Effective models in discrete magnetic Bloch systems

Horia D. Cornean

Department of Mathematical Sciences, Aalborg University, Denmark

Joint ongoing work with B. Helffer, I. Herbst, V. Iftimie, G. Nenciu and R. Purice

Rennes, May 19, 2015

The plan of this talk

The setting + spectral stability with respect to bounded magnetic field perturbations.

Problem 1: construction of a magnetic matrix unitary equivalent with the band Hamiltonian and its rewriting as a 'Peierls substituted', Weyl quantized ΨDO .

Problem 2: prove that given a magnetic field perturbation of strength ϵ , the spectrum moves at most like $\epsilon^{1/2}$.

Problem 3: prove that given a slowly varying magnetic field perturbation of strength ϵ , the spectral edges move like ϵ .

Problem 4: when does a slowly varying magnetic field perturbation of strength ϵ create gaps of order ϵ ?

Introduction 2 / 31

The unperturbed operator

V is a bounded, \mathbb{Z}^d -periodic scalar potential with d=2 or d=3, $H_0=-\Delta+V$ and σ_0 is an isolated spectral island of H_0 which consists of the range of $N\geq 1$ Bloch bands.

Introduction 3 / 31

The unperturbed operator

V is a bounded, \mathbb{Z}^d -periodic scalar potential with d=2 or d=3, $H_0=-\Delta+V$ and σ_0 is an isolated spectral island of H_0 which consists of the range of $N\geq 1$ Bloch bands.

We know [Helffer and Sjöstrand 1989, Nenciu 1991, Panati 2007, H.C., Herbst and Nenciu 2014, Panati and Monaco 2014] that if $d \le 3$ we can construct N exponentially localized composite Wannier functions $\{w_j\}_{j=1}^N$:

$$P_0 = \sum_{j=1}^N \sum_{\gamma \in \mathbb{Z}^2} |\tau_{\gamma}^0(w_j)\rangle \langle \tau_{\gamma}^0(w_j)|, \quad P_0(\mathbf{x}, \mathbf{x}') = \sum_{j=1}^N \sum_{\gamma \in \mathbb{Z}^2} w_j(\mathbf{x} - \gamma) \overline{w_j(\mathbf{x}' - \gamma)}.$$

Introduction 3 / 3:

The unperturbed operator

V is a bounded, \mathbb{Z}^d -periodic scalar potential with d=2 or d=3, $H_0=-\Delta+V$ and σ_0 is an isolated spectral island of H_0 which consists of the range of $N\geq 1$ Bloch bands.

We know [Helffer and Sjöstrand 1989, Nenciu 1991, Panati 2007, H.C., Herbst and Nenciu 2014, Panati and Monaco 2014] that if $d \le 3$ we can construct N exponentially localized composite Wannier functions $\{w_j\}_{j=1}^N$:

$$P_0 = \sum_{j=1}^N \sum_{\gamma \in \mathbb{Z}^2} |\tau_{\gamma}^0(w_j)\rangle \langle \tau_{\gamma}^0(w_j)|, \quad P_0(\mathbf{x}, \mathbf{x}') = \sum_{j=1}^N \sum_{\gamma \in \mathbb{Z}^2} w_j(\mathbf{x} - \gamma) \overline{w_j(\mathbf{x}' - \gamma)}.$$

Define $\mathbf{a}(\mathbf{x}) := \int_0^1 s \mathbf{B}(s\mathbf{x}) \wedge \mathbf{x} \ ds$. Here we assume that

$$\max_{j \in \{1,2,3\}} ||B_j||_{C^1(\mathbb{R}^d)} \le 1.$$

Introduction 3 / 3:

The magnetic phase

Denote the magnetic flux of a unit magnetic field through a triangle with corners at 0, \mathbf{x} and \mathbf{x}' by:

$$\phi(\mathbf{x},\mathbf{x}') = \int_0^1 \mathbf{a}(\mathbf{x}' + s(\mathbf{x} - \mathbf{x}')) \cdot (\mathbf{x} - \mathbf{x}') ds = -\phi(\mathbf{x}',\mathbf{x}).$$

Introduction 4 / 31

The magnetic phase

Denote the magnetic flux of a unit magnetic field through a triangle with corners at 0, x and x' by:

