Stein's method for Gibbs point processes

Kaspar Stucki Chalmers

joint work with Dominic Schuhmacher

Nantes, April 7 2016

A short introduction to Stein's method

Theorem (Stein's Lemma) Let $Z \sim \mathcal{N}(0, 1)$. Then

$$\mathbf{E}f'(Z) - \mathbf{E}Zf(Z) = 0$$

for all functions such that the above expectations exist. Conversely, every random variable satisfying this equation for a large enough class of functions f is necessarily the standard normal distribution.

A short introduction to Stein's method

Theorem (Stein's Lemma) Let $Z \sim \mathcal{N}(0, 1)$. Then

$$\mathbf{E}f'(Z) - \mathbf{E}Zf(Z) = 0$$

for all functions such that the above expectations exist. Conversely, every random variable satisfying this equation for a large enough class of functions f is necessarily the standard normal distribution.

• The operator $(\mathcal{A}f)(x) = f'(x) - xf(x)$ characterises the normal distribution.

• The Stein equation

$$f(x) - \mathbf{E}f(Z) = \mathcal{A}h_f(x)$$

is solved by the Stein solution

$$h_f(x) = e^{\frac{x^2}{2}} \int_{-\infty}^x (f(y) - \mathbf{E}f(Z)) e^{-\frac{y^2}{2}} dy.$$

• The Stein equation

$$f(x) - \mathbf{E}f(Z) = \mathcal{A}h_f(x)$$

is solved by the *Stein solution*

$$h_f(x) = e^{\frac{x^2}{2}} \int_{-\infty}^x (f(y) - \mathbf{E}f(Z)) e^{-\frac{y^2}{2}} dy.$$

- Assume we want to bound $\sup_{f \in \mathcal{F}} |\mathbf{E}f(X) \mathbf{E}f(Z)|$. Using the Stein equation we can bound $\sup_{f \in \mathcal{F}} |\mathbf{E}\mathcal{A}h_f(X)|$ instead.
- The Stein factors $||h'_f||$ and $||h''_f||$ play a crucial role in bounding $\mathbf{E}\mathcal{A}h_f(X)$.

• Let (\mathcal{X}, d_0) be a compact metric space, and let α be a diffuse reference measure on \mathcal{X} (e.g. a compact subset of \mathbb{R}^d with the Lebesgue measure).

- Let (\mathcal{X}, d_0) be a compact metric space, and let α be a diffuse reference measure on \mathcal{X} (e.g. a compact subset of \mathbb{R}^d with the Lebesgue measure).
- Denote by $(\mathfrak{N}, \mathcal{N})$ the space of finite counting measures ("point configurations") on \mathcal{X} equipped with its canonical σ -algebra.

- Let (\mathcal{X}, d_0) be a compact metric space, and let α be a diffuse reference measure on \mathcal{X} (e.g. a compact subset of \mathbb{R}^d with the Lebesgue measure).
- Denote by $(\mathfrak{N}, \mathcal{N})$ the space of finite counting measures ("point configurations") on \mathcal{X} equipped with its canonical σ -algebra.
- Every $\xi \in \mathfrak{N}$ can be written as $\xi = \sum_{i=1}^{n} \delta_{x_i}$ for some $x_1, \ldots, x_n \in \mathcal{X}$, and where δ_x denotes the Dirac measure at point x.

- Let (\mathcal{X}, d_0) be a compact metric space, and let α be a diffuse reference measure on \mathcal{X} (e.g. a compact subset of \mathbb{R}^d with the Lebesgue measure).
- Denote by $(\mathfrak{N}, \mathcal{N})$ the space of finite counting measures ("point configurations") on \mathcal{X} equipped with its canonical σ -algebra.
- Every $\xi \in \mathfrak{N}$ can be written as $\xi = \sum_{i=1}^{n} \delta_{x_i}$ for some $x_1, \ldots, x_n \in \mathcal{X}$, and where δ_x denotes the Dirac measure at point x.
- A point process is a random element in \mathfrak{N} .

