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Limit Order Book modeling

• LOB is described by the multi-dimensional stochas-
tic process

X = ((Aα)α=1,...,kA
, (Bβ)β=1,...,kB

)

where

– Aα
t : total number of limit orders available at price

(tick) pα
A on the ask side at time t

– B
β
t : total number of limit orders available at price

(tick) p
β
B on the bid side at time t

• The state space of X is absolutely or relatively set:

– the price pα
A is at the relative α-th limit order from

the best quote on the same/opposite side,
or pα

A is the absolute price
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• The random evolution of X is determined by the pro-
cesses

– MA counting number of arrivals of market orders
on the ask side,

– MB of market orders on the bid side,

– Lα of limit orders at level α on the ask side,

– Lβ of limit orders at level β on the bid side,

– Cα of cancellation at level α on the ask side, and

– Cβ of cancellation at level β on the bid side.

• The multivariate counting process Nn consists of
these counting processes. Here prices can be rec-
ognized as a function of X.

• For modeling of Cα and Cβ, we may treat gn(t, θ)
proportional to Aα and Bβ, respectively, or more
complicated mechanism.
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Counting arrivals of limit orders
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Figure 1: CARR: S-conditional alpha-distribution model (red)
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Limit order intensities modeling

• Modiling limit order intensities λLA
α

– Discover covariates from the data and give a func-
tional representation of λLA

α .

– A relatively simple dependency has been found:

λLA
α = λLA

α (St)
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Limit order intensity model (Muni Toke and Y)

• Intensity model (spot form) is proposed as

λLA
α (S) =

3∑
i=1

Λi(S)φ(αδ; µi(S), sdi(S)2) (α ∈ R)

– Λi are positive functions of S

Λi(S) = exp(β(S))πi(S). (1)

– A model β(s) =
∑2

j=0 βjs
j.

µi(s) =
2∑

j=0

µi,js
j sdi(s) =

2∑
j=0

σi,js
j

πi(s) =
exp

(
πi,0 + πi,1s + πi,2s

2
)∑3

j=1 exp
(
πj,0 + πj,1s + πj,2s

2
)

(π3,0 = π3,1 = π3,2 = 0)
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where δ is the tick size, µi,j, σi,j and πi,j are con-
stants depending on the asset and the environment
in the sampling period.
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Limit order intensity model (by model)
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Figure 2: CARR: S and intensities for given α by intensity model
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Fit model to LOB arrival numbers data

• Fit the model to the counting data of the numbers
of limit orders for various spreads in a fixed time
interval.

• Remark. The fitted values are not intensities but
the expected numbers of limit orders in the time
interval.
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Figure 3: CARR: S-conditional alpha-distribution model (red)
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Figure 4: CARR: S-conditional alpha-distribution model (red)
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Figure 5: CARR: S-conditional alpha-distribution model (red)
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Figure 6: CARR: S-conditional alpha-distribution model (red)
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Figure 7: CARR: S-conditional alpha-distribution model (red)
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Figure 8: CARR: S-conditional alpha-distribution model (red)
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Figure 9: CARR: S-conditional alpha-distribution model (red)



16

● ● ● ●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
● ● ● ● ●

−0.02 0.00 0.02 0.04 0.06 0.08 0.10

0
10

00
20

00
30

00
40

00
50

00

dat.dist

da
t.F

re
q

−0.02 0.00 0.02 0.04 0.06 0.08 0.10

0
10

00
20

00
30

00
40

00
50

00

CARR−alpha_distribution_model−S=8−3−18−10−11−TwoMonths.pdf

Figure 10: CARR: S-conditional alpha-distribution model (red)
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Figure 11: CARR: S-conditional alpha-distribution model (red)



18

● ● ● ● ●
●

●

●

●

●

●

● ●

●

●

● ● ●
●

● ● ● ● ● ●

−0.02 0.00 0.02 0.04 0.06 0.08 0.10

0
20

0
40

0
60

0
80

0
10

00

dat.dist

da
t.F

re
q

−0.02 0.00 0.02 0.04 0.06 0.08 0.10

0
20

0
40

0
60

0
80

0
10

00

CARR−alpha_distribution_model−S=10−3−18−10−11−TwoMonths.pdf

Figure 12: CARR: S-conditional alpha-distribution model (red)
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Limit order book modeling

• This analysis shows possibility of regression model
with covariate processes.



