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1. Scaling limit: ‘a summary of dependence structure’

I Scaling (zooming out): getting a distant view of the object

I Involves some kind of smoothing (integration)

I At large scales, short-range details (‘dependences’, ‘correlations’)
disappear but long-range ‘correlations’ may prevail

I Scaling (partial sums) limits of any weakly dependent 2nd order
process X coincide with Brownian motion (Donsker’s theorem)

I Scaling limit of a stationary process X is self-similar (Lamperti,
1962) and provides a ‘large-scale summary of dependence structure
of X ’
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‘Anisotropic’ limit theorem: as λ→∞

A−1
λ,γ

∑
(t,s)∈K[λx,λγy]

X(t, s) fdd−→ V X
γ (x, y), (x, y) ∈ R2

+. (1)

I X = {X(t, s); (t, s) ∈ Z2}: a stationary random field (RF) on Z2

I K[λx,λγy] := [1, λx]× [1, λγy] is a family of rectangles with sides growing
at possibly different rate O(λ) and O(λγ)

I γ > 0: characterizes anisotropy of scaling procedure

I Aλ,γ →∞: normalization (usually Aλ,γ = λH(γ))

I fdd−→ : convergence of (all) finite-dimensional distributions,
R2

+ = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}

I limit RF V X
γ depends on γ (also on the law of X)
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Surprising fact:

For ‘many’ RFs X in Z2, nontrivial scaling limits V X
γ

exist for any γ > 0

I With a given RF X one can associate a one-parameter family of scaling
limits V X = {V X

γ , γ > 0} (the ‘scaling diagram of X ’)

I scaling diagram of X : a complete summary of large-scale properties of X?

I What is the structure of V X = {V X
γ , γ > 0}?

I Does and how V X = {V X
γ , γ > 0} reflect the dependence in X along

different directions?
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General facts about V X = {V X
γ , γ > 0}:

Increment of RF V = {V (x, y), (x, y) ∈ R2} on rectangle (u, x]× (v, y] ⊂ R2:

V (K) := V (x, y)−V (u, y)−V (x, v) + V (u, v).

I (Operator) scaling property: let Aλ,γ = λH(γ) then

λH(γ)V (x, y) fdd= V (λx, λγy) ∀λ > 0. (2)

Simplest case of OSRF (Biermé, Meerschaert, Scheffler, 2007)

I Stationary rectangular increments (if X is stationary)

I For i.i.d. RF X , V X = {V X
γ , γ > 0} consists of a single element: Lévy

sheet (or is empty)

I ‘Nontrivial’ scaling diagram is intrinsically related to long-range
dependence (LRD):

∑
(t,s)∈Z2 |cov(X(0, 0),X(t, s))| =∞
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Scaling diagram of random ball model (Pilipauskaitė, S., 2016):

X(t, s) := #1
(
i : (t − xi)2 + (s − yi)2 < Ri

)
, (t, s) ∈ R2

Kaj, Leskelä, Norros, Schmidt (2007), Biermé, Estrade, Kaj (2010)

I {(xi , yi),Ri}: Poisson point process with mean dxdy f (r)dr

f (r) ∼ cf r−1−α, r →∞, 1 < α < 2

I X(t, s) counts the number of uniformly scattered and randomly dilated
balls containing (t, s) ∈ R2

I The area of random ball has heavy-tailed distribution and infinite variance

I {X(t, s), (t, s) ∈ R2} has finite variance and nonintegrable covariance
function (LRD)
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Scaling diagram V X = {V X
γ , γ > 0} of random balls model as γ varies

between 0 and ∞:

0 ∞
b̀aaà̀̀̀̀

γ−

︷ ︸︸ ︷

α-stable Lévy sheet,
1 < α < 2

α∗-stable ‘Lévy slide’,

1 < α < 3/2
︷ ︸︸ ︷

︸ ︷︷ ︸
FBSheet(1/2,H),
3/2 ≤ α < 2

b̀aaà̀̀̀̀
γ+

︷ ︸︸ ︷

α∗-stable ‘Lévy slide’,

1 < α < 3/2
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FBSheet(H, 1/2),

3/2 ≤ α < 2

?

