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Introduction
The estimation problem with discontinuous density with shift parameter
was considered by many authors

The i.i.d case
The first study was initiated in the work of Chernov and Rubin
(discontinuous density with one jump).

Chernov, H. and Rubin, H., (1956), The estimation of the location of a discontinuity in density,
Proc.Third Berkeley Symp. Math.Statist. and Prob., 1, 19-38.

The case of many discontinuities was studied in the work of Rubin,
Rubin, H. (1961) The estimation of the discontinuities in multivariate densities, and related problems in stochastic process,,
Proc.Fourth Berkeley Symp.Math.Statist. and Prob., 1, 563-574.

See as well Ermakov
Ermakov, M. S., (1977), Asymptotic behavior of statistical estimates of parameters of multidimensional discontinuous density,
Zap. LOMI, 74, 83–107 (in Russian).

Further development can be found in the works of Ibragimov and
Khaminski, Strasser and Pflug.

Ibragimov, I. A. and Khasminskii, R. Z.,( 1981) Statistical Estimation.
Asymptotic Theory, Springer, New York

Strasser, H. (1982) Lacal asymptotic minimax properties of Pitman estimates,
Z.Whrscheinlichkeitstheory verw. Gebiete 60,223-247.

Pflug, G. C., (1983) The limiting log-likelihood process for discontinuous density families,
Z. Wahrsch. Verw. Geb., 64, 15–35.



The case of Poisson process

Gal’tchouk and Rozovskii considered the disorder-type hypothesis
testing problem

Gal’tchouk, L. I. and Rozovskii, B. L., (1971) The disorder problem for a Poisson process,
Theor. Probab. Appl., 16, 712–716.

The problem of parameter estimation (consistency, limit distributions,
convergence of moments, asymptotic efficiency) was considered by
Kutoyants

Kutoyants, Yu. A., (1984) Parameter Estimation for Stochastic Processes
Heldermann-Verlag, Berlin.

Kutoyants, Yu. A.,(1998) Statistical Inference for Spatial Poisson Processes
Lecture Notes in Statistics 134, Springer-Verlag, New York.

Note as well the related statistical problems in the works
Deshayes, J., (1983) Ruptures de modèles en statistique,

Thèse d’État, Université Paris-Sud.

Akman, V.E. and Raftery, A.E., (1986) Asymptotic inference for a change-point Poisson process,
Ann. Statist., 14, 4, 1583–1590.

Dabye, A.S. (1999) Estimation par la méthode du maximum de vraisemblance pour un processus de Poisson d’intensité
discontinue,
Comptes Rendue de l’Accadémie des Sciences, Séries 1, Mathématics, 329, 4, 335-338.



Statement of the problem and some preliminaries

The Model

We suppose that the observations X (n) = (X1, . . . ,Xn) are n independent inhomogeneous
Poisson processes Xj =

{
Xj (t), 0 ≤ t ≤ T

}
, j = 1, . . . , n with the same intensity function

λ (θ, t) = λ0 + λ1(t)11{θ≤t≤θ+τ0}, 0 ≤ t ≤ τ, θ ∈ Θ = (α, β)

Here τ = T − τ0, 0 < α < β < β + τ0 < τ, infθ∈Θ |λ1(θ + τ0)− λ1(θ)| > 0.
Under this condition we have the two jumps of the intensity function on the interval of
observations for θ ∈ Θ.
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The Model

Our goal

The parameter θ is supposed to be unknown and we have to estimate it by the observations X (n).
We are interested by the asymptotic (n→∞) behavior of the MLE and the BE.

The interest of the model

The considered model of observation with intensity function λ (θ0, t) = λ0 + λ1(t)11{θ0≤t≤θ0+τ0}
is typical for statistical radiophysics and this problem of detection of poissonian signal in
poissonian noise comes from Grant of RSF devoted to this class of problems

• λ1(t)11{θ0≤t≤θ0+τ0} is an signal of length τ0 > 0

• λ0 > 0 is some Poissonian noise

Therefore the problem of estimation of the parameter θ corresponds to the evaluation of the
moment of arriving of the signal.
In optical communication theory : the parameter (information) θ is a transmitted through the
Poissonian channel with modulated intensity where λ0 is the intensity of the noise.