Men (() - ELAV) 4111

$$\phi(\mathbf{x},\mathbf{x}') = \int_0^1 \mathbf{a}(\mathbf{x}' + s(\mathbf{x} - \mathbf{x}')) \cdot (\mathbf{x} - \mathbf{x}') ds = -\phi(\mathbf{x}',\mathbf{x}).$$

If d = 2 and $\mathbf{B} = [0, 0, 1]$:

$$\phi(\mathbf{x},\mathbf{x}') = -\frac{1}{2}\mathbf{B}\cdot(\mathbf{x}\wedge\mathbf{x}') = \frac{1}{2}(x_2x_1'-x_2'x_1).$$

Introduction 4 / 3

The magnetic phase

Denote the magnetic flux of a unit magnetic field through a triangle with corners at 0, x and x' by:

$$\phi(\mathbf{x},\mathbf{x}') = \int_0^1 \mathbf{a}(\mathbf{x}' + s(\mathbf{x} - \mathbf{x}')) \cdot (\mathbf{x} - \mathbf{x}') ds = -\phi(\mathbf{x}',\mathbf{x}).$$

If d = 2 and $\mathbf{B} = [0, 0, 1]$:

$$\phi(\mathbf{x},\mathbf{x}') = -\frac{1}{2}\mathbf{B}\cdot(\mathbf{x}\wedge\mathbf{x}') = \frac{1}{2}(x_2x_1'-x_2'x_1).$$

An important estimate is the following:

$$\mathit{fl}(\mathbf{x},\mathbf{y},\mathbf{x}') := \phi(\mathbf{x},\mathbf{y}) + \phi(\mathbf{y},\mathbf{x}') - \phi(\mathbf{x},\mathbf{x}'), \quad |\mathit{fl}(\mathbf{x},\mathbf{y},\mathbf{x}')| \leq |\mathbf{x}-\mathbf{y}| \; |\mathbf{y}-\mathbf{x}'|.$$

Introduction 4 / 3

Spectral stability

Let
$$H_b = (-i\nabla - b\mathbf{a})^2 + V$$
.

Introduction 5 / 31

Spectral stability

Let $H_b = (-i\nabla - b\mathbf{a})^2 + V$. The next result is well known, see [H.C. & Nenciu 1998, Briet & H.C. 2001, H.C. 2010, Iftimie & Purice 2013].

Theorem

Fix a compact set $K \subset \rho(H_0)$. Then there exist $b_0 > 0$, $\alpha < \infty$ and $C < \infty$ such that for every $0 \le b \le b_0$ we have that $K \subset \rho(H_b)$ and:

$$\sup_{z \in K} \left| (H_b - z)^{-1}(\mathbf{x}, \mathbf{x}') - e^{ib\phi(\mathbf{x}, \mathbf{x}')} (H_0 - z)^{-1}(\mathbf{x}, \mathbf{x}') \right| \le C \ b \ e^{-\alpha|\mathbf{x} - \mathbf{x}'|}.$$

Introduction 5 / 3:

Spectral stability

Let $H_b = (-i\nabla - b\mathbf{a})^2 + V$. The next result is well known, see [H.C. & Nenciu 1998, Briet & H.C. 2001, H.C. 2010, Iftimie & Purice 2013].

Men (NIT CAME) WILL

Theorem

Fix a compact set $K \subset \rho(H_0)$. Then there exist $b_0 > 0$, $\alpha < \infty$ and $C < \infty$ such that for every $0 \le b \le b_0$ we have that $K \subset \rho(H_b)$ and:

$$\sup_{z\in K} \left| (H_b-z)^{-1}(\mathbf{x},\mathbf{x}') - e^{ib\phi(\mathbf{x},\mathbf{x}')} (H_0-z)^{-1}(\mathbf{x},\mathbf{x}') \right| \leq C \ b \ e^{-\alpha|\mathbf{x}-\mathbf{x}'|}.$$

Thus H_b has an isolated spectral island σ_b close to σ_0 . Applying the Riesz integral formula we obtain:

$$\left| P_b(\mathbf{x}, \mathbf{x}') - e^{ib\phi(\mathbf{x}, \mathbf{x}')} P_0(\mathbf{x}, \mathbf{x}') \right| \le C \ b \ e^{-\alpha|\mathbf{x} - \mathbf{x}'|}.$$