‘intermediate Poisson−’

?

‘intermediate Poisson+’

1

γ+ = 2α− 1, γ− = 1/(2α− 1), α∗ = 2α− 1
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2. Scaling transition

X = {X(t, s); (t, s) ∈ Z2}: a stationary random field (RF) on Z2 s.t.
scaling limits V X

γ = {V X
γ (x, y); (x, y) ∈ R2

+} (1) exist for any γ > 0

Def We say that X exhibits scaling transition if ∃γ0 > 0 s.t.

V X
γ

fdd= V X
+ (∀ γ > γ0), V X

γ
fdd= V X

− (∀ γ < γ0),

V X
+

fdd
6= aV X

− (∀ a > 0).

I V X
± called the unbalanced scaling limits of X

I V X
γ0 called the well-balanced scaling limit of X

I If V X
γ

fdd= V X are the same for any γ > 0, X does not exhibit scaling
transition
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Scaling transition for Gaussian LRD RFs on Z2

A zero mean stationary Gaussian RF X = {X(t, s); (t, s) ∈ Z2} is completely
described by spectral density f = f (x, y) ≥ 0, (x, y) ∈ [−π, π]2

Type I and II spectral densities:

fI(x, y) = g(x, y)(
|x|2 + |y|2H2/H1

)H1/2 , fII(x, y) = g(x, y)
|x|2d1 |y|2d2

, (3)

I H1,H2 > 0, H1H2 < H1 + H2

I 0 < d1, d2 < 1/2

I g: bdd& ctn, g(0, 0) > 0
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Thm 1 (Puplinskaitė & S., 2015)

(i) Let X be a stationary zero mean Gaussian RF on Z2 with Type I spectral
density in (3), H1,H2 > 0, H1H2 < H1 + H2,Hi 6= 1.

Then X exhibits scaling transition at γ0 = H1/H2.

Moreover, the unbalanced scaling limits V X
± of X agree with a fractional

Brownian sheet BH1,H2 where at least one of the two parameters H1,H2
equals 1/2 or 1.

(ii) Let X be a stationary zero mean Gaussian RF on Z2 with Type II spectral
density in (3), 0 < d1, d2 < 1/2. Then X does not exhibit scaling transition.
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Def 2 Fractional Brownian Sheet (FBS) BH1,H2 with parameters
0 < H1,H2 ≤ 1 is a Gaussian process on R2

+ with zero mean and covariance

EBH1,H2 (x, y)BH1,H2 (x ′, y′) = (1/2)(x2H1 + x ′2H1 − |x − x ′|2H1 )
×(1/2)(y2H2 + y′2H2 − |y − y′|2H2 )

Two cases of FBSheet:

1. H1 = 1/2 (or H2 = 1/2):

For fixed y, {B1/2,H2 (x, y), x ≥ 0} is a usual indep. incr. BM in x ≥ 0

2. H1 = 1 (or H2 = 1):

For fixed y, {B1,H2 (x, y) = xBH2 (y), x ≥ 0} is a random line in x ≥ 0
(‘FBSlide’)
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3. Linear LRD RFs: assumptions and examples

Linear RF:

Y (t, s) =
∑

(u,v)∈Z2

a(t − u, s − v)ε(u, v), (t, s) ∈ Z2, (4)

Assumption (A1) {ε, ε(t, s), (t, s) ∈ Z2}: i.i.d, Eε = 0,Eε2 = 1

Assumption (A2) moving-average coefficients:

a(t, s) = 1
(|t|2 + |s|2q2/q1 )q1/2

(
L0
( t

(|t|2 + |s|2q2/q1 )1/2

)
+o(1)