Statement of the problem

Denote by P(n)
θ the measure induced in the space of observation by n realizations of the Poisson

process with the intensity function λ (θ, t), 0 ≤ t ≤ τ . As λ0 > 0 and λ1(t) is bounded the
measures P(n)

θ , θ ∈ Θ are equivalent and the likelihood ratio function is

L
(
θ, θ1,X (n)

)
=

dP(n)
θ

dP(n)
θ1

(X (n)) = exp

{ n∑
j=1

∫ τ

0
ln
( λ0 + λ1(t)11{θ≤t≤θ+τ0}

λ0 + λ1(t)11{θ1≤t≤θ1+τ0}

)
dXj (t)

−n
∫ τ

0

(
λ1(t)11{θ≤t≤θ+τ0} − λ1(t)11{θ1≤t≤θ1+τ0}

)
dt

}
.

Here θ1 ∈ Θ is some fixed value
A realization of such log likelihood ratio in the case n = 1 and θ0 = 2 is given below.
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.



Defintion

As the likelihood ratio L
(
θ, θ1,X (n)

)
is a discontinuous function of θ, we define the MLE θ̂n as a

solution of the following equation

max
{

L
(
θ̂n+, θ1,X (n)

)
, L
(
θ̂n−, θ1,X (n)

)}
= sup
θ∈Θ

L
(
θ, θ1,X (n)

)
.

Here L
(
θ̂n+, θ1,X (n)

)
and L

(
θ̂n−, θ1,X (n)

)
are the left and the right limits of the function

L
(
θ, θ1,X (n)

)
at the point θ̂n respectively.

To introduce the Bayesian estimator we suppose that the unknown parameter is a random
variable with known, positive, continuous density function p(θ), θ ∈ Θ. Then BE θ̃n is a
conditional expectation, which can be written as follows

θ̃n = E
(
θ/X (n)

)
=

∫ β

α
θp(θ)L

(
θ,X (n)

)
dθ

(∫ β

α
p(θ)L

(
θ,X (n)

)
dθ

)−1

.



Notations
Introduce the process

Zθ0 (u) =


exp
{
ρ1(θ0) X +(u) + ρ2(θ0) Y +(u)− r(θ0)u

}
, u ≥ 0

exp
{
−ρ1(θ0) X−(−u)− ρ2(θ0) Y−(−u)− r(θ0)u

}
, u < 0,

where X +(·), X−(·), Y +(·) and Y−(·) are independent Poisson processes (IPP) on R+ of the
constant intensities λ0 + λ1(θ0), λ0, λ0 and λ0 + λ1(θ0 + τ0) respectively. The parameters
ρ1(θ0), ρ2(θ0) and r(θ0) are defined as follows

ρ1(θ0) = ln
λ0

λ0 + λ1(θ0)
, ρ2(θ0) = ln

λ0 + λ1(θ0 + τ0)

λ0
, r(θ0) = λ1(θ0 + τ0)− λ1(θ0).

Denote ρ1 = ρ1(θ0), ρ2 = ρ2(θ0), r = r(θ0). Indeed, by putting u = v
r , X±1 (v) = X±( v

r ) and
Y±1 (v) = Y±( v

r ) we get

Z∗ρ (v) :=


exp
{
ρ1X +

1 (v) + ρ2Y +
1 (v)− v

}
, v ≥ 0

exp
{
−ρ1X−1 (−v)− ρ2Y−1 (−v)− v

}
, v < 0,

where X +
1 (·), X−1 (·), Y +

1 (·) and Y−1 (·) are IPP on R+ of intensities λ0e−ρ1

r , λ0
r , λ0

r and λ0eρ2

r

respectively.



