.

• The Stein factors ‖h′f‖ and ‖h′′f‖ play a crucial role in bounding
EAhf (X).
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Point processes

• Let (X , d0) be a compact metric space, and let α be a diffuse
reference measure on X (e.g. a compact subset of Rd with the
Lebesgue measure).

• Denote by (N,N ) the space of finite counting measures (“point
configurations”) on X equipped with its canonical σ-algebra.

• Every ξ ∈ N can be written as ξ =
∑n

i=1 δxi for some
x1, . . . , xn ∈ X , and where δx denotes the Dirac measure at point x.

• A point process is a random element in N.
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Poisson processes

• Let λ be a finite measure on X .
• A point process Ξ is called a Poisson process with expectation

measure λ if the following two conditions are satisfied:

(a) The number of points in any set is Poisson-distributed:
Ξ(A) ∼ Poisson(λ(A)) for every measurable A ⊂ X .
In particular E

(
Ξ(A)

)
= λ(A).

(b) The numbers of points in any two disjoint sets are independent:
Ξ(A), Ξ(B) independent for any A,B ∈ B with A ∩B = ∅.

• We write Ξ ∼ PoP(λ).
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Gibbs processes

• A function u : N→ R+ is called hereditary if u(ξ) = 0 implies
u(η) = 0 for all point configurations ξ, η ∈ N with ξ ⊂ η.

• A point process Ξ is called a Gibbs process if it has a hereditary
density u : N → R+ with respect to the “standard” Poisson process
distribution PoP(α).

• A Gibbs process is completely described by its conditional
intensity λ(· | ·), where

λ(x | ξ) =
u(ξ + δx)

u(ξ)
for all ξ ∈ N, x ∈ X with ξ({x}) = 0.

• We write Gibbs(λ) for the distribution of this Gibbs process.
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Examples of Gibbs processes I

• Assume that the measure λ has the density β with respect to α.
Then the Poisson process Ξ ∼ PoP(λ) is a Gibbs process with
conditional intensity λ(x | ξ) = β(x).

• A Gibbs process is a pairwise interaction process (PIP) if the
conditional intensity is of the form λ(x | ξ) = β(x)

∏
y∈ξ ϕ(x, y), for

a β : X → R+ and a symmetric interaction function
ϕ : X × X → R+, e.g. for the Strauss process

ϕ(x, y) =

{
γ if d0(x, y) ≤ r;
1 otherwise,

for a r > 0 and a γ ∈ [0, 1].
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Examples of Gibbs processes II

• The area-interaction process (AIP) has the conditional intensity

λ(x | ξ) = βγ−α(Ur(ξ+δx)\Ur(ξ)),

where β, γ, r > 0 and Ur(ξ) =
⋃
x∈ξ Br(x) denotes the green area.

Gibbs point processes

Interaction functions

HCRK theorem in the spatial statistics formulation says

u(ξ) := c
∞∏

k=1

∏

η⊂ξ
η∈Nk

ϕk (η)

where ϕk : Nk → R+ is called the interaction function of order k .

Pairwise interaction process (PIP):

ϕk ≡ 1 for k ≥ 3.

E.g. Strauss process:

ϕ2(x , y) =

{
γ if d(x , y) ≤ R,
1 otherwise;

where γ ∈ [0,1], R > 0, some φ1 : N1 → R+, e.g. φ1 ≡ β (“homogeneous
Strauss process”).

Gibbs point processes

Simulated Strauss processes
γ = 1 γ = 0.8 γ = 0.6

γ = 0.4 γ = 0.2 γ = 0

Other parameters are R = 0.1 and β = 500.

Gibbs point processes

Interactions of arbitrary order: the homogeneous AIP

The homogeneous area-interaction process has density

u(ξ) := c β |ξ| γ−α(UR(ξ)),

where γ > 0, R > 0, and β > 0.
UR(ξ) =

⋃
x∈ξ B(x ,R) denotes the green area.

Gibbs point processes

Simulated area-interaction processes
β= 1500,  η = 0.001 β= 1000,  η = 0.15 β= 600,  η = 0.6

β= 450,  η = 2 β= 160,  η = 15 β= 48,  η = 100

R = 0.02 and β was adjusted so that expected number of points remains the
same.