� �� �
Ultra high frequency data and modeling by point
processes� �

� �



High frequency financial data



Phenomena we want to model

• Epps effect (1979)
A natural correlation estimator has a bias in high
frequent observations

– non-synchronicity of the observations

– microstructure Observations are Xtj + εj?
No BM in ultra high frequency sampling

• lead-lag

• relativity of prices — In Limit order Book,
“Price” is a functional of the state of LOB.

• Dependency on covariates

• To incorporate these effects, we will consider

a point process regression model.
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Modeling high frequency data by point processes

• Multivariate point process

– Hewlett (2006)
the clustered arrivals of buy and sell trades using
Hawkes processes

– Large (2007)
Extension by using a finer description of orders

– Bowsher (2007)
Generalized Hawkes model

– E. Bacry et al. (2013)
Price as “upward − downward counting processes”

– Chen and Hall (2013)
the intraday trading times of a common stock traded
on the Australian Stock Exchange, the ANZ stock.
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Modeling high frequency data by point processes

• Limit order book

– R. Cont, Stoikov and Talreja (2010)

– Abergel and Jedidi (2013)

– Smith, Farmer, Gillemot and Krishnamurthy (2003)

– Muni Toke and Pomponio (2011)



� �� �
Point process regression model� �

� �

Ogihara and Yoshida, arXiv 2015
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Point process regression model

• The d-dimensional point process Nn = (Nn,α)α∈I
on I = [T0, T1], I = {1, ..., d}, is assumed to have
� �
an intensity process nλn(t, θ) defined by

λn(t, θ) = gn(t, θ) +

∫ t−

T̂0

Kn(t, s, θ)dXn
s ,

� �
where θ is a parameter and T̂0 < T0 < T1.

• Examples.

λn(t, θ) = λ∞(t, θ) = g(Vt, θ)

λn(t, θ) = λ∞(t, θ) = g(t, γ) +

∫ t

0
e−b(t−s)AVsds

for a random covariate process Vt.
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• More precisely, we will work on

– a stochastic basis B = (Ω, F , F, P ),

– F = (Ft)t∈Î
being a filtration on (Ω, F), where

Î = [T̂0, T1] ⊃ I and n ∈ N.

– For each n ∈ N and θ ∈ Θ, (gn(t, θ))t∈I is a d-
dimensional predictable process,

– (Kn(t, s, θ))
s∈[T̂0,t)

is a d × d0 matrix-valued op-

tional process for t ∈ I, I0 = {1, ..., d0}, and

– (Xn
t )

t∈Î
is a d0-dimensional F-adapted right-continuous

increasing process on B.

• The multivariate point process Nn is compensated
by the process (

∫ t
T0

nλn(s, θ)ds)t∈I when θ is the true
value of the unknown parameter.

• No common jumps of different elements of Nn



24

Our model

• regression of the intensities to covariate processes
and their history

• finite time horizon and the intensities of point pro-
cesses tends to ∞ —- non-ergodic statistics
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Locally Poissonian and Globally non-ergodic model

n1/2　steps	


n-­‐1/2	


n	


Local model such as λLA
α (St) becomes a fibre.



� �� �
Quasi Likelihood Analysis (QLA)� �

� �

• Ibragimov-Hasminskii and Kutoyants’ program
+ polynomial type large deviation inequality

= Quasi likelihood analysis:

– ergodic / non-ergodic

– limit theorems for QMLE and QBE

– convergence of moments

– Y. AISM 2011
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Recall Point Process Regression Model

� �
Nn = (Nn,α)α∈I has an intensity process nλn(t, θ)
defined by

λn(t, θ) = gn(t, θ) +

∫ t−

T̂0

Kn(t, s, θ)dXn
s ,

� �
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Quasi likelihood

• We shall consider estimation for the unknown pa-
rameter θ.

• Observations

(N
n,α
t )t∈I,α∈I, (X

n,β
t )

t∈Î,β∈I0
,

(gn,α(t, θ))t∈I,α∈I,θ∈Θ,

(K
n,α
β (t, s, θ))

t∈I,s∈[T̂0,t),α∈I,β∈I0,θ∈Θ
.