Poisson processes

- Let λ be a finite measure on \mathcal{X} .
- A point process Ξ is called a Poisson process with expectation measure λ if the following two conditions are satisfied:

Poisson processes

- Let λ be a finite measure on \mathcal{X} .
- A point process Ξ is called a Poisson process with expectation measure λ if the following two conditions are satisfied:
- (a) The number of points in any set is Poisson-distributed: $\Xi(A) \sim \text{Poisson}(\lambda(A))$ for every measurable $A \subset \mathcal{X}$. In particular $\mathbb{E}(\Xi(A)) = \lambda(A)$.

Poisson processes

- Let λ be a finite measure on \mathcal{X} .
- A point process Ξ is called a Poisson process with expectation measure λ if the following two conditions are satisfied:
- (a) The number of points in any set is Poisson-distributed: $\Xi(A) \sim \text{Poisson}(\lambda(A))$ for every measurable $A \subset \mathcal{X}$. In particular $\mathbb{E}(\Xi(A)) = \lambda(A)$.
- (b) The numbers of points in any two disjoint sets are independent: $\Xi(A), \Xi(B)$ independent for any $A, B \in \mathcal{B}$ with $A \cap B = \emptyset$.
 - We write $\Xi \sim \text{PoP}(\lambda)$.

• A function $u: \mathfrak{N} \to \mathbb{R}_+$ is called **hereditary** if $u(\xi) = 0$ implies $u(\eta) = 0$ for all point configurations $\xi, \eta \in \mathfrak{N}$ with $\xi \subset \eta$.

- A function $u: \mathfrak{N} \to \mathbb{R}_+$ is called **hereditary** if $u(\xi) = 0$ implies $u(\eta) = 0$ for all point configurations $\xi, \eta \in \mathfrak{N}$ with $\xi \subset \eta$.
- A point process Ξ is called a **Gibbs process** if it has a hereditary density $u: \mathcal{N} \to \mathbb{R}_+$ with respect to the "standard" Poisson process distribution $\operatorname{PoP}(\alpha)$.

- A function $u: \mathfrak{N} \to \mathbb{R}_+$ is called **hereditary** if $u(\xi) = 0$ implies $u(\eta) = 0$ for all point configurations $\xi, \eta \in \mathfrak{N}$ with $\xi \subset \eta$.
- A point process Ξ is called a **Gibbs process** if it has a hereditary density $u: \mathcal{N} \to \mathbb{R}_+$ with respect to the "standard" Poisson process distribution $\operatorname{PoP}(\alpha)$.
- A Gibbs process is completely described by its conditional intensity λ(·|·), where

$$\lambda(x \mid \xi) = \frac{u(\xi + \delta_x)}{u(\xi)} \quad \text{for all } \xi \in \mathfrak{N}, \, x \in \mathcal{X} \text{ with } \xi(\{x\}) = 0.$$

- A function $u: \mathfrak{N} \to \mathbb{R}_+$ is called **hereditary** if $u(\xi) = 0$ implies $u(\eta) = 0$ for all point configurations $\xi, \eta \in \mathfrak{N}$ with $\xi \subset \eta$.
- A point process Ξ is called a **Gibbs process** if it has a hereditary density $u: \mathcal{N} \to \mathbb{R}_+$ with respect to the "standard" Poisson process distribution $\operatorname{PoP}(\alpha)$.
- A Gibbs process is completely described by its conditional intensity λ(·|·), where

$$\lambda(x \,|\, \xi) = \frac{u(\xi + \delta_x)}{u(\xi)} \quad \text{ for all } \xi \in \mathfrak{N}, \, x \in \mathcal{X} \text{ with } \xi(\{x\}) = 0.$$

• We write $\text{Gibbs}(\lambda)$ for the distribution of this Gibbs process.

Examples of Gibbs processes I

• Assume that the measure λ has the density β with respect to α . Then the Poisson process $\Xi \sim \text{PoP}(\lambda)$ is a Gibbs process with conditional intensity $\lambda(x \mid \xi) = \beta(x)$.

Examples of Gibbs processes I

- Assume that the measure λ has the density β with respect to α . Then the Poisson process $\Xi \sim \text{PoP}(\lambda)$ is a Gibbs process with conditional intensity $\lambda(x \mid \xi) = \beta(x)$.
- A Gibbs process is a pairwise interaction process (PIP) if the conditional intensity is of the form λ(x | ξ) = β(x) Π_{y∈ξ} φ(x, y), for a β: X → ℝ₊ and a symmetric interaction function φ: X × X → ℝ₊, e.g. for the Strauss process

$$\varphi(x,y) = \begin{cases} \gamma & \text{if } d_0(x,y) \le r; \\ 1 & \text{otherwise,} \end{cases}$$

for a r > 0 and a $\gamma \in [0, 1]$.