)
, |t|+|s| → ∞,

(5)
where qi > 0, i = 1, 2 satisfy

1 < Q := 1
q1

+ 1
q2

< 2 (6)

L0(u) ≥ 0, u ∈ [−1, 1] is a bounded piece-wise continuous function on [−1, 1].
I a(t, 0) = O(|t|−q1 ), a(0, s) = O(|s|−q2 ) decay at different rate in the

horizontal and vertical directions if q1 6= q2 (strong anisotropy)

I L0 in (5) called the angular function

I (6) implies
∑

(t,s)∈Z2 a(t, s)2 <∞,
∑

(t,s)∈Z2 |a(t, s)| =∞, i.e. Y in
(4)-(5) is a well-defined LRD RF
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Examples: fractionally integrated RFs

Ex 1 Isotropic fractionally integrated random field (Koul & S, 2016):

(−∆)dY (t, s) = ε(t, s), (t, s) ∈ Z2 (7)

I ∆Y (t, s) := (1/4)
∑
|u|+|v|=1(Y (t + u, s + v)−Y (t, s)): (discrete)

Laplace operator (elliptic)

I 0 < d < 1/2: order of fractional integration

I (1− z)d =
∑∞

j=0 ψj(d)z j , ψj(d) := Γ(j − d)/Γ(j + 1)Γ(−d)

I {ε(t, s), (t, s) ∈ Z2}: standardized i.i.d.
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I Stationary solution of (7): zero-mean finite variance RF:

Y (t, s) = (−∆)−dε(t, s) =
∑

(u,v)∈Z2 a(u, v)ε(t − u, s − v),

I MA coefficients:

a(u, v) =
∑∞

j=0 ψj(−d)pj(u, v),
∑

(u,v)∈Z2 a(u, v)2 <∞,

I pj(u, v): j-step transition probabilities of symmetric nearest-neighbor
random walk on Z2 with equal 1-step probabilities 1/4, |u|+ |v| = 1

I Explicit spectral density:
f (x, y) = (2π)−22−2d |(1− cos x) + (1− cos y)|−2d , (x, y) ∈ [−π, π]2
which behaves as const (x2 + y2)−2d as x2 + y2 → 0

I MA coefficients satisfy the isotropic asymptotics:

a(t, s) = (A + o(1))(t2 + s2)−(1−d), t2 + s2 →∞,

where A := π−1Γ(1− d)/Γ(d)

I Y satisfies Assumption (A2) with
q1 = q2 = 2(1− d) ∈ (1, 2),Q = 1/(1− d) ∈ (1, 2) and a constant
angular function L0(z) = A, z ∈ [−1, 1].
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Ex 2 Anisotropic fractionally integrated random field:

∆d
1,2Y (t, s) = ε(t, s), (t, s) ∈ Z2 (8)

I ∆1,2Y (t, s) = Y (t, s)−θY (t−1, s)− 1−θ
2 (Y (t−1, s+1)+Y (t−1, s−1)),

0 < θ < 1: discrete heat operator (‘parabolic’)

I 0 < d < 3/4: order of fractional integration

I (1− z)d =
∑∞

j=0 ψj(d)z j , ψj(d) := Γ(j − d)/Γ(j + 1)Γ(−d)

I {ε(t, s), (t, s) ∈ Z2}: standardized i.i.d.
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I Stationary solution of (8): zero-mean finite variance RF:

Y (t, s) = ∆−d
1,2ε(t, s) =

∑
(u,v)∈Z+×Z a(u, v)ε(t − u, s − v),

I MA coefficients:

a(u, v) = ψu(−d)qu(v),
∑

(u,v)∈Z2 a(u, v)2 <∞

I qu(v): u-step transition probabilities of random walk {Wu , u = 0, 1, · · · }
on Z with 1-step probabilities P(W1 = v|W0 = 0) = θ if v = 0,
= (1− θ)/2 if v = ±1

I MA coefficients satisfy Assumption (A2) with q1 = 3/2− d, q2 = 2q1 and
a continuous angular function L0(z), z ∈ [−1, 1] given by

L0(z) =

{
zd−3/2

Γ(d)
√

2π(1−θ)
exp
{
−
√

(1/z)2−1
2(1−θ)

}
, 0 < z ≤ 1,

0, −1 ≤ z ≤ 0.
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Thm 2 Let Y be a linear RF in (4)-(5), 1
2q1

+ 1
q2
6= 1, 1

q1
+ 1

2q2
6= 1.