Notations

Introduce the random variables û, ûρ, ũ and ũρ by the equations

max
{

Zθ0 (û−),Zθ0 (û+)
}

= sup
u∈R

Zθ0 (u),

max
{

Z∗ρ (ûρ−),Z∗ρ (ûρ+)
}

= sup
v∈R

Z∗ρ (v),

ũ =

∫ +∞

−∞
uZθ0 (u) du

(∫ +∞

−∞
Zθ0 (u) du

)−1

and

ũρ =

∫ +∞

−∞
vZ∗ρ (v) dv

(∫ +∞

−∞
Z∗ρ (v) dv

)−1

.

Let us note that û ≡ ûρ
r and ũ ≡ ũρ

r .



Asymptotic properties of Bayesian estimator and MLE Mains results

Mains results
Introduce the conditions C0 :

The constants λ0 and τ0 are strictly positive and known.

The function λ1 (·), t ∈ [0, τ ] is strictly increasing, strictly positive and continuous.

The first result gives us the lower bound on the risk of all the estimators.

Theorem 1

Let the conditions C0 be fulfilled. Then for all θ0 ∈ Θ

lim
δ→0

lim
n→+∞

inf
θ̄n

sup
|θ−θ0|<δ

n2Eθ
(
θ̄n − θ

)2 ≥ Eθ0 ũ2 =
Eθ0

(
ũ2
ρ

)
r2

. (1)

Here the inf is taken over all possible estimators θ̄n of the parameter θ.
The inequality (1) allows us to give the following definition.
Let the conditions C0 be satisfied, we say that an estimator θ̄n is asymptotically efficient, if for all
θ0 ∈ Θ we have

lim
δ→0

lim
n→+∞

sup
|θ−θ0|<δ

n2Eθ
(
θ̄n − θ

)2
=

Eθ0

(
ũ2
ρ

)
r2

Alioune TOP (LMM) LMM 11 / 27



Mains results

Denote K ⊂ Θ a compact set.

Theorem 2

Let the conditions C0 be fulfilled. Then the Bayesian estimator θ̃n and the maximum likelihood
estimator θ̂n verify uniformly on θ0 ∈ K the relations :
they are consistent

Pθ0 − lim
n→+∞

θ̃n = θ0, Pθ0 − lim
n→+∞

θ̂n = θ0

converge in Law

Lθ0

{
n
(
θ̃n − θ0

)}
⇒ L

(
ũρ
r

)
, Lθ0

{
n
(
θ̂n − θ0

)}
⇒ L

(
ûρ
r

)
.

For any p > 0 the moments of estimators converge

lim
n→+∞

Eθ0 |n
(
θ̃n − θ0

)
|p = Eθ0

|ũρ|p

|r |p
, lim

n→+∞
Eθ0 |n

(
θ̂n − θ0

)
|p =

Eθ0 |ûρ|
p

|r |p
.

The BE is asymptotically efficient.



Asymptotic properties of Bayesian estimator and MLE Proofs of theorems

Proofs of theorems

The presented proofs are based on the general results of Ibragimov and Khasminski (1981) and
on the development in case of Poisson process given by Kutoyants(1984, 1998) .
To apply it we study the normalized likelihood ratio process of the model

Zθ0,n(u) ≡ L
(
θ0 +

u
n
, θ0,X (n)

)
= exp

{ n∑
j=1

∫ τ

0
ln

(
λ0 + λ1(t)11{θ0+ u

n≤t≤θ0+ u
n +τ0}

λ0 + λ1(t)11{θ0≤t≤θ0+τ0}

)
dXj (t)

−n
∫ τ

0

(
λ1(t)11{θ0+ u

n≤t≤θ0+ u
n +τ0} − λ1(t)11{θ0≤t≤θ0+τ0}

)
dt

}

where u ∈ Un = (n (α− θ0) , n (β − θ0)).

The factor of normalization is n.
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Proofs of theorems

Lemma 1

Let the conditions C0 be satisfied, then the finite dimensional distributions of the process Zθ0,n(u)
converge to the finite dimensional distributions of the process Zθ0 (u) and this convergence is
uniform with respect to θ0 ∈ K.

