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A short introduction to Stein’s method

Theorem (Stein’s Lemma)
Let Z ~ N(0,1). Then

Ef(Z) - EZf(Z) =0

for all functions such that the above expectations exist. Conversely,
every random variable satisfying this equation for a large enough class
of functions f is necessarily the standard normal distribution.
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Theorem (Stein’s Lemma)
Let Z ~ N(0,1). Then

Ef(Z) - EZf(Z) =0

for all functions such that the above expectations exist. Conversely,
every random variable satisfying this equation for a large enough class
of functions f is necessarily the standard normal distribution.

e The operator (Af)(z) = f'(x) — xf(x) characterises the normal
distribution.
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e The Stein equation

f(x) —Ef(Z) = Ahy(z)

is solved by the Stein solution

i) =% [ " (fy) ~Bf(2)e " dy.

—0o
e Assume we want to bound sup e #|Ef(X) — Ef(Z)|. Using the
Stein equation we can bound sup s¢ z|EAhf(X)| instead.

o The Stein factors |[I| and ||h| play a crucial role in bounding
EAhs(X).
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Point processes

Let (X, dp) be a compact metric space, and let o be a diffuse
reference measure on X' (e.g. a compact subset of R? with the
Lebesgue measure).

Denote by (9, N) the space of finite counting measures (“point
configurations”) on X' equipped with its canonical o-algebra.

Every £ € 91 can be written as § = > | d,, for some

T1,...,Ty € X, and where J, denotes the Dirac measure at point x.

A point process is a random element in 1.
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Poisson processes

e Let A be a finite measure on X.

e A point process Z is called a Poisson process with expectation
measure A\ if the following two conditions are satisfied:

(a) The number of points in any set is Poisson-distributed:
E(A) ~ Poisson(A(A)) for every measurable A C X.
In particular E(ZE(A)) = A(A).
(b) The numbers of points in any two disjoint sets are independent:
=(A), Z(B) independent for any A, B € B with AN B ={.
o We write Z ~ PoP(\).
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Gibbs processes

A function u: M — Ry is called hereditary if u(£) = 0 implies
u(n) = 0 for all point configurations &, n € M with & C 7.

A point process = is called a Gibbs process if it has a hereditary
density u: N'— R, with respect to the “standard” Poisson process
distribution PoP(«).

A Gibbs process is completely described by its conditional
intensity A(-|-), where

Al ) = M)

We write Gibbs(\) for the distribution of this Gibbs process.

for all £ € N, z € X with {({z}) = 0.
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Examples of Gibbs processes I

e Assume that the measure A\ has the density 8 with respect to a.
Then the Poisson process E ~ PoP()\) is a Gibbs process with
conditional intensity A(z |§) = B(x).

e A Gibbs process is a pairwise interaction process (PIP) if the
conditional intensity is of the form A(z ) = B(2) [[, ¢ (@, y), for
a f0: X — R, and a symmetric interaction function
p: X x X = Ry, e.g. for the Strauss process

v oif do(z,y) <7
o(z,y) =

1 otherwise,

forar >0and a~y€|0,1].



R
Examples of Gibbs processes II

e The area-interaction process (AIP) has the conditional intensity

Mz | &) = 57—a(Ur(€+51)\Ur(§))’

where 3,7,7 > 0 and U,(§) = ,c¢ Br(x) denotes the green area.




R
Simulated Gibbs processes
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Left: Aip with v = 100, Middle: Aip with v = 0.01, Right: Strauss
process with v =0
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Spatial birth-death processes

e Suppose that we have birth rates and death rates

b(-]): X x N =R, with b(¢) := /b(x|§) a(dr) < oo

d(-]): X x M= Ry with d(§) =) _d(z]¢) < 0.
el

e Let a(¢) = b(¢) + d(¢).
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Spatial birth-death processes

e Suppose that we have birth rates and death rates

b(-]): X x N =R, with b(¢) := /b(:c|§) a(dr) < oo

d(-]): X x M= Ry with d(§) =) _d(z]¢) < 0.
el

e Let a(§) = b(§) + d(¢).

o A SBD(go)(b, d)-process is a pure-jump Markov process on 9 that
starts in & € 91 and holds each state & for an
Exp(a(§))-distributed time, after which

(a) with probability b(¢)/a(¢) a point is added,
positioned according to the density b(- | f)/l_w(f), or
(b) with probability d(z|£)/a(¢) the point at z is deleted.
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SBD(A,1)-process

In what follows always b(-|-) = A(-|-), d = 1 (“unit per-capita
death rate”) and A(-|-) is locally stable, i.e. there exists a constant
c* such that

ANz |€) <c* forall ze X and £ € M.

Let Z = (Z(t)),~, ~ SBD(A,1). Then
Z is non-explosive;
Z has Gibbs(\) as its unique stationary distribution.

Z has the infinitesimal generator

AR(E) = /X [A(E+6,)—h(E)] Az | €) a(d)+ /X [h(€—5,)—h(€)] £(dz)

for certain functions A: 91 — R.