Then for any γ > 0 scaling limits V Y
γ in (1) exist with normalization

Aλ(γ) = λH(γ) and (explicit) H (γ) > 0. Moreover, Y exhibits scaling
transition at

γ0 = q1/q2.

I The unbalanced scaling limits V Y
± agree with FBSheet with one of the

two parameters equal 1 or 1/2

I Thm 2 is similar to Thm 1

I There is a heuristic 1-1 correspondence between parameters H1,H2 in
Thm 1 and q1, q2 in Thm 2:

Hi = 2qi(
1
q1

+ 1
q2
− 1), qi = Hi(

1
H1

+ 1
H2
− 1

2 ), i = 1, 2.
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I Internal scale ratio: γ0 = H1/H2 = q1/q2

I Anisotropic scaling determined by external scale ratio γ

I Well-balanced scaling: external scale ratio γ = internal scale ratio γ0

I Unbalanced scaling: external scale ratio γ 6= internal scale ratio γ0

I Unbalanced scaling limits have a very special dependence structure
(independent/invariant increments along one of the coordinate axes)

I Either complete independence, or complete dependence in one of
the two directions

I All scaling limits V Y
γ are Gaussian RFs

Question: what happens if RF X is nonlinear?
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4. Nonlinear RFs

Assumption (A3)k For k ∈ N+, E|ε|2k <∞ and

X(t, s) := Ak(Y (t, s)), (t, s) ∈ Z2 (9)

where Ak is the kth Appell polynomial relative to the (marginal)
distribution of linear RF {Y (t, s)} in (4).

Assumption (A4)k ε(0, 0) d= Z and Y (0, 0) d= Z have standard
normal distribution Z ∼ N (0, 1) and

X(t, s) = G(Y (t, s)), (t, s) ∈ Z2

where G = G(x), x ∈ R is a measurable function with
EG(Z )2 <∞,EG(Z ) = 0 and Hermite rank k ≥ 1.
Central and noncentral limit theorems for nonlinear functionals (Gaussian and
polynomial chaos):
Dobrushin and Major (1979), Taqqu (1979), S. (1982), Breuer and Major
(1983), Giraitis and S. (1985), Avram and Taqqu (1987), Ho and Hsing
(1997), Leonenko (1999), Arcones (2000), Nualart and Peccati (2005), Bai and
Taqqu (2014) + many more



4. Nonlinear RFs

Assumption (A3)k For k ∈ N+, E|ε|2k <∞ and

X(t, s) := Ak(Y (t, s)), (t, s) ∈ Z2 (9)

where Ak is the kth Appell polynomial relative to the (marginal)
distribution of linear RF {Y (t, s)} in (4).

Assumption (A4)k ε(0, 0) d= Z and Y (0, 0) d= Z have standard
normal distribution Z ∼ N (0, 1) and

X(t, s) = G(Y (t, s)), (t, s) ∈ Z2

where G = G(x), x ∈ R is a measurable function with
EG(Z )2 <∞,EG(Z ) = 0 and Hermite rank k ≥ 1.
Central and noncentral limit theorems for nonlinear functionals (Gaussian and
polynomial chaos):
Dobrushin and Major (1979), Taqqu (1979), S. (1982), Breuer and Major
(1983), Giraitis and S. (1985), Avram and Taqqu (1987), Ho and Hsing
(1997), Leonenko (1999), Arcones (2000), Nualart and Peccati (2005), Bai and
Taqqu (2014) + many more



4. Nonlinear RFs

Assumption (A3)k For k ∈ N+, E|ε|2k <∞ and

X(t, s) := Ak(Y (t, s)), (t, s) ∈ Z2 (9)

where Ak is the kth Appell polynomial relative to the (marginal)
distribution of linear RF {Y (t, s)} in (4).