Examples of Gibbs processes II

• The area-interaction process (AIP) has the conditional intensity

$$\lambda(x \mid \xi) = \beta \gamma^{-\alpha(U_r(\xi + \delta_x) \setminus U_r(\xi))},$$

where $\beta, \gamma, r > 0$ and $U_r(\xi) = \bigcup_{x \in \xi} \mathbb{B}_r(x)$ denotes the green area.

Simulated Gibbs processes

Left: Aip with $\gamma = 100$, Middle: Aip with $\gamma = 0.01$, Right: Strauss process with $\gamma = 0$

Spatial birth-death processes

• Suppose that we have birth rates and death rates

$$b(\cdot \mid \cdot) \colon \mathcal{X} \times \mathfrak{N} \to \mathbb{R}_+ \quad \text{with } \bar{b}(\xi) := \int b(x \mid \xi) \ \alpha(dx) < \infty;$$

$$d(\cdot \mid \cdot) \colon \mathcal{X} \times \mathfrak{N} \to \mathbb{R}_+ \quad \text{with } \bar{d}(\xi) := \sum_{x \in \xi} d(x \mid \xi) < \infty.$$

• Let $\bar{a}(\xi) = \bar{b}(\xi) + \bar{d}(\xi)$.

Spatial birth-death processes

• Suppose that we have birth rates and death rates

$$b(\cdot | \cdot) \colon \mathcal{X} \times \mathfrak{N} \to \mathbb{R}_+ \quad \text{with } \bar{b}(\xi) := \int b(x | \xi) \ \alpha(dx) < \infty;$$

$$d(\cdot | \cdot) \colon \mathcal{X} \times \mathfrak{N} \to \mathbb{R}_+ \quad \text{with } \bar{d}(\xi) := \sum_{x \in \xi} d(x | \xi) < \infty.$$

- Let $\bar{a}(\xi) = \bar{b}(\xi) + \bar{d}(\xi)$.
- A SBD^{(ξ_0)}(b, d)-process is a pure-jump Markov process on \mathfrak{N} that starts in $\xi_0 \in \mathfrak{N}$ and holds each state ξ for an $\operatorname{Exp}(\bar{a}(\xi))$ -distributed time, after which
 - (a) with probability $\bar{b}(\xi)/\bar{a}(\xi)$ a point is added, positioned according to the density $b(\cdot |\xi)/\bar{b}(\xi)$, or
 - (b) with probability $d(x | \xi) / \bar{a}(\xi)$ the point at x is deleted.

• In what follows always $b(\cdot | \cdot) = \lambda(\cdot | \cdot)$, $d \equiv 1$ ("unit per-capita death rate") and $\lambda(\cdot | \cdot)$ is *locally stable*, i.e. there exists a constant c^* such that

 $\lambda(x \mid \xi) \leq c^* \text{ for all } x \in \mathcal{X} \text{ and } \xi \in \mathfrak{N}.$

• In what follows always $b(\cdot | \cdot) = \lambda(\cdot | \cdot)$, $d \equiv 1$ ("unit per-capita death rate") and $\lambda(\cdot | \cdot)$ is *locally stable*, i.e. there exists a constant c^* such that

$$\lambda(x \mid \xi) \le c^* \quad \text{for all } x \in \mathcal{X} \text{ and } \xi \in \mathfrak{N}.$$

• Let
$$Z = (Z(t))_{t>0} \sim \text{SBD}(\lambda, 1)$$
. Then

• In what follows always $b(\cdot | \cdot) = \lambda(\cdot | \cdot)$, $d \equiv 1$ ("unit per-capita death rate") and $\lambda(\cdot | \cdot)$ is *locally stable*, i.e. there exists a constant c^* such that

$$\lambda(x \mid \xi) \le c^* \quad \text{for all } x \in \mathcal{X} \text{ and } \xi \in \mathfrak{N}.$$

• Let
$$Z = (Z(t))_{t>0} \sim \text{SBD}(\lambda, 1)$$
. Then

• Z is non-explosive;