Coupling

e Our goal is to define a coupling of two Z and Z SBD(A, 1)’s which
follow the same dynamics but are started in different
configurations.

o leen that at time ¢ the processes are in states Z(t) = ¢ and
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Coupling

e Our goal is to define a coupling of two Z and Z SBD(A, 1)’s which
follow the same dynamics but are started in different
configurations.

o leen that at time ¢ the processes are in states Z(t) = £ and
= £, propose a birth with rate max(A(- | €), A(-| €)). The first
process Z accepts it with probability A(-[§)/max(A(-[£), A(- |€))
and Z accepts it with probability A(- | €)/max(A(-]| €), A(- | €)).

e The deaths are coupled in the obvious manner, each point dies
with rate one independently of the others but of course the
common points of Z and Z die together.
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Expected coupling time

e Let

= sup /|)\x|§ Mz |n)| a(dr) and c=c"a(X).
ll§—nll=1

e Consider the coupling time T = inf{t > 0: ZE Z£+§x}

Theorem
We have ET < co. In particular if ¢ < 1 then Er < (1 +¢)/(1 —¢).

Example
For a Strauss processes in R¢ with parameters 3,7, R we get
= B(1 — y)agR?, where g is the volume of the unit ball in R?,
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Stein’s method, an overview

Our goal:
Find upper bound for the total variation distance

dryv (Gibbs(v), Gibbs(\)),

where X satisfies the local stability condition.
A brief history:
e Stein (1972). Normal approximation.
e Chen (1975). Poisson approximation.

e Barbour (1988). Generator approach (one of the main
techniques for transfering the method to other limit distributions)

e Barbour and Brown (1992). Poisson process approximation.
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Set-up for general probability metrics

e Let H ~ Gibbs(\). Suppose we want to bound

)

d(Z(2), Gibbs(\)) = ?615)? |Ef(E) —Ef(H)

where F is some class of functions.

e For the total variation metric

.7:2.7:7“\/:{1(); CEN}.
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distribution Gibbs(\) (generator approach).
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Setting up the Stein equation

e For every f € F find h = hy: 91 — R such that
f(&) —Ef(H) = a/hs(§) forall { €N, (Stein equation)

where o is the generator of a Markov process with stationary
distribution Gibbs(\) (generator approach).

e Natural choice: the SBD®) (X, 1)-process Z©) := (Zt(g))t>0 from
earlier. a
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The Stein factor

e To bound supc 7., [EAhs(Z)| it turns out that the key ingredient
is the Stein factor

c1(N) = sup |hy(€+6z) — hy(E)]
fG}-Tv,IEE/Y,geN

e Note that

hy(E +62) — hy(€) = - /Om[EﬂZS) Ef(ZE)] ar.

e Thus ¢;(A) can be bounded by the expected coupling time of two
SBDP’s starting in configurations differing by one point.



Upper bound

Theorem (Schuhmacher and S, 2012)
For any two Gibbs point processes

E with conditional intensity v(-|-),

H with locally stable conditional intensity A(-|-),
there exists a finite constant ¢1(\) such that

drv (Z(E), Z(H)) < c1(N) /XE|V($ |Z) — Az | E)’ a(dx).

The Stein factor ¢1(\) is bounded by the expected coupling time from
earlier.



Pairwise interaction processes

e Suppose that X € RY, and Z ~PIP(3, ¢1) and H ~PIP(8, @3) are
stationary and inhibitory, i.e. 8 is constant and
vi(z,y) = pi(x —y) <1 for all z,y € X. Then

drv(Z(5), Z(H)) < ar(A) BE[E] /Rdlsm(fﬁ) — pa(a)] de.



Convergence of the Area interaction process
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Left: Aip with v = 0.01, Right: Strauss process with v =0

e Suppose that X € R%, and = ~ AIP (,B’yad(R/2)d,fy; R/2) and

H ~ Strauss(f,0; R), where ay is the volume of the unit ball in R
Then

dry (Z(2), Z(H)) < e1(N) 2dag R BEIZ| (logy~¢)
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Non locally stable Gibbs processes

e Although most of the Gibbs processes considered in spatial
statistics are locally stable, there exist some notable exceptions
(e.g. the Lennard - Jones process).

e For pairwise interaction processes satisfying some mild
assumptions, the previous Theorem can be generalised to

drv(Z(2), £(H)) < Ciller — 2|1 + Ca(Ch),

where the constant Cy can be chosen arbitrarily small causing a
larger C1.
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The probability generating functional

e Assume that F = {f} consists of only one function, namely

f(€) = Ilzee 9(). Then

U=(g) = E([] 9(=))

TEE

m

is called probability generating functional.

e Assume that our our Gibbs processes live on a subset of R% and
that the H is a homogeneous Poisson process with intensity v.
Then from the Stein equation we get

U=(g) — exp < - V/Rd 1—g(x) dx) =E(Ahy(2)).



Theorem

Let = be a stationary and locally stable Gibbs point process on R with
intensity X and local stability constant c*. Then

1-AG <Tz(g) <1- %(1 —e ),

where G = [pa 1 — g(x) da.



Theorem
Let = be a stationary and locally stable Gibbs point process on R with
intensity X and local stability constant c*. Then

1-AG <Tz(g) <1- %(1 —e ),

where G = [pa 1 — g(x) da.

Theorem
Let = ~ PIP(5, @) be inhibitory, with finite interaction range, i.e. 1 — ¢
has bounded support, and with intensity A\. Then

B B

<D< —
11+ 5G =S 2 _¢hc

where G = [pa 1 — p(z) da.
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The graphic shows
the intensities of
Strauss processes in
R? with 8 = 100 and
r = 0.05. The crosses
are simulated values,
the red line is the
PS-approximation
and the grey area
corresponds to our
bounds.
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