Assumption (A4)k ε(0, 0) d= Z and Y (0, 0) d= Z have standard
normal distribution Z ∼ N (0, 1) and

X(t, s) = G(Y (t, s)), (t, s) ∈ Z2

where G = G(x), x ∈ R is a measurable function with
EG(Z )2 <∞,EG(Z ) = 0 and Hermite rank k ≥ 1.

Central and noncentral limit theorems for nonlinear functionals (Gaussian and
polynomial chaos):
Dobrushin and Major (1979), Taqqu (1979), S. (1982), Breuer and Major
(1983), Giraitis and S. (1985), Avram and Taqqu (1987), Ho and Hsing
(1997), Leonenko (1999), Arcones (2000), Nualart and Peccati (2005), Bai and
Taqqu (2014) + many more



4. Nonlinear RFs

Assumption (A3)k For k ∈ N+, E|ε|2k <∞ and

X(t, s) := Ak(Y (t, s)), (t, s) ∈ Z2 (9)

where Ak is the kth Appell polynomial relative to the (marginal)
distribution of linear RF {Y (t, s)} in (4).

Assumption (A4)k ε(0, 0) d= Z and Y (0, 0) d= Z have standard
normal distribution Z ∼ N (0, 1) and

X(t, s) = G(Y (t, s)), (t, s) ∈ Z2

where G = G(x), x ∈ R is a measurable function with
EG(Z )2 <∞,EG(Z ) = 0 and Hermite rank k ≥ 1.
Central and noncentral limit theorems for nonlinear functionals (Gaussian and
polynomial chaos):
Dobrushin and Major (1979), Taqqu (1979), S. (1982), Breuer and Major
(1983), Giraitis and S. (1985), Avram and Taqqu (1987), Ho and Hsing
(1997), Leonenko (1999), Arcones (2000), Nualart and Peccati (2005), Bai and
Taqqu (2014) + many more



First question: when X = Ak(Y ) is LRD RF?

rY (t, s) := EY (0, 0)Y (t, s) =
∑

(u,v)∈Z2 a(u, v)a(t + u, s + v)

rX(t, s) := EX(0, 0)X(t, s) = EAk(Y (0, 0))Ak(Y (t, s))
( = rk

Y (t, s) if Y is Gaussian)

Recall:
a(t, s) = O((|t|2 + |s|2q2/q1 )−q1/2), |t|+ |s| → ∞,

1 < Q := 1
q1

+ 1
q2
< 2

Then:

rY (t, s) = O((|t|2 + |s|2p2/p1 )−p1/2), |t|+ |s| → ∞,

where pi := qi(2−Q), i = 1, 2

I (q1, q2)↔ (p1, p1): 1→ 1 map

I Q > 1⇔ P := 1
p1

+ 1
p2
> 1

I p1/p2 = q1/q2
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Let

ρ(t, s) := (|t|2 + |s|2q2/q1 )1/2 = (|t|2 + |s|2p2/p1 )1/2, (t, s) ∈ Z2

Recall P = 1
p1

+ 1
p2

(larger pi , i = 1, 2 mean smaller P)

Prop 1 Let RF X = Ak(Y ) satisfy assumptions (A1), (A2) and (A3)k .

(i) (LRD) Let 1 ≤ k < P. Then

rX(t, s) = ρ(t, s)−kp1
(
LX(t/ρ(t, s)) + o(1)

)
, |t|+ |s| → ∞, (10)

where LX(z), z ∈ [−1, 1] is a strictly positive continuous function.
Moreover, ∑

(t,s)∈Z2

|rX(t, s)| =∞.