• In what follows always $b(\cdot | \cdot) = \lambda(\cdot | \cdot)$, $d \equiv 1$ ("unit per-capita death rate") and $\lambda(\cdot | \cdot)$ is *locally stable*, i.e. there exists a constant c^* such that

$$\lambda(x \mid \xi) \le c^* \quad \text{for all } x \in \mathcal{X} \text{ and } \xi \in \mathfrak{N}.$$

• Let
$$Z = (Z(t))_{t>0} \sim \text{SBD}(\lambda, 1)$$
. Then

- Z is non-explosive;
- Z has $\text{Gibbs}(\lambda)$ as its unique stationary distribution.

• In what follows always $b(\cdot | \cdot) = \lambda(\cdot | \cdot)$, $d \equiv 1$ ("unit per-capita death rate") and $\lambda(\cdot | \cdot)$ is *locally stable*, i.e. there exists a constant c^* such that

$$\lambda(x \mid \xi) \le c^* \quad \text{for all } x \in \mathcal{X} \text{ and } \xi \in \mathfrak{N}.$$

• Let
$$Z = (Z(t))_{t>0} \sim \text{SBD}(\lambda, 1)$$
. Then

- Z is non-explosive;
- Z has $\text{Gibbs}(\lambda)$ as its unique stationary distribution.
- Z has the infinitesimal generator

$$\mathcal{A}h(\xi) = \int_{\mathcal{X}} \left[h(\xi + \delta_x) - h(\xi) \right] \lambda(x \mid \xi) \, \alpha(dx) + \int_{\mathcal{X}} \left[h(\xi - \delta_x) - h(\xi) \right] \, \xi(dx)$$

for certain functions $h: \mathfrak{N} \to \mathbb{R}$.

Coupling

- Our goal is to define a coupling of two Z and \tilde{Z} SBD $(\lambda, 1)$'s which follow the same dynamics but are started in different configurations.
- Given that at time t the processes are in states $Z(t) = \xi$ and $\tilde{Z} = \tilde{\xi}$, propose a birth with rate $\max(\lambda(\cdot | \xi), \lambda(\cdot | \tilde{\xi}))$. The first process Z accepts it with probability $\lambda(\cdot | \xi) / \max(\lambda(\cdot | \xi), \lambda(\cdot | \tilde{\xi}))$ and \tilde{Z} accepts it with probability $\lambda(\cdot | \xi) / \max(\lambda(\cdot | \tilde{\xi}), \lambda(\cdot | \tilde{\xi}))$.

Coupling

- Our goal is to define a coupling of two Z and \tilde{Z} SBD $(\lambda, 1)$'s which follow the same dynamics but are started in different configurations.
- Given that at time t the processes are in states $Z(t) = \xi$ and $\tilde{Z} = \tilde{\xi}$, propose a birth with rate $\max(\lambda(\cdot | \xi), \lambda(\cdot | \tilde{\xi}))$. The first process Z accepts it with probability $\lambda(\cdot | \xi) / \max(\lambda(\cdot | \xi), \lambda(\cdot | \tilde{\xi}))$ and \tilde{Z} accepts it with probability $\lambda(\cdot | \xi) / \max(\lambda(\cdot | \tilde{\xi}), \lambda(\cdot | \tilde{\xi}))$.
- The deaths are coupled in the obvious manner, each point dies with rate one independently of the others but of course the common points of Z and \tilde{Z} die together.

Expected coupling time

• Let

$$\varepsilon = \sup_{\|\xi - \eta\| = 1} \int_{\mathcal{X}} |\lambda(x \,|\, \xi) - \lambda(x \,|\, \eta)| \,\, \alpha(dx) \quad \text{and} \quad c = c^* \alpha(\mathcal{X}).$$

• Consider the coupling time $\tau = \inf\{t \ge 0 \colon Z_t^{\xi} = \tilde{Z}_t^{\xi+\delta_x}\}.$

Expected coupling time

• Let

$$\varepsilon = \sup_{\|\xi - \eta\| = 1} \int_{\mathcal{X}} |\lambda(x \mid \xi) - \lambda(x \mid \eta)| \ \alpha(dx) \quad \text{and} \quad c = c^* \alpha(\mathcal{X}).$$

• Consider the coupling time $\tau = \inf\{t \ge 0 \colon Z_t^{\xi} = \tilde{Z}_t^{\xi+\delta_x}\}.$

Theorem

We have $\mathbf{E}\tau < \infty$. In particular if $\varepsilon < 1$ then $\mathbf{E}\tau < (1+\varepsilon)/(1-\varepsilon)$.