Lemma 2

Let the conditions C0 be satisfied, then there exists a constant C > 0 such that

Eθ0 | Z
1/2
θ0,n

(u1)− Z 1/2
θ0,n

(u2) |2≤ C | u1 − u2 |;

for all n ∈ N, u1, u2 ∈ Un and θ0 ∈ K

Lemma 3

Let the conditions C0 be satisfied, then there exists a constant c > 0 such that

Eθ0 Z 1/2
θ0,n

(u) ≤ e−c|u|

For all n ∈ N, u ∈ Un and θ0 ∈ K



Proofs of theorems : main steps

For θ = θ0 + u
n , the Bayesian estimator can be written as

θ̃n =

∫ β
α θp(θ)L

(
θ,X (n)

)
dθ∫ β

α p(θ)L
(
θ,X (n)

)
dθ

= θ0 +
1
n

∫
Un

up(θ0 + u
n )L

(
θ0 + u

n ,X
(n)
)

du∫
Un

p(θ0 + u
n )L

(
θ0 + u

n ,X
(n)
)

du

Therefore

n(θ̃n − θ0) =

∫
Un

up(θ0 + u
n )Zn,θ0 (u) du∫

Un
p(θ0 + u

n )Zn,θ0 (u) du
.

In view of Lemmas 1, 2 and 3 we can, referring to Theorem A.22 (see Ibragimov and
Khasminski) assert that the right hand term converges to

ũ =

∫
R uZθ0 (u)du∫
R Zθ0 (u)du

i.e. n(θ̃n − θ0)⇒ ũ.

The consistency and the convergence of the moments of θ̃n also hold.



Construction of the lower bound

The uniform convergence of moments of the BE and the continuity of the limit risk allow us to
obtain the inequality of the Theorem 1. We have

sup
|θ−θ0|<δ

n2Eθ(θ̄n − θ)2 ≥ n2
∫ θ0+δ

θ0−δ
Eθ(θ̄n − θ)2pδ(θ)dθ.

Here we introduced a density function (pδ(θ), θ0 − δ < θ < θ0 + δ). Let us denote by θ̃δ,n the BE
which corresponds to this density function. Then we have the inequality

∫ θ0+δ

θ0−δ
Eθ(θ̄n − θ)2pδ(θ)dθ ≥

∫ θ0+δ

θ0−δ
Eθ(θ̃δ,n − θ)2pδ(θ)dθ.

As we have a uniform convergence of moments for this BE, we obtain the limit

lim
n→∞

n2
∫ θ0+δ

θ0−δ
Eθ(θ̃δ,n − θ)2pδ(θ)dθ =

∫ θ0+δ

θ0−δ

Eθ(ũ2
ρ)

r(θ)2
pδ(θ)dθ.

Recall that r(θ) = λ1(θ + τ0)− λ1(θ) and Eθ(ũ2
ρ) are continuous functions of θ. Therefore it is

possible to verify that

lim
δ→0

∫ θ0+δ

θ0−δ

Eθ(ũ2
ρ)

r(θ)2
pδ(θ)dθ =

Eθ0 (ũ2
ρ)

r2
.



Asymptotic properties of Bayesian estimator and MLE Proofs of theorems

Weak convergence in Skorohod metric

Introduce the space D0(R) of functions ϕ(u) without discontinuities of the second kind defined on
R and such that lim

|u|→+∞
ϕ(u)=0. We assume that all the functions ϕ(u) ∈ D0(R) are continuous

from the right, and have limits from the left (càdlàg).
Let ϕ1 and ϕ2 be two functions belonging to D0(R) . The Skorohod distance between them is
defined as follows

d(ϕ1, ϕ2) = inf
µ

[
sup
R
|ϕ1(u)− ϕ2(µ(u))|+ sup

R
|u − µ(u)|

]
,

where the inf is taken over all the increasing continuous one-to-one mappings µ : R −→ R. This
metric space (D0(R), d(·, ·)) is complete and separable. For z ∈ D0(R), we put

∆h(z) = sup
u∈R

sup
u−h≤u′<u<u”≤u+h

[
min

{∣∣∣z(u
′
)− z(u)

∣∣∣ , ∣∣∣z(u”)− z(u)
∣∣∣}]