(ii) (SRD) Let k > P. Then
∑

(t,s)∈Z2 |rX(t, s)| <∞.
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5. Results

Summary of results (Thms 3-7 below):

(R1) Subordinated RFs X = Ak(Y ), 1 ≤ k < P exhibit scaling transition at
the same point γ0 := p1/p2 = q1/q2 independent of k.

(R2) The well-balanced scaling limit V X
γ0 of X = Ak(Y ) is non-gaussian unless

k = 1 and is given by a k-tuple Itô-Wiener integral.

(R3) Unbalanced scaling limits V X
+ = V X

γ , γ > γ0 of X = Ak(Y ) agree with
FBS BH+

1k ,1/2 with Hurst parameter H +
1k ∈ (1/2, 1) if kp2 > 1, and with a

‘generalized Hermite slide’ V X
+ (x, y) = xZ+

k (y) if kp2 < 1, where Z+
k is a

self-similar process written as a k-tuple Itô-Wiener integral. A similar fact
holds for unbalanced limits V X

− = V X
γ , γ < γ0.

(R4) For k > P, RF X = Ak(Y ) does not exhibit scaling transition and all
scaling limits V X

γ , γ > 0 agree with Brownian sheet B1/2,1/2.

(R5) In the case of Gaussian underlying RF Y in (4), the above conclusions
hold for X = G(Y ) and a general nonlinear function G with k equal to
the Hermite rank of G
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Comments:

I (R2), (R4) and (R5) are new in the ‘anisotropic’ case p1 6= p2

I For k = 1 (or X = A1(Y ) = Y ) (R3) agrees with Thm 2

I In the general case 1 ≤ k < P unbalanced limits in (R3) have either
independent or completely dependent increments along one of the
coordinate axes similarly as in the case k = 1

I The variance of Sλ,γ =
∑

(t,s)∈K[λ,λγ ]
X(t, s) in (R3) grows faster than

O(λ1+γ) (= the number of summands) also when Sλ,γ has a Gaussian
limit

I The dichotomy of the limit distribution in (R3) is related to the presence
or absence of the vertical/horizontal LRD property of X

I Proofs of the central limit results in (R3) and (R4) use rather simple
approximation by m-dependent r.v.’s and do not require a combinatorial
argument or Malliavin’s calculus as in Breuer and Major (1983) or
Nualart and Peccati (2005)
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Rigorous formulations
Multiple Itô-Wiener integral:

I L2(R2k) = the space of real-valued functions
h = h((u, v)k), (u, v)k = (u1, v1, · · · , uk , vk) ∈ R2k with finite norm
‖h‖k := {

∫
R2k h2((u, v)k)d(u, v)k}1/2, d(u, v)k = du1dv1 · · ·dukdvk .

I W = {W (du, dv), (u, v) ∈ R2}: real-valued Gaussian white noise with
zero mean and variance EW (du, dv)2 = dudv

I For any h ∈ L2(R2k) the k-tuple Itô-Wiener integral∫
R2k

h((u, v)k)dkW =
∫
R2k

h(u1, v1, · · · , uk , vk)W (du1,dv1) · · ·W (duk ,dvk)

is well-defined and satisfies

E
∫
R2k

h((u, v)k)dkW = 0, E
( ∫

R2k
h((u, v)k)dkW

)2 ≤ k!‖h‖2
k
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Denote:

SX
λ,γ(x, y) :=

∑
(t,s)∈K[λx,λγy]

X(t, s),

Vk,γ0 (x, y) :=
∫
R2k

h(x, y; (u, v)k)dkW , (x, y) ∈ R2
+, (11)

h(x, y; (u, v)k) :=
∫

(0,x]×(0,y]

k∏
`=1

a∞(t − u`, s − v`)dtds,

a∞(t, s) := ρ(t, s)−q1 L0
(
t/ρ(t, s)

)
, (t, s) ∈ R2, (12)

ρ(t, s) = (|t|2 + |s|2q2/q1 )1/2



Denote:

SX
λ,γ(x, y) :=

∑
(t,s)∈K[λx,λγy]

X(t, s),

Vk,γ0 (x, y) :=
∫
R2k

h(x, y; (u, v)k)dkW , (x, y) ∈ R2
+, (11)

h(x, y; (u, v)k) :=
∫

(0,x]×(0,y]

k∏
`=1

a∞(t − u`, s − v`)dtds,

a∞(t, s) := ρ(t, s)−q1 L0
(
t/ρ(t, s)

)
, (t, s) ∈ R2, (12)

ρ(t, s) = (|t|2 + |s|2q2/q1 )1/2



Denote:

SX
λ,γ(x, y) :=

∑
(t,s)∈K[λx,λγy]

X(t, s),

Vk,γ0 (x, y) :=
∫
R2k

h(x, y; (u, v)k)dkW , (x, y) ∈ R2
+, (11)

h(x, y; (u, v)k) :=
∫

(0,x]×(0,y]

k∏
`=1

a∞(t − u`, s − v`)dtds,

a∞(t, s) := ρ(t, s)−q1 L0
(
t/ρ(t, s)

)
, (t, s) ∈ R2, (12)

ρ(t, s) = (|t|2 + |s|2q2/q1 )1/2



Denote:

SX
λ,γ(x, y) :=

∑
(t,s)∈K[λx,λγy]

X(t, s),

Vk,γ0 (x, y) :=
∫
R2k

h(x, y; (u, v)k)dkW , (x, y) ∈ R2
+, (11)

h(x, y; (u, v)k) :=
∫

(0,x]×(0,y]

k∏
`=1

a∞(t − u`, s − v`)dtds,

a∞(t, s) := ρ(t, s)−q1 L0
(
t/ρ(t, s)

)
, (t, s) ∈ R2, (12)

ρ(t, s) = (|t|2 + |s|2q2/q1 )1/2



Denote:

SX
λ,γ(x, y) :=

∑
(t,s)∈K[λx,λγy]

X(t, s),

Vk,γ0 (x, y) :=
∫
R2k

h(x, y; (u, v)k)dkW , (x, y) ∈ R2
+, (11)

h(x, y; (u, v)k) :=
∫

(0,x]×(0,y]

k∏
`=1

a∞(t − u`, s − v`)dtds,

a∞(t, s) := ρ(t, s)−q1 L0
(
t/ρ(t, s)

)
, (t, s) ∈ R2, (12)

ρ(t, s) = (|t|2 + |s|2q2/q1 )1/2



Case γ = γ0 := q1/q2, 1 ≤ k < P:

Thm 3 (i) The RF Vk,γ0 in (11) is well-defined for 1 ≤ k < P as Itô-Wiener
stochastic integral and has zero mean EVk,γ0 (x, y) = 0 and finite variance
EV 2

k,γ0 (x, y) = k!‖h(x, y; ·)‖2
k . Moreover, RF Vk,γ0 has stationary rectangular

increments and satisfies the OSRF property:

Vk,γ0 (λx, λγ0 y) fdd= λH(γ0)Vk,γ0 (x, y), ∀λ > 0,

where H (γ0) := 1 + γ0 − kp1/2.

(ii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k ,
1 ≤ k < P. Then

Var(SX
λ,γ0 ) ∼ c(γ0)λ2H(γ0), c(γ0) := ‖h(1, 1; ·)‖2

k

and
λ−H(γ0)SX

λ,γ0 (x, y) fdd−→ Vγ0 (x, y).
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Case γ 6= γ0 = q1/q2, 1 ≤ k < P:

Four subcases: (C1): γ > γ0,P > k > 1/p2, (C2): γ > γ0, 1 ≤ k < 1/p2,
(C3): γ < γ0,P > k > 1/p1, and (C4): γ < γ0, 1 ≤ k < 1/p1

(C3) and (C4) are symmetric to (C1) and (C2) and essentially follow by
exchanging the coordinates t and s.