Introduction 5 / 3

1. Construct an orthogonal family of vectors $\Xi_{\gamma,j,b} \in L^2(\mathbb{R}^d)$ with $\gamma \in \mathbb{Z}^d$, $j \in \{1,...,N\}$ and $0 \leq b \leq b_0$ such that

$$|\Xi_{\gamma,j,b}(\mathbf{x})| \leq Ce^{-\alpha|\mathbf{x}-\gamma|}$$
 and $\operatorname{Ran}(P_b) = \overline{\operatorname{Span}\{\Xi_{\gamma,j,b}\}},$

1. Construct an orthogonal family of vectors $\Xi_{\gamma,j,b} \in L^2(\mathbb{R}^d)$ with $\gamma \in \mathbb{Z}^d$, $j \in \{1,...,N\}$ and $0 \leq b \leq b_0$ such that

$$|\Xi_{\gamma,j,b}(\mathbf{x})| \leq Ce^{-\alpha|\mathbf{x}-\gamma|}$$
 and $\operatorname{Ran}(P_b) = \overline{\operatorname{Span}\{\Xi_{\gamma,j,b}\}},$

$$P_b = \sum_{\gamma \in \mathbb{Z}^d} \sum_{j=1}^N |\Xi_{\gamma,j,b}\rangle \langle \Xi_{\gamma,j,b}|.$$

1. Construct an orthogonal family of vectors $\Xi_{\gamma,j,b} \in L^2(\mathbb{R}^d)$ with $\gamma \in \mathbb{Z}^d$, $j \in \{1,...,N\}$ and $0 \leq b \leq b_0$ such that

$$|\Xi_{\gamma,j,b}(\mathbf{x})| \leq C e^{-\alpha|\mathbf{x}-\gamma|} \quad \text{and} \quad \mathrm{Ran}(P_b) = \overline{\mathrm{Span}\{\Xi_{\gamma,j,b}\}},$$

$$P_b = \sum_{\gamma \in \mathbb{Z}^d} \sum_{j=1}^N |\Xi_{\gamma,j,b}\rangle \langle \Xi_{\gamma,j,b}|.$$

2. If the field is constant, show that:

1. Construct an orthogonal family of vectors $\Xi_{\gamma,j,b} \in L^2(\mathbb{R}^d)$ with $\gamma \in \mathbb{Z}^d$, $j \in \{1,...,N\}$ and $0 \leq b \leq b_0$ such that

$$|\Xi_{\gamma,j,b}(\mathbf{x})| \leq Ce^{-\alpha|\mathbf{x}-\gamma|}$$
 and $\operatorname{Ran}(P_b) = \overline{\operatorname{Span}\{\Xi_{\gamma,j,b}\}},$

$$P_b = \sum_{\gamma \in \mathbb{Z}^d} \sum_{j=1}^N |\Xi_{\gamma,j,b}\rangle \langle \Xi_{\gamma,j,b}|.$$

2. If the field is constant, show that:

$$P_b = \sum_{\gamma \in \mathbb{Z}^d} \sum_{i=1}^N | au_{\gamma}^b(w_{j,b})
angle \langle au_{\gamma}^b(w_{j,b})|, \quad [au_{\gamma}^b(f)](\mathbf{x}) = e^{ib\phi(\mathbf{x},\gamma)} f(\mathbf{x}-\gamma).$$

The first problem 7 / 3:

1. The restriction of H_b to the range of P_b is unitarily equivalent with a bounded operator $T_b: I^2(\mathbb{Z}^d) \otimes \mathbb{C}^N \mapsto I^2(\mathbb{Z}^d) \otimes \mathbb{C}^N$ given by the matrix elements:

$$T_b(\gamma, j; \gamma', j') = \langle \Xi_{\gamma, j, b} | H_b \Xi_{\gamma', j', b} \rangle.$$

1. The restriction of H_b to the range of P_b is unitarily equivalent with a bounded operator $T_b: I^2(\mathbb{Z}^d) \otimes \mathbb{C}^N \mapsto I^2(\mathbb{Z}^d) \otimes \mathbb{C}^N$ given by the matrix elements:

$$T_b(\gamma, j; \gamma', j') = \langle \Xi_{\gamma, j, b} | H_b \Xi_{\gamma', j', b} \rangle.$$

2. One can prove that $T_b(\gamma, j; \gamma', j')$ is exponentially localized in $|\gamma - \gamma'|$, uniformly in b small enough.