Simulated Gibbs processes
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Left: Aip with γ = 100, Middle: Aip with γ = 0.01, Right: Strauss
process with γ = 0



Spatial birth-death processes

• Suppose that we have birth rates and death rates

b(· | ·) : X ×N→ R+ with b̄(ξ) :=

∫
b(x | ξ) α(dx) <∞;

d(· | ·) : X ×N→ R+ with d̄(ξ) :=
∑

x∈ξ
d(x | ξ) <∞.

• Let ā(ξ) = b̄(ξ) + d̄(ξ).

• A SBD(ξ0)(b, d)-process is a pure-jump Markov process on N that
starts in ξ0 ∈ N and holds each state ξ for an
Exp(ā(ξ))-distributed time, after which
(a) with probability b̄(ξ)/ā(ξ) a point is added,

positioned according to the density b(· | ξ)
/
b̄(ξ), or

(b) with probability d(x | ξ)/ā(ξ) the point at x is deleted.
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SBD(λ,1)-process

• In what follows always b(· | ·) = λ(· | ·), d ≡ 1 (“unit per-capita
death rate”) and λ(· | ·) is locally stable, i.e. there exists a constant
c∗ such that

λ(x | ξ) ≤ c∗ for all x ∈ X and ξ ∈ N.

• Let Z =
(
Z(t)

)
t≥0
∼ SBD(λ, 1). Then

• Z is non-explosive;
• Z has Gibbs(λ) as its unique stationary distribution.
• Z has the infinitesimal generator

Ah(ξ) =

∫

X

[
h(ξ+δx)−h(ξ)

]
λ(x | ξ) α(dx)+

∫

X

[
h(ξ−δx)−h(ξ)

]
ξ(dx)

for certain functions h : N→ R.
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Coupling

• Our goal is to define a coupling of two Z and Z̃ SBD(λ, 1)’s which
follow the same dynamics but are started in different
configurations.

• Given that at time t the processes are in states Z(t) = ξ and
Z̃ = ξ̃, propose a birth with rate max(λ(· | ξ), λ(· | ξ̃)). The first
process Z accepts it with probability λ(· | ξ)/max(λ(· | ξ), λ(· | ξ̃))
and Z̃ accepts it with probability λ(· | ξ)/max(λ(· | ξ̃), λ(· | ξ̃)).

• The deaths are coupled in the obvious manner, each point dies
with rate one independently of the others but of course the
common points of Z and Z̃ die together.
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Expected coupling time

• Let

ε = sup
‖ξ−η‖=1

∫

X
|λ(x | ξ)− λ(x | η)| α(dx) and c = c∗α(X ).

• Consider the coupling time τ = inf{t ≥ 0: Zξt = Z̃ξ+δxt }.

Theorem
We have Eτ <∞. In particular if ε < 1 then Eτ < (1 + ε)/(1− ε).
Example
For a Strauss processes in Rd with parameters β, γ,R we get
ε = β(1− γ)αdR

d, where αd is the volume of the unit ball in Rd.
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Stein’s method, an overview

Our goal:
Find upper bound for the total variation distance

dTV

(
Gibbs(ν),Gibbs(λ)

)
,

where λ satisfies the local stability condition.

A brief history:

• Stein (1972). Normal approximation.
• Chen (1975). Poisson approximation.
• Barbour (1988). Generator approach (one of the main
techniques for transfering the method to other limit distributions)

• Barbour and Brown (1992). Poisson process approximation.
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Set-up for general probability metrics

• Let H ∼ Gibbs(λ). Suppose we want to bound

d
(
L (Ξ),Gibbs(λ)

)
= sup

f∈F

∣∣Ef(Ξ)− Ef(H)
∣∣,

where F is some class of functions.

• For the total variation metric

F = FTV = {1C ; C ∈ N}.
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Setting up the Stein equation

• For every f ∈ F find h = hf : N→ R such that

f(ξ)− Ef(H) = A hf (ξ) for all ξ ∈ N, (Stein equation)

where A is the generator of a Markov process with stationary
distribution Gibbs(λ) (generator approach).

• Natural choice: the SBD(ξ)(λ, 1)-process Z(ξ) :=
(
Z

(ξ)
t

)
t≥0

from
earlier.
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Solution of the Stein equation

• It can be shown that for bounded f the function h = hf : N→ R,

h(ξ) := −
∫ ∞

0

[
Ef(Z

(ξ)
t )− Ef(H)

]
dt,

is well-defined and solves the Stein equation
f(ξ)− Ef(H) = A h(ξ).
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The Stein factor

• To bound supf∈FTV
|EAhf (Ξ)| it turns out that the key ingredient

is the Stein factor

c1(λ) = sup
f∈FTV ,x∈X ,ξ∈N

|hf (ξ + δx)− hf (ξ)|.