Define random processes Z±k with one-dimensional time:

Z+
k (y) :=

∫
R2k

h+(y; (u, v)k)dkW , Z−k (x) :=
∫
R2k

h−(x; (u, v)k)dkW , x, y ≥ 0,

where

h+(y; (u, v)k) :=
∫ y

0

k∏
i=1

a∞(ui , s−vi)ds, h−(x; (u, v)k) :=
∫ x

0

k∏
i=1

a∞(t−ui , vi)dt,

and a∞(t, s) is defined in (12).
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Thm 4 (i) Z+
k and Z−k are well-defined for 1 ≤ k < 1/p2 and 1 ≤ k < 1/p1,

respectively, as Itô-Wiener stochastic integrals.

They have zero mean, finite
variance, stationary increments and are self-similar with respective indices
H +

2k := 1− kp2/2 ∈ (1/2, 1) and H−1k := 1− kp1/2 ∈ (1/2, 1).

(ii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k and
1 ≤ k < 1/p2. Then for any γ > γ0

Var(SX
λ,γ) ∼ c(γ)λ2H(γ), (13)

where H (γ) := 1 + γH +
2k and c(γ) := ‖h+(1; ·)‖2

k . Moreover,

λ−H(γ)SX
λ,γ(x, y) fdd−→ xZ+

k (y). (14)

(iii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k and
1 ≤ k < 1/p1. Then for any γ < γ0

Var(SX
λ,γ) ∼ c(γ)λ2H(γ), (15)

where H (γ) := γ + H−1k and c(γ) := ‖h−(1; ·)‖2
k > 0. Moreover,

λ−H(γ)SX
λ,γ(x, y) fdd−→ yZ−k (x). (16)
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I Similarly as in linear case k = 1 (X = A1(Y ) = Y ) unbalanced scaling
limits of X = Ak(Y ) for 1 ≤ k < P have special dependence structure:
either independent, or completely dependent increments along one of the
coordinate axes

I The point kp2 = 1 at which scaling limit of X = Ak(Y ) for γ > γ0
changes from ‘Hermite slide’ xZ+

k (y) to FBSheet BH+
1k ,1/2(x, y) coincides

with the point where the covariance function of X = Ak(Y ) changes
from vertical LRD to vertical SRD:∑

s∈Z

|rX(0, s)|
{

=∞, kp2 ≤ 1,
<∞, kp2 > 1.

I The point kp1 = 1 at which scaling limit of X = Ak(Y ) for γ < γ0
changes from ‘Hermite slide’ yZ−k (x) to FBSheet B1/2,H−2k

(x, y) coincides
with the point where the covariance function of X = Ak(Y ) changes
from horizontal LRD to horizontal SRD:∑

t∈Z

|rX(t, 0)|
{

=∞, kp1 ≤ 1,
<∞, kp1 > 1.
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Thm 6 Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k
and

k > P.

Then for any γ > 0
Var(SX

λ,γ) ∼ σ2
Xλ

1+γ ,

where σ2
X :=

∑
(t,s)∈Z2 Cov(X(0, 0),X(t, s)) ∈ (0,∞). Moreover,

λ−(1+γ)/2SX
λ,γ(x, y) fdd−→ σXB1/2,1/2(x, y). [= Brownian sheet]

Thm 7 Let X = G(Y ) satisfy Assumption (A4)k . Assume w.l.g. that G has
Hermite expansion G(x) = Hk(x) +

∑∞
j=k+1 cjHj(x)/j!.

(i) Let 1 ≤ k < P. Then RF X satisfies all statements of Thms 3-5.

(ii) Let k > P. Then RF X satisfies the statements of Thm 6.
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∑∞
j=k+1 cjHj(x)/j!.

(i) Let 1 ≤ k < P. Then RF X satisfies all statements of Thms 3-5.

(ii) Let k > P. Then RF X satisfies the statements of Thm 6.
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