The first problem 8 / 3:

1. The restriction of H_b to the range of P_b is unitarily equivalent with a bounded operator $T_b: I^2(\mathbb{Z}^d) \otimes \mathbb{C}^N \mapsto I^2(\mathbb{Z}^d) \otimes \mathbb{C}^N$ given by the matrix elements:

$$T_b(\gamma, j; \gamma', j') = \langle \Xi_{\gamma, j, b} | H_b \Xi_{\gamma', j', b} \rangle.$$

- 2. One can prove that $T_b(\gamma, j; \gamma', j')$ is exponentially localized in $|\gamma \gamma'|$, uniformly in b small enough.
- 3. If the field is constant, $\widetilde{T}_b(\gamma, j; \gamma', j') := e^{-ib\phi(\gamma, \gamma')} T_b(\gamma, j; \gamma', j')$ depends on $\gamma \gamma'$ and it can be diagonalized by a Floquet unitary.

4. Let the field be constant. Let $\Omega = [-1/2, 1/2]^d$ be the unit square in \mathbb{R}^d and define the N dimensional matrix

$$h_{\mathbf{k},b}(j,j') := \sum_{\gamma \in \mathbb{Z}^d} e^{-i2\pi \mathbf{k} \cdot \gamma} \widetilde{T_b}(\gamma,j;0,j'), \quad \mathbf{k} \in \Omega.$$

4. Let the field be constant. Let $\Omega = [-1/2, 1/2]^d$ be the unit square in \mathbb{R}^d and define the N dimensional matrix

$$h_{\mathbf{k},b}(j,j') := \sum_{\gamma \in \mathbb{Z}^d} \mathrm{e}^{-i2\pi \mathbf{k} \cdot \gamma} \widetilde{T_b}(\gamma,j;0,j'), \quad \mathbf{k} \in \Omega.$$

We then have:

$$\langle \tau_{\gamma}^{b}(w_{j,b})|H_{b}\tau_{\gamma'}^{b}(w_{j',b})\rangle = e^{ib\phi(\gamma,\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},b}(j,j')d\mathbf{k}.$$

The first problem 9 / 3:

4. Let the field be constant. Let $\Omega = [-1/2, 1/2]^d$ be the unit square in \mathbb{R}^d and define the N dimensional matrix

$$h_{\mathbf{k},b}(j,j') := \sum_{\gamma \in \mathbb{Z}^d} e^{-i2\pi \mathbf{k} \cdot \gamma} \widetilde{T_b}(\gamma,j;0,j'), \quad \mathbf{k} \in \Omega.$$

We then have:

$$\langle \tau_{\gamma}^{b}(w_{j,b})|H_{b}\tau_{\gamma'}^{b}(w_{j',b})\rangle = e^{ib\phi(\gamma,\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},b}(j,j')d\mathbf{k}.$$

It turns out that $h_{\mathbf{k},b}(j,j')$ has an asymptotic expansion in b, all its terms being real analytic in \mathbf{k} and \mathbb{Z}^d -periodic. The spectrum of the matrix $h_{\mathbf{k},0}$ coincides with the N Bloch bands of H_0 corresponding to σ_0 .

5. Assume that the magnetic field is slowly varying, i.e. it comes from $\mathbf{a}_{\epsilon}(\mathbf{x}) := \mathbf{a}(\epsilon \mathbf{x})$ with $\mathbf{a} \in [C^1(\mathbb{R}^2)]^2$ and $\sup_{\mathbf{x} \in \mathbb{R}^2} |\partial_j a_k(\mathbf{x})| \leq \mathrm{const}$ where

$$\mathbf{B}_{\epsilon}(\mathbf{x}) = \epsilon(d\mathbf{a})(\epsilon\mathbf{x}).$$

5. Assume that the magnetic field is slowly varying, i.e. it comes from $\mathbf{a}_{\epsilon}(\mathbf{x}) := \mathbf{a}(\epsilon \mathbf{x})$ with $\mathbf{a} \in [C^1(\mathbb{R}^2)]^2$ and $\sup_{\mathbf{x} \in \mathbb{R}^2} |\partial_j a_k(\mathbf{x})| \leq \mathrm{const}$ where

$$\mathbf{B}_{\epsilon}(\mathbf{x}) = \epsilon(d\mathbf{a})(\epsilon\mathbf{x}).$$