Expected coupling time

• Let

$$\varepsilon = \sup_{\|\xi - \eta\| = 1} \int_{\mathcal{X}} |\lambda(x \,|\, \xi) - \lambda(x \,|\, \eta)| \,\, \alpha(dx) \quad \text{and} \quad c = c^* \alpha(\mathcal{X}).$$

• Consider the coupling time $\tau = \inf\{t \ge 0 \colon Z_t^{\xi} = \tilde{Z}_t^{\xi + \delta_x}\}.$

Theorem

We have $\mathbf{E}\tau < \infty$. In particular if $\varepsilon < 1$ then $\mathbf{E}\tau < (1+\varepsilon)/(1-\varepsilon)$.

Example

For a Strauss processes in \mathbb{R}^d with parameters β, γ, R we get $\varepsilon = \beta(1-\gamma)\alpha_d R^d$, where α_d is the volume of the unit ball in \mathbb{R}^d .

Stein's method, an overview

Our goal: Find upper bound for the total variation distance

 $d_{\mathrm{T}V}(\mathrm{Gibbs}(\nu),\mathrm{Gibbs}(\lambda)),$

where λ satisfies the local stability condition.

Stein's method, an overview

Our goal: Find upper bound for the total variation distance

```
d_{\mathrm{T}V}(\mathrm{Gibbs}(\nu),\mathrm{Gibbs}(\lambda)),
```

where λ satisfies the local stability condition. A brief history:

- Stein (1972). Normal approximation.
- Chen (1975). Poisson approximation.
- Barbour (1988). Generator approach (one of the main techniques for transfering the method to other limit distributions)

Stein's method, an overview

Our goal: Find upper bound for the total variation distance

```
d_{\mathrm{T}V}(\mathrm{Gibbs}(\nu),\mathrm{Gibbs}(\lambda)),
```

where λ satisfies the local stability condition. A brief history:

- Stein (1972). Normal approximation.
- Chen (1975). Poisson approximation.
- Barbour (1988). Generator approach (one of the main techniques for transfering the method to other limit distributions)
- Barbour and Brown (1992). Poisson process approximation.

Set-up for general probability metrics

• Let $H \sim Gibbs(\lambda)$. Suppose we want to bound

$$d(\mathscr{L}(\Xi), \operatorname{Gibbs}(\lambda)) = \sup_{f \in \mathcal{F}} |\mathbb{E}f(\Xi) - \mathbb{E}f(H)|,$$

where \mathcal{F} is some class of functions.

Set-up for general probability metrics

• Let $H \sim Gibbs(\lambda)$. Suppose we want to bound

$$d(\mathscr{L}(\Xi), \operatorname{Gibbs}(\lambda)) = \sup_{f \in \mathcal{F}} |\mathbb{E}f(\Xi) - \mathbb{E}f(H)|,$$

where \mathcal{F} is some class of functions.

• For the total variation metric

$$\mathcal{F} = \mathcal{F}_{TV} = \{1_C; \ C \in \mathcal{N}\}.$$

Setting up the Stein equation

• For every $f \in \mathcal{F}$ find $h = h_f \colon \mathfrak{N} \to \mathbb{R}$ such that

$$f(\xi) - \mathbb{E}f(\mathbf{H}) = \mathscr{A}h_f(\xi)$$
 for all $\xi \in \mathfrak{N}$, (Stein equation)

where \mathscr{A} is the generator of a Markov process with stationary distribution $\text{Gibbs}(\lambda)$ (generator approach).

Setting up the Stein equation

• For every $f \in \mathcal{F}$ find $h = h_f \colon \mathfrak{N} \to \mathbb{R}$ such that

$$f(\xi) - \mathbb{E}f(\mathbf{H}) = \mathscr{A}h_f(\xi)$$
 for all $\xi \in \mathfrak{N}$, (Stein equation)

where \mathscr{A} is the generator of a Markov process with stationary distribution $\text{Gibbs}(\lambda)$ (generator approach).