This is the case, for example, when gn,α(t, θ) is a
function of θ and some observable covariate process:

gn,α(t, θ) = gα(t, Vt, θ) with observable Vt
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• The quasi log likelihood is given by

ln(θ) =
∑
α∈I

( ∫ T1

T0

log[nλn,α(t, θ)]dN
n,α
t

−
∫ T1

T0

[nλn,α(t, θ) − 1]dt

)
for observed point process Nn. Obviously, “−1” in
the second integral can be eliminated for maximiza-
tion. The factor “n” in the first integral is also un-
necessary. Thus we can use

`n(θ) =
∑
α∈I

( ∫ T1

T0

log λn,α(t, θ)dN
n,α
t

−
∫ T1

T0

nλn,α(t, θ)dt

)
(2)

instead of ln(θ).



29

Statistical random field Zn

We shall work with the statistical random field

Hn(θ) = `n(θ)

on Θ and apply the frame of the quasi likelihood anal-
ysis.The random fields Zn is defined on Un = {u ∈
Rp; θu ∈ Θ}, θu = θ∗ + n−1/2u, by

Zn(u) = exp
(
Hn(θu) − Hn(θ∗)

)
= exp

( d∑
α=1

∫ T1

T0

log
λn,α(t, θu)

λn,α(t, θ∗)
dN

n,α
t

−
d∑

α=1

∫ T1

T0

n
[
λn,α(t, θu) − λn,α(t, θ∗)

]
dt

)
.



Assumptions

• Assume that the boundary of Θ is good and that the
function Θ 3 θ 7→ λn(t, θ) has continuous extension
to Θ̄ when the QMLE is discusses.

• Let ε be a positive number less than 1/2.

• N̄ := N ∪ {∞}



Assumptions

[B1]j̄ For each n ∈ N̄, Kn(t, s, θ) is an Rd
+ ⊗ Rd0

+ -valued

F × B(J) × B(Θ)-measurable function satisfying the
following conditions.

(i) For each (n, t, θ) ∈ N×I ×Θ, the process [T̂0, t) 3
s 7→ Kn(t, s, θ) is (Fs)s∈[T̂0,t)

-optional.

(ii) For each (n, t, s) ∈ N̄ × J , the mapping Θ 3 θ 7→
Kn(t, s, θ) is j̄ times differentialble a.s.,

sup
(s,θ)∈[T̂0,t)×Θ

|∂j
θKn(t, s, θ)| < ∞ a.s. for t ∈ I,

and

j̄∑
j=0

sup
(n,s,t)∈N̄×J

sup
θ∈Θ

‖∂i
θKn(t, s, θ)‖p < ∞

for every p > 1.



(iii) For each (n, t, θ) ∈ N × I × Θ, the mappings
[T̂0, t) 3 s 7→ ∂i

θKn(t, s, θ) (i = 0, 1) are differen-

tialble a.s., sup
(s,θ)∈[T̂0,t)×Θ

|∂s∂
i
θKn(t, s, θ)| < ∞

a.s. for t ∈ I, and

sup
(n,t,θ)∈N×I×Θ

1∑
i=0

∫ t

T̂0

‖∂s∂
i
θKn(t, s, θ)‖pds < ∞

for every p > 1.

(iv) For every p > 1,

nε
1∑

j=0

sup
(t,s)∈J,θ∈Θ

∥∥∥∂
j
θKn(t, s, θ) − ∂

j
θK∞(t, s, θ)

∥∥∥
p

→ 0

as n → ∞.



[B2]j̄ For each (α, n) ∈ I × N̄, gn,α(t, θ) is an nonnega-

tive F × B(I) × B(Θ)-measurable function for which
the following conditions are fulfilled.

(i) For each (n, α, θ) ∈ N×I×Θ, the process (gn,α(t, θ))t∈I
is predictable.

(ii) For each (n, t) ∈ N̄ × I, the mapping Θ 3 θ 7→
gn(t, θ) is j̄ times differentiable a.s. and

j̄∑
j=0

sup
(n,t)∈N̄×I

sup
θ∈Θ

∥∥(∂θ)
jgn(t, θ)

∥∥
p < ∞

for every p > 1.