Stokes theorem gives:

$$\phi_{\epsilon}(\mathbf{x}, \mathbf{x}') = \int_{[0, \mathbf{x}']} \mathbf{a}_{\epsilon} + \int_{[\mathbf{x}', \mathbf{x}]} \mathbf{a}_{\epsilon} - \int_{[0, \mathbf{x}]} \mathbf{a}_{\epsilon}.$$

5. Assume that the magnetic field is slowly varying, i.e. it comes from $\mathbf{a}_{\epsilon}(\mathbf{x}) := \mathbf{a}(\epsilon \mathbf{x})$ with $\mathbf{a} \in [C^1(\mathbb{R}^2)]^2$ and $\sup_{\mathbf{x} \in \mathbb{R}^2} |\partial_j a_k(\mathbf{x})| \leq \mathrm{const}$ where

$$\mathbf{B}_{\epsilon}(\mathbf{x}) = \epsilon(d\mathbf{a})(\epsilon\mathbf{x}).$$

Stokes theorem gives:

$$\phi_{\epsilon}(\mathbf{x}, \mathbf{x}') = \int_{[0, \mathbf{x}']} \mathbf{a}_{\epsilon} + \int_{[\mathbf{x}', \mathbf{x}]} \mathbf{a}_{\epsilon} - \int_{[0, \mathbf{x}]} \mathbf{a}_{\epsilon}.$$

Up to an error of order ϵ we have:

$$e^{i\int_{[\gamma',\gamma]}\mathbf{a}_{\epsilon}}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},\mathbf{0}}(j,j')d\mathbf{k}$$
 in $I^{2}(\mathbb{Z}^{2})\otimes\mathbb{C}^{N}$.

Up to an another error of order ϵ we have:

$$e^{i\mathbf{a}_{\epsilon}((\gamma+\gamma')/2)\cdot(\gamma-\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},\mathbf{0}}(j,j')d\mathbf{k}\quad \text{in}\quad \mathit{I}^{2}(\mathbb{Z}^{2})\otimes\mathbb{C}^{N}.$$

Up to an another error of order ϵ we have:

$$e^{i\mathbf{a}_{\epsilon}((\gamma+\gamma')/2)\cdot(\gamma-\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},\mathbf{0}}(j,j')d\mathbf{k}$$
 in $I^{2}(\mathbb{Z}^{2})\otimes\mathbb{C}^{N}$.

Consider the matrix valued symbol $F(\xi, \mathbf{x}) := h_{\xi - \mathbf{a}_{\epsilon}(\mathbf{x}), \mathbf{0}}$. Every $\mathbf{x} \in \mathbb{R}^2$ can be written as $\gamma + \underline{x}$ with $\underline{x} \in \Omega$.

Up to an another error of order ϵ we have:

$$e^{i\mathbf{a}_{\epsilon}((\gamma+\gamma')/2)\cdot(\gamma-\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},\mathbf{0}}(j,j')d\mathbf{k}$$
 in $I^{2}(\mathbb{Z}^{2})\otimes\mathbb{C}^{N}$.

Consider the matrix valued symbol $F(\xi, \mathbf{x}) := h_{\xi - \mathbf{a}_{\epsilon}(\mathbf{x}), \mathbf{0}}$. Every $\mathbf{x} \in \mathbb{R}^2$ can be written as $\gamma + \underline{x}$ with $\underline{x} \in \Omega$.

The Schwartz integral kernel of F's Weyl quantization in $L^2(\mathbb{R}^2) \otimes \mathbb{C}^N \equiv [L^2(\Omega) \otimes I^2(\mathbb{Z}^2)] \otimes \mathbb{C}^N$ is:

$$\delta(\underline{x}-\underline{x}')e^{i\mathbf{a}_{\epsilon}(\underline{x}+(\gamma+\gamma')/2)\cdot(\gamma-\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},\mathbf{0}}(j,j')d\mathbf{k}.$$

Up to an another error of order ϵ we have:

$$e^{i\mathbf{a}_{\epsilon}((\gamma+\gamma')/2)\cdot(\gamma-\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},\mathbf{0}}(j,j')d\mathbf{k}\quad\text{in}\quad \mathit{I}^{2}(\mathbb{Z}^{2})\otimes\mathbb{C}^{N}.$$

Consider the matrix valued symbol $F(\xi, \mathbf{x}) := h_{\xi - \mathbf{a}_{\epsilon}(\mathbf{x}), \mathbf{0}}$. Every $\mathbf{x} \in \mathbb{R}^2$ can be written as $\gamma + \underline{x}$ with $\underline{x} \in \Omega$.