• Natural choice: the SBD^(ξ)(λ , 1)-process $Z^{(\xi)} := (Z_t^{(\xi)})_{t \ge 0}$ from earlier.

Solution of the Stein equation

• It can be shown that for bounded f the function $h = h_f : \mathfrak{N} \to \mathbb{R}$,

$$h(\xi) := -\int_0^\infty \left[\mathbb{E}f(Z_t^{(\xi)}) - \mathbb{E}f(\mathbf{H}) \right] \, dt$$

is well-defined and solves the Stein equation $f(\xi) - \mathbb{E}f(\mathbf{H}) = \mathscr{A}h(\xi).$

Solution of the Stein equation

• It can be shown that for bounded f the function $h = h_f : \mathfrak{N} \to \mathbb{R}$,

$$h(\xi) := -\int_0^\infty \left[\mathbb{E}f(Z_t^{(\xi)}) - \mathbb{E}f(\mathbf{H}) \right] \, dt$$

is well-defined and solves the Stein equation $f(\xi) - \mathbb{E}f(\mathbf{H}) = \mathscr{A}h(\xi).$

The Stein factor

• To bound $\sup_{f \in \mathcal{F}_{TV}} |\mathbf{E}\mathcal{A}h_f(\Xi)|$ it turns out that the key ingredient is the *Stein factor*

$$c_1(\lambda) = \sup_{f \in \mathcal{F}_{TV}, x \in \mathcal{X}, \xi \in \mathcal{N}} |h_f(\xi + \delta_x) - h_f(\xi)|.$$

The Stein factor

• To bound $\sup_{f \in \mathcal{F}_{TV}} |\mathbf{E}\mathcal{A}h_f(\Xi)|$ it turns out that the key ingredient is the *Stein factor*

$$c_1(\lambda) = \sup_{f \in \mathcal{F}_{TV}, x \in \mathcal{X}, \xi \in \mathcal{N}} |h_f(\xi + \delta_x) - h_f(\xi)|.$$

• Note that

$$h_f(\xi + \delta_x) - h_f(\xi) = -\int_0^\infty \left[\mathbb{E}f(Z_t^{(\xi)}) - \mathbb{E}f(Z_t^{(\xi + \delta_x)}) \right] dt.$$

• Thus $c_1(\lambda)$ can be bounded by the expected coupling time of two SBDP's starting in configurations differing by one point.

Upper bound

Theorem (Schuhmacher and S, 2012)

For any two Gibbs point processes

- Ξ with conditional intensity $\nu(\cdot | \cdot)$,
- H with locally stable conditional intensity $\lambda(\cdot | \cdot)$,

there exists a finite constant $c_1(\lambda)$ such that

$$d_{\mathrm{T}V}(\mathscr{L}(\Xi),\mathscr{L}(\mathrm{H})) \leq c_1(\lambda) \int_{\mathcal{X}} \mathbb{E} |\nu(x | \Xi) - \lambda(x | \Xi)| \alpha(dx).$$

The Stein factor $c_1(\lambda)$ is bounded by the expected coupling time from earlier.

Pairwise interaction processes

• Suppose that $\mathcal{X} \subset \mathbb{R}^d$, and $\Xi \sim \operatorname{PIP}(\beta, \varphi_1)$ and $\operatorname{H} \sim \operatorname{PIP}(\beta, \varphi_2)$ are stationary and inhibitory, i.e. β is constant and $\varphi_i(x, y) = \varphi_i(x - y) \leq 1$ for all $x, y \in \mathcal{X}$. Then

$$d_{\mathrm{TV}}(\mathscr{L}(\Xi),\mathscr{L}(\mathrm{H})) \leq c_1(\lambda) \, \beta \, \mathbb{E}|\Xi| \int_{\mathbb{R}^d} |\varphi_1(x) - \varphi_2(x)| \, dx.$$