(iii) For every p > 1,

nε
1∑

j=0

sup
t∈I

sup
θ∈Θ

∥∥∥∂
j
θgn(t, θ) − ∂

j
θg∞(t, θ)

∥∥∥
p

→ 0

as n → ∞.



Assumptions

[B3] For each n ∈ N and β ∈ I0, (X
n,β
t )

t∈Î
is a non-

decreasing (Ft)t∈Î
-adapted process, and for each β ∈

I0, there exists a non-decreasing process (X
∞,β
t )t∈I

such that

sup
(n,t)∈N×Î

∥∥X
n,β
t

∥∥
p < ∞ and

nε sup
t∈Î

∥∥X
n,β
t − X

∞,β
t

∥∥
p → 0

as n → ∞, for every p > 1. (Î = [T̂0, T1].)

[B4] For each (ω, n, α, t, θ) ∈ Ω × N × I × I × Θ,
λn,α(t, θ) = 0 if and only if λn,α(t, θ) = 0, and

sup
(n,t,θ)∈I×Θ

∥∥λn,α(t, θ)−11{λn,α(t,θ)6=0}
∥∥

p < ∞

for every p > 1 and α ∈ I.



30

Information matrix and Limit intensity process

• Let

Γ =
∑
α∈I

∫ T1

T0

(∂θλ∞,α)⊗2(λ∞,α)−1(t, θ∗)dt,

where

λ∞,α(t, θ) = g∞,α(t, θ) +

∫ t−

T̂0

K
∞,α
β (t, s, θ)dX∞,β

s

(3)

for t ∈ I.

• λ∞,α(t, θ) is possibly random.
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Key index

Y(θ) := −
d∑

α=1

∫ T1

T0

[
λ∞,α(t, θ) − λ∞,α(t, θ∗)

− log
λ∞,α(t, θ)

λ∞,α(t, θ∗)
λ∞,α(t, θ∗)

]
dt (4)

χ0 := inf
θ∈Θ\{θ∗}

−Y(θ)

|θ − θ∗|2
.

The nondegeneracy of the key index χ0 will play an

essential role in our argument.

[B5] For every L > 0, there exists a constant CL such
that

P [χ0 < r−1] ≤
CL

rL
(∀r > 0).
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Polynomial type large deviation inequality

Theorem 1. (Polynomial type large deviation inequal-
ity) Suppose that Conditions [B1]4, [B2]4, [B3], [B4]
and [B5] are fulfilled. Then, for every L > 0, there
exists a constant CL such that

P

[
sup

u∈Vn(r)
Zn(u) ≥ e−r

]
≤

CL

rL

for all r > 0 and all n ∈ N, where Vn(r) = {u ∈
Un; |u| ≥ r}.



33

Quasi likelihood analysis

Denote by C↑(Rp) the set of continuous functions f :
Rp → R at most polynomial growth.

Theorem 2. Suppose that Conditions [B1]4, [B2]4, [B3],
[B4] and [B5] are fulfilled. Then

(a)
√

n(θ̂n − θ∗) →ds Γ−1/2ζ as n → ∞.

(b) E
[
f

(√
n(θ̂n − θ∗)

)]
→ E

[
f

(
Γ−1/2ζ

)]
as n → ∞ for

all f ∈ C↑(Rp).

Theorem 3. Suppose that Conditions [B1]4, [B2]4, [B3],
[B4] and [B5] are fulfilled. Then

(a)
√

n(θ̃n − θ∗) →ds Γ−1/2ζ as n → ∞.

(b) E
[
f

(√
n(θ̃n − θ∗)

)]
→ E

[
f

(
Γ−1/2ζ

)]
as n → ∞ for

all f ∈ C↑(Rp).
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Example: A point process driven by a diffusion process

λn(t, θ) = λ∞(t, θ) = g(Vt, θ)

for t ∈ I.

• Vt: a non-degenerate multi-dimensional diffusion pro-
cess as the covariate

• For the non-degeneracy of χ0, there are

– an analytic criterion

– a geometric criterion.