The Schwartz integral kernel of F's Weyl quantization in $L^2(\mathbb{R}^2)\otimes \mathbb{C}^N\equiv [L^2(\Omega)\otimes I^2(\mathbb{Z}^2)]\otimes \mathbb{C}^N$ is:

$$\delta(\underline{x}-\underline{x}')e^{i\mathbf{a}_{\epsilon}(\underline{x}+(\gamma+\gamma')/2)\cdot(\gamma-\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}h_{\mathbf{k},\mathbf{0}}(j,j')d\mathbf{k}.$$

"Isospectrality up to order ϵ "

Let $b=2\pi\frac{p}{q}+\epsilon$ with $p,q\in\mathbb{N}.$ Denote by:

$$\Lambda_q := (q\mathbb{Z}) \times \mathbb{Z} = \{[q\gamma_1, \gamma_2]: \ \gamma_{1,2} \in \mathbb{Z}\}, \quad \mathcal{B}_q := \{[0, 0], ..., [q-1, 0]\}.$$

Let $b=2\pi\frac{p}{q}+\epsilon$ with $p,q\in\mathbb{N}.$ Denote by:

$$\Lambda_q := (q\mathbb{Z}) \times \mathbb{Z} = \{[q\gamma_1, \gamma_2]: \ \gamma_{1,2} \in \mathbb{Z}\}, \quad \mathcal{B}_q := \{[0, 0], ..., [q-1, 0]\}.$$

Every point $\gamma \in \mathbb{Z}^d$ can be uniquely represented as:

$$\alpha + \underline{x} = [q\gamma_1, \gamma_2] + \underline{x}, \quad \alpha \in \Lambda_q, \quad \underline{x} \in \mathcal{B}_q.$$

Let $b=2\pi\frac{p}{q}+\epsilon$ with $p,q\in\mathbb{N}.$ Denote by:

$$\Lambda_q := (q\mathbb{Z}) \times \mathbb{Z} = \{[q\gamma_1, \gamma_2]: \ \gamma_{1,2} \in \mathbb{Z}\}, \quad \mathcal{B}_q := \{[0, 0], ..., [q-1, 0]\}.$$

Every point $\gamma \in \mathbb{Z}^d$ can be uniquely represented as:

$$\alpha + \underline{x} = [q\gamma_1, \gamma_2] + \underline{x}, \quad \alpha \in \Lambda_q, \quad \underline{x} \in \mathcal{B}_q.$$

The kernel of the effective operator can be re-expressed in terms of the new coordinates as follows:

$$H_b(\alpha, \underline{x}, j; \alpha', \underline{x}', j') = e^{ib\phi(\alpha + \underline{x}, \alpha' + \underline{x}')} \mathcal{T}(\alpha - \alpha' + \underline{x} - \underline{x}'; j, j').$$

lf

$$[U_b f](\alpha, \underline{x}, j) := e^{i\pi p \gamma_1 \gamma_2} e^{ib\phi(\alpha, \underline{x})} f(\alpha, \underline{x}, j)$$

then

$$[U_b H_b U_b^*](\alpha, \underline{x}, j; \alpha', \underline{x}', j') = e^{i\epsilon\phi(\alpha, \alpha')} (-1)^{p(\gamma_1 - \gamma_1')(\gamma_2 - \gamma_2')} e^{ib\phi(\alpha - \alpha', \underline{x} + \underline{x}')} \cdot \mathcal{T}(\alpha - \alpha' + \underline{x} - \underline{x}'; j, j').$$