Convergence of the Area interaction process

Left: Aip with $\gamma = 0.01$, Right: Strauss process with $\gamma = 0$

Convergence of the Area interaction process

Left: Aip with $\gamma = 0.01$, Right: Strauss process with $\gamma = 0$

• Suppose that $\mathcal{X} \subset \mathbb{R}^d$, and $\Xi \sim \operatorname{AIP}(\beta \gamma^{\alpha_d(R/2)^d}, \gamma; R/2)$ and $H \sim \operatorname{Strauss}(\beta, 0; R)$, where α_d is the volume of the unit ball in \mathbb{R}^d . Then

$$d_{\mathrm{T}V}(\mathscr{L}(\Xi),\mathscr{L}(\mathrm{H})) \leq c_1(\lambda) \, 2d\alpha_d R^{d-1} \, \beta \, \mathbb{E}|\Xi| \left(\log \gamma^{-\alpha_d}\right)^{-1/d}.$$

Non locally stable Gibbs processes

• Although most of the Gibbs processes considered in spatial statistics are locally stable, there exist some notable exceptions (e.g. the *Lennard - Jones process*).

Non locally stable Gibbs processes

- Although most of the Gibbs processes considered in spatial statistics are locally stable, there exist some notable exceptions (e.g. the *Lennard Jones process*).
- For pairwise interaction processes satisfying some mild assumptions, the previous Theorem can be generalised to

$$d_{\mathrm{TV}}\big(\mathscr{L}(\Xi),\mathscr{L}(\mathrm{H})\big) \leq C_1 \|\varphi_1 - \varphi_2\|_{L^1} + C_2(C_1),$$

where the constant C_2 can be chosen arbitrarily small causing a larger C_1 .

The probability generating functional

• Assume that $\mathcal{F} = \{f\}$ consists of only one function, namely $f(\xi) = \prod_{x \in \xi} g(x)$. Then

$$\Psi_{\Xi}(g) = \mathbf{E}\big(\prod_{x\in\Xi} g(x)\big)$$

is called probability generating functional.

The probability generating functional

• Assume that $\mathcal{F} = \{f\}$ consists of only one function, namely $f(\xi) = \prod_{x \in \xi} g(x)$. Then

$$\Psi_{\Xi}(g) = \mathbf{E} \big(\prod_{x \in \Xi} g(x)\big)$$

is called probability generating functional.

• Assume that our our Gibbs processes live on a subset of \mathbb{R}^d and that the H is a homogeneous Poisson process with intensity ν . Then from the Stein equation we get

$$\Psi_{\Xi}(g) - \exp\Big(-\nu \int_{\mathbb{R}^d} 1 - g(x) \, dx\Big) = \mathbf{E}\big(\mathcal{A}h_f(\Xi)\big).$$

Theorem

Let Ξ be a stationary and locally stable Gibbs point process on \mathbb{R}^d with intensity λ and local stability constant c^* . Then

$$1 - \lambda G \le \Psi_{\Xi}(g) \le 1 - \frac{\lambda}{c^*} \left(1 - e^{-c^*G}\right),$$

where $G = \int_{\mathbb{R}^d} 1 - g(x) \, dx$.

Theorem

Let Ξ be a stationary and locally stable Gibbs point process on \mathbb{R}^d with intensity λ and local stability constant c^* . Then

$$1 - \lambda G \le \Psi_{\Xi}(g) \le 1 - \frac{\lambda}{c^*} \left(1 - e^{-c^*G}\right),$$

where $G = \int_{\mathbb{R}^d} 1 - g(x) \, dx$.

Theorem

Let $\Xi \sim \text{PIP}(\beta, \varphi)$ be inhibitory, with finite interaction range, i.e. $1 - \varphi$ has bounded support, and with intensity λ . Then

$$\frac{\beta}{1+\beta G} \leq \lambda \leq \frac{\beta}{2-e^{-\beta G}},$$

where $G = \int_{\mathbb{R}^d} 1 - \varphi(x) \, dx$.

The graphic shows the intensities of Strauss processes in \mathbb{R}^2 with $\beta=100$ and r = 0.05. The crosses are simulated values, the red line is the **PS**-approximation and the grey area corresponds to our bounds.

References

D. Schuhmacher and K. Stucki.

Gibbs point process approximation: Total variation bounds using stein's method.

Annals of Probability, 42(5):1911–1951, 2014

K. Stucki and D. Schuhmacher.

Bounds for the probability generating functional of a Gibbs point process.

Adv. in Appl. Probab., 46:21-34, 2014