+ sup
|u|>h−1

|z(u)|.
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Asymptotic properties of Bayesian estimator and MLE Proofs of theorems

Weak convergence in Skorohod metric

For all θ ∈ Θ, suppose that we have a sequence (zn,θ)n≥1 of stochastic processes
zn,θ =

{
zn,θ(u), u ∈ R

}
and a process zθ=

{
zθ(u), u ∈ R

}
such that realizations of these

processes belong to the space D0(R). Denote Qn
θ and Qθ the distributions (which we suppose

depending on a parameter θ ∈ Θ) induced on the measurable space (D0(R),B(R)) by the
processes zn,θ and zθ respectively. Here B(R) is the Borel σ-algebra of the metric space D0(R).
A criterion of weak convergence in D0(R) is given in the following lemma.

Lemma 4

Let the following two conditions be satisfied :
1- the finite dimensional distributions of the process zn,θ converge to the finite dimensional
distributions of the process zθ uniformly in θ ∈ K ⊂ Θ.
2- For any ε > 0, we have

lim
h→0

sup
n∈N

sup
θ∈K

Qn
θ

{
∆h(zn,θ) > ε

}
= 0. (2)

Then for all functionals φ(·) ∈ D0(R) the distribution of φ(zn,θ) converges to the distribution of
φ(zθ) uniformly in θ ∈ K, that is, zn,θ converges weakly uniformly to zθ .
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Asymptotic properties of Bayesian estimator and MLE Proofs of theorems

Consistency and convergence in law

We need the weak convergence of the likelihood ratio Zn,θ0 (·) to the process Zθ0 (·) in the space
D0(R). Suppose that we already proved this convergence.
For any set B ∈ B(R), we define on D0(R) the functionals ΦB(·) and ΨB(·) by

ΦB(ϕ) = sup
u∈B

ϕ(u) and ΨB(ϕ) = sup
u∈Bc

ϕ(u)

respectively. Thus, the functionals ΦB(·) and ΨB(·) are continuous in the the Skorohod metric.
Put ûn = n(θ̂n − θ0). We obtain

P(n)
θ0

(ûn ∈ B) = P(n)
θ0

{
(ΦB(Zn,θ) > ΨB(Zn,θ0 )

}
−→ Pθ0

(
ΦB(Zθ0 ) > ΨB(Zθ0 )

)
= Pθ0

(
ûΨB(Zθ0

) ∈ B
)
.

Hence the consistency and convergence in law of the MLE are proved.
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Asymptotic properties of Bayesian estimator and MLE Proofs of theorems

Proof of Lemma 4

The convergence of the finite dimensional distributions is already checked by Lemma 1.
Recall that Un = ((α− θ0) n, (β − θ0) n), and put

Vn =

(
(α− θ0) n − 1, (β − θ0) n + 1

)
.

The process Zn,θ0 (u) is defined on the set Un. We extend it over the entire Vn such that it is
continuously decreasing to zero in the bands of width 1 but still keeps the discontinuous points in
u. Outside Vn we define the process Zn,θ(·)=0 . Now the process Zn,θ0 (·) is defined on the whole
real line for all n, and the realizations of the process Zn,θ0 (·) belong to the space D0(R) with
probability 1.
We set for z ∈ D0(R),

∆l
h(z) = sup

u,u′ ,u′′∈δl

[
min

{∣∣∣z(u
′
)− z(u)

∣∣∣ , ∣∣∣z(u
′′

)− z(u)
∣∣∣}]

+ sup
l≤u≤l+h

|z(u)− z(l)|+ sup
l+1−h≤u≤l+1

|z(u)− z(l + 1)| .

Here l > 0 and u, u
′
, u
′′ ∈ δl means that l ≤ u − h ≤ u

′
< u < u

′′ ≤ u + h ≤ l + 1.
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Proofs of theorems

First we estimate the probability P(n)
θ0

(
∆l

h(Z 1/4
n,θ0

) > h1/8
)

Notations

• D be the event that on the interval [l, l + 1] there exist at least two jumps of the process
Zn,θ0 (u) such that the distance between them is less than 2h.