This operator can be seen as an operator in $l^2(\mathbb{Z}^d)\otimes \mathbb{C}^{qN}$ with the kernel:

$$\begin{split} \mathcal{H}_{\epsilon}(\gamma,\underline{x},j;\gamma',\underline{x}',j') := & e^{i\epsilon q\phi(\gamma,\gamma')} \\ & \cdot (-1)^{p(\gamma_1-\gamma_1')(\gamma_2-\gamma_2')} e^{i(b_0+\epsilon)(\gamma_2-\gamma_2')(\underline{x}_1+\underline{x}_1')/2} \\ & \cdot \mathcal{T}([q(\gamma_1-\gamma_1'),\gamma_2-\gamma_2'] + \underline{x}-\underline{x}';j,j'). \end{split}$$

This operator can be seen as an operator in $l^2(\mathbb{Z}^d)\otimes \mathbb{C}^{qN}$ with the kernel:

$$\begin{split} \mathcal{H}_{\epsilon}(\gamma,\underline{x},j;\gamma',\underline{x}',j') := & e^{i\epsilon q\phi(\gamma,\gamma')} \\ & \cdot (-1)^{p(\gamma_1 - \gamma_1')(\gamma_2 - \gamma_2')} e^{i(b_0 + \epsilon)(\gamma_2 - \gamma_2')(\underline{x}_1 + \underline{x}_1')/2} \\ & \cdot \mathcal{T}([q(\gamma_1 - \gamma_1'),\gamma_2 - \gamma_2'] + \underline{x} - \underline{x}';j,j'). \end{split}$$

The new Bloch fiber matrix will be of the type $(Nq) \times (Nq)$ and equals:

$$egin{aligned} h_{\mathbf{k},\epsilon}(\underline{x},j;\underline{x}',j') &= \sum_{\gamma \in \mathbb{Z}^d} e^{-i2\pi\mathbf{k}\cdot\gamma} (-1)^{p\gamma_1\gamma_2} e^{i(\pi p/q + \epsilon/2)\gamma_2(\underline{x}_1 + \underline{x}_1')} \ &\cdot \mathcal{T}([q\gamma_1,\gamma_2] + \underline{x} - \underline{x}';j,j'). \end{aligned}$$

Harper model with half-flux

Here d=2, N=1, $\mathcal{T}(m,n)=1$ if $m^2+n^2=1$ otherwise it equals zero, and $b_0=\pi$ i.e. p=1 and q=2.

Harper model with half-flux

Here d=2, N=1, $\mathcal{T}(m,n)=1$ if $m^2+n^2=1$ otherwise it equals zero, and $b_0=\pi$ i.e. p=1 and q=2.

The Bloch matrix is of the type 2×2 . Up to an ϵ order error, the new Bloch matrix is:

$$\begin{bmatrix} 2\cos(2\pi k_2) & 2\cos(2\pi k_1) \\ 2\cos(2\pi k_1) & -2\cos(2\pi k_2) \end{bmatrix}.$$

Its two eigenvalues are given by:

$$\pm 2\sqrt{\cos^2(2\pi k_1) + \cos^2(2\pi k_2)}$$

which generate four Dirac points at $[\pm 1/4, \pm 1/4]$.

The first problem 15 / 31

Harper model with half-flux

Here d=2, N=1, $\mathcal{T}(m,n)=1$ if $m^2+n^2=1$ otherwise it equals zero, and $b_0=\pi$ i.e. p=1 and q=2.

The Bloch matrix is of the type 2×2 . Up to an ϵ order error, the new Bloch matrix is:

$$\begin{bmatrix} 2\cos(2\pi k_2) & 2\cos(2\pi k_1) \\ 2\cos(2\pi k_1) & -2\cos(2\pi k_2) \end{bmatrix}.$$

Its two eigenvalues are given by:

$$\pm 2\sqrt{\cos^2(2\pi k_1) + \cos^2(2\pi k_2)}$$

which generate four Dirac points at $[\pm 1/4, \pm 1/4]$. Helffer-Sjöstrand and Bellissard shown that gaps of order $\sqrt{\epsilon}$ open around 0.

The first problem 15 / 31

The second problem

The second problem 16 / 31

Consider the Hilbert space $L^2(\mathbb{R}^d)$ with $d \geq 2$. Let $\langle x \rangle := \sqrt{1+|\mathbf{x}|^2}$ and let $\alpha \geq 0$.

The second problem 17 / 31

Consider the Hilbert space $L^2(\mathbb{R}^d)$ with $d \geq 2$. Let $\langle x \rangle := \sqrt{1+|\mathbf{x}|^2}$ and let $\alpha > 0$.