• Note that

hf (ξ + δx)− hf (ξ) = −
∫ ∞

0

[
Ef(Z

(ξ)
t )− Ef(Z

(ξ+δx)
t )

]
dt.

• Thus c1(λ) can be bounded by the expected coupling time of two
SBDP’s starting in configurations differing by one point.
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Upper bound

Theorem (Schuhmacher and S, 2012)
For any two Gibbs point processes

Ξ with conditional intensity ν(· | ·),
H with locally stable conditional intensity λ(· | ·),

there exists a finite constant c1(λ) such that

dTV

(
L (Ξ),L (H)

)
≤ c1(λ)

∫

X
E
∣∣ν(x |Ξ)− λ(x |Ξ)

∣∣ α(dx).

The Stein factor c1(λ) is bounded by the expected coupling time from
earlier.



Pairwise interaction processes

• Suppose that X ⊂ Rd, and Ξ ∼PIP(β, ϕ1) and H ∼PIP(β, ϕ2) are
stationary and inhibitory, i.e. β is constant and
ϕi(x, y) = ϕi(x− y) ≤ 1 for all x, y ∈ X . Then

dTV (L (Ξ),L (H)) ≤ c1(λ)βE|Ξ|
∫

Rd

|ϕ1(x)− ϕ2(x)| dx.



Convergence of the Area interaction process
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Left: Aip with γ = 0.01, Right: Strauss process with γ = 0

• Suppose that X ⊂ Rd, and Ξ ∼ AIP
(
βγαd(R/2)d , γ;R/2

)
and

H ∼ Strauss(β, 0;R), where αd is the volume of the unit ball in Rd.
Then

dTV (L (Ξ),L (H)) ≤ c1(λ) 2dαdR
d−1 βE|Ξ|

(
log γ−αd

)−1/d
.
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Left: Aip with γ = 0.01, Right: Strauss process with γ = 0

• Suppose that X ⊂ Rd, and Ξ ∼ AIP
(
βγαd(R/2)d , γ;R/2

)
and

H ∼ Strauss(β, 0;R), where αd is the volume of the unit ball in Rd.
Then

dTV (L (Ξ),L (H)) ≤ c1(λ) 2dαdR
d−1 βE|Ξ|

(
log γ−αd

)−1/d
.



Non locally stable Gibbs processes

• Although most of the Gibbs processes considered in spatial
statistics are locally stable, there exist some notable exceptions
(e.g. the Lennard - Jones process).

• For pairwise interaction processes satisfying some mild
assumptions, the previous Theorem can be generalised to

dTV

(
L (Ξ),L (H)

)
≤ C1‖ϕ1 − ϕ2‖L1 + C2(C1),

where the constant C2 can be chosen arbitrarily small causing a
larger C1.
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The probability generating functional

• Assume that F = {f} consists of only one function, namely
f(ξ) =

∏
x∈ξ g(x). Then

ΨΞ(g) = E
( ∏

x∈Ξ

g(x)
)

is called probability generating functional.

• Assume that our our Gibbs processes live on a subset of Rd and
that the H is a homogeneous Poisson process with intensity ν.
Then from the Stein equation we get

ΨΞ(g)− exp
(
− ν

∫

Rd

1− g(x) dx
)

= E
(
Ahf (Ξ)

)
.
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Theorem
Let Ξ be a stationary and locally stable Gibbs point process on Rd with
intensity λ and local stability constant c∗. Then

1− λG ≤ ΨΞ(g) ≤ 1− λ

c∗
(
1− e−c∗G

)
,

where G =
∫
Rd 1− g(x) dx.

Theorem
Let Ξ ∼ PIP(β, ϕ) be inhibitory, with finite interaction range, i.e. 1− ϕ
has bounded support, and with intensity λ. Then

β

1 + βG
≤ λ ≤ β

2− e−βG ,

where G =
∫
Rd 1− ϕ(x) dx.
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+ The graphic shows
the intensities of
Strauss processes in
R2 with β = 100 and
r = 0.05. The crosses
are simulated values,
the red line is the
PS-approximation
and the grey area
corresponds to our
bounds.
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