• Dp the event that the process Zn,θ0 (u) has at least p jumps on the interval (u, u + h) and
(u + τ0, u + τ0 + h).

•

Ch =

{
u ∈ δl : sup

u′ ,u”∈δl

[
min

{∣∣∣∣Z 1
4

n,θ0
(u
′
)− Z

1
4

n,θ0
(u)

∣∣∣∣ , ∣∣∣∣Z 1
4

n,θ0
(u”)− Z

1
4

n,θ0
(u)

∣∣∣∣} ≥ h1/8
]}
.

Lemma 5

Let the conditions C0 be satisfied, then there exists a constant C > 0 such that

sup
θ0∈K

P(n)
θ0

(D1) ≤ Ch and sup
θ0∈K

P(n)
θ0

(D2) ≤ C2h2.



Proofs of theorems

Consequently

• If the event D occurs ; then P(n)
θ0

(D) ≤ Ch.

• If the event Dc occurs then Pn
θ0

(Ch) ≤ Ch
3
8 .

The others terms of the modulus ∆l
h(z) can be estimated in a similar way. This gives us the

estimate

Pn
θ0

(∆l
h(Z

1
4

n,θ0
) > h

1
8 ) ≤ Pn

θ0
(D) + Pn

θ0

(
∆l

h(Z
1
4

n,θ0
) > h

1
8 ,Dc

)
≤ Ch + Dh

1
8 ≤ γh

3
8 . (3)

To end the proof we need also the following lemma

Lemma 6

Let
Mn = sup

|u|<L
Z

3
4

n,θ0
(u),

then we have
Pn
θ0

{
Mn > h

−1
16

}
≤ κh

1
128



Simulations

Simulations

We suppose that the observations X (n) = (X1, . . . ,Xn) are n independent inhomogeneous
Poisson processes Xj =

{
Xj (t), 0 ≤ t ≤ 10

}
, j = 1, . . . , n with the same intensity function

λ (θ, t) = 1 + 2t11{θ≤t≤θ+2}, 0 ≤ t ≤ τ

with θ ∈ (1, 6) and τ = 8. The true value of the parameter is θ0 =2. Then we have

L
(
θ,X (n)

)
= exp

{ n∑
j=1

∫ 8

0
ln
(
1 + 2t11{θ≤t≤θ+2}

)
dXj (t)− 4n(θ + 1)

}

= exp

{ n∑
j=1

∑
θ≤t i

j≤θ+2

ln
(

1 + 2t i
j

)
− 4n(θ + 1)

}
, (4)

where {t i
j }j=1,··· ,Nj (Nj = Xj (10)) are the events of the process Xj with intensity function λ (2, t).

The second sum in (4) is equal to zero when there is no event of the observed process.
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asymptotic behavior of estimators

n 10 30 50 100 120 140

θ̂n 3.02 1.23 2.21 1.99 1.99 2.001

20 40 60 80 100 120 140
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FIGURE: evolution of θ̂n with respect to n

For large values of n, the estimator θ̂n approachs reasonably to the true value θ = 2



Behavior of limit process

Remaind that θ0 = 2, τ0 = 2, λ0 = 1 and λ1(t) = 2t for t ∈ (0, 8). Therefore we obtain
ρ1 = − ln 5, ρ2 = ln 9 and r = 4.
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R

FIGURE: A sample path of the process ln Z (u)



Comparison of limiting variances

To estimate the limit variances of the MLE and BE we made 104 simulations of these variables
and the results are

σ2
MLE ≈

1
N

N∑
l=1

û2
l = 1.33 and σ2

BE ≈
1
N

N∑
l=1

ũ2
l = 0.58.

This confirms that
σ2

MLE > σ2
BE .

These values concur with the theoretical results that the Bayesian estimator outperforms the

MLE. It concur also the i.i.d. case with one point of singularity (see Ibragimov and Khasminski

(1981) and Kutoyants(1998)) where it was mentioned that the Bayesian estimators are generally

more efficient that the MLE estimators in Change-Point estimation.



Thank You !
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