– cf. Uchida-Y (SPA 2013)
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Support function

Let

Q(x, θ, θ∗) = g(x, θ)−1g(x, θ∗) − 1

− log

(
g(x, θ)−1g(x, θ∗)

)
then

−2Y(θ) =
1

T

∫ T

0
Q(Vt, θ, θ∗)g(Vt, θ∗)dt.

A support function f is a function such that

Q(x, θ, θ∗)g(x, θ∗)|θ − θ∗|−2 ≥ |f(x, θ)|%,

for a constant % ∈ (0, ∞). Recall

χ0 = inf
θ 6=θ∗

−Y(θ)

|θ − θ∗|2
≥ inf

θ 6=θ∗

1

2T

∫ T

0
|f(Vt, θ)|%dt.
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Analytic criterion: nondegeneracy of a tensor field

• For simplicity, let d = 1 and suppose that V is a
nondegenerate Itô process.

• Suppose that X0 is a neighborhood of compact suppL{V0},
and that Θ is compact.

• For each (x0, θ) ∈ X0×Θ, maxj=0,...,J−1

∣∣∂j
xf(x0, θ)

∣∣ >
0.

Then [B5] holds.

• Remarks.

– Similar condition in the multi-dimensional case.

– It is possible to give a condition for a degener-
ate diffusion on manifold. However the condition
becomes much more complicated. (Uchida and Y
LeMans2009, ISM RM2011, Paris2012)



37

Geometric criterion

• Example.

– f(x, θ) = x1x2(x1 − θ1x
2
2)(θ2x1 + x2

2)

– V = (Vt) = (V1,t, V2,t): a nondegenerate diffusion
with uniform initial distribution on suppL{V0} =
{0} × [0, 1].

– Show

P

[
inf
θ

∫ 1

0
|f(Vt, θ)|2dt <

1

r

]
≤

CL

rL
.

– The null set {f = 0} is not a regular submanifold.
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Geometric criterion

[A3′] suppL{V0} is compact, there exists a function
f : U × Θ → R for some open neighborhood U of
suppL{X0} and the following conditions are satis-
fied.

(i) For some % ∈ (0, ∞) , Q(x, θ, θ∗)|θ − θ∗|−2 ≥
|f(x, θ)|% for all (x, θ) ∈ U × (Θ \ {θ∗}).

(ii) For each x0 ∈ U , there exist a neighborhood B
in U of x0 and a covering {Θk}k=1,...,k̄ of Θ such

that for each k = 1, ..., k̄, there exist ξ0 ∈ S, J ∈ N,
some positive numbers M, c, ε0, Kj (j = 1, ..., J)

and some functions Ψj : P ⊥
ξ0

B ×Θk → R such that

(a) each function P ⊥
ξ0

B 3 y 7→ Ψj(y, θ) ∈ R is M -

Lipschitz continuous for all θ ∈ Θk,
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(b) for (x, θ) ∈ B × Θk,

|f(x, θ)| ≥ c
J∏

j=1

(
|ξ0 · x − Ψj(P

⊥
ξ0

x, θ)| ∧ ε0
)Kj.

Remarks

• In [A3′], k̄ may depend on x0.

• The null set

{x ∈ B; f(x, θ) = 0} ⊂
J∪

j=1

{x ∈ B; ξ0 · x = Ψj(P
⊥
ξ0

x, θ)}

under [A3′](ii), that is, the graph of the functions Ψj
covers locally the null set of f .

Theorem 4. (Uchida-Y arXiv2012 , SPA2013)

[A3′] + nondegenerate Itô process V ⇒ [B5],

and hence QLA.
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Example: A lookback regression

λn(t, θ) = λ∞(t, θ) = g(t, γ) +

∫ t

0
ae−b(t−s)Vsds

for t ∈ I.

• Vs: a positive non-degenerate diffusion process

• g(t, γ): a polynomial taking non-negative values on
the interval I

• (γ, a, b): unknown parameters

• The non-degeneracy of χ0 is not trivial but provable.
The exponential kernel is not essential.

• A multi-dimensional extension is possible.
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Example: A non-stationary Hawkes process

• The parametric model of two-dimensional Hawekes
process with intensity process

λn(t, θ) = g(t, γ) +

∫ t−

T̂0

e−b(t−s)An−1dNn
s (5)

with θ = (γ, b, A).

• gt = g(t, γ) is an R2-valued polynomial in t.(inter-
day trend)

• The non-degeneracy of χ0 can be proved. Ogihara-Y
(arXiv 2015)
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