We consider bounded integral operators $T \in B(L^2(\mathbb{R}^d))$ to which we can associate a locally integrable kernel $T(\mathbf{x}, \mathbf{x}')$ which is continuous outside the diagonal and obeys the following weighted Schur-Holmgren estimate:

$$\begin{split} &||T||_{\alpha} := \\ &\max \left\{ \sup_{\mathbf{x}' \in \mathbb{R}^d} \int_{\mathbb{R}^d} |T(\mathbf{x},\mathbf{x}')| \langle \mathbf{x} - \mathbf{x}' \rangle^{\alpha} d\mathbf{x}, \ \sup_{\mathbf{x} \in \mathbb{R}^d} \int_{\mathbb{R}^d} |T(\mathbf{x},\mathbf{x}')| \langle \mathbf{x} - \mathbf{x}' \rangle^{\alpha} d\mathbf{x}' \right\}. \end{split}$$

Let us denote the set of all these operators with \mathcal{C}^{α} .

The second problem 17 / 31

If $T\in\mathcal{C}^{lpha}$, we define $\{T_{\epsilon}\}_{\epsilon\in\mathbb{R}}\subset\mathcal{C}^{lpha}$ given by the kernels $e^{i\epsilon\varphi(\mathbf{x},\mathbf{x}')}T(\mathbf{x},\mathbf{x}').$

The second problem 18 / 31

If $T \in \mathcal{C}^{\alpha}$, we define $\{T_{\epsilon}\}_{\epsilon \in \mathbb{R}} \subset \mathcal{C}^{\alpha}$ given by the kernels

$$e^{i\epsilon\varphi(\mathbf{x},\mathbf{x}')}T(\mathbf{x},\mathbf{x}').$$

The Hausdorff distance between two real compact sets A and B is defined as:

$$d_H(A, B) := \max \left\{ \sup_{x \in A} \inf_{y \in B} |x - y|, \sup_{y \in B} \inf_{x \in A} |x - y| \right\}.$$

The second problem 18 / 3

If $T \in \mathcal{C}^{\alpha}$, we define $\{T_{\epsilon}\}_{{\epsilon} \in \mathbb{R}} \subset \mathcal{C}^{\alpha}$ given by the kernels

$$e^{i\epsilon\varphi(\mathbf{x},\mathbf{x}')}T(\mathbf{x},\mathbf{x}').$$

The Hausdorff distance between two real compact sets A and B is defined as:

$$d_H(A, B) := \max \left\{ \sup_{x \in A} \inf_{y \in B} |x - y|, \sup_{y \in B} \inf_{x \in A} |x - y| \right\}.$$

Question: how regular is the following map?

$$\mathbb{R} \ni \epsilon \mapsto d_H(\sigma(T_\epsilon), \sigma(T)) \in \mathbb{R}_+$$

The second problem 18 / 31

Theorem

[H.C. and Purice 2011]. Let $H \in \mathcal{C}^{\alpha}$ with $\alpha > 0$ be self-adjoint and consider a family of Harper-like operators $\{T_{\epsilon}\}_{{\epsilon} \in \mathbb{R}}$ as above. The map

$$\mathbb{R} \ni \epsilon \mapsto d_H(\sigma(T_\epsilon), \sigma(T)) \in \mathbb{R}_+$$

is Hölder continuous with exponent $\beta := \min\{1/2, \alpha/2\}$. More precisely, for all ϵ_0 we can find a numerical constant $C_{\beta} > 0$ such that:

$$d_{H}(\sigma(T_{\epsilon_{0}+\delta}),\sigma(T_{\epsilon_{0}})) \leq C_{\beta} ||T||_{2\beta} |\delta|^{\beta}.$$

The second problem 19 / 31

Theorem

[H.C. and Purice 2011]. Let $H \in \mathcal{C}^{\alpha}$ with $\alpha > 0$ be self-adjoint and consider a family of Harper-like operators $\{T_{\epsilon}\}_{{\epsilon} \in \mathbb{R}}$ as above. The map

$$\mathbb{R} \ni \epsilon \mapsto d_H(\sigma(T_\epsilon), \sigma(T)) \in \mathbb{R}_+$$

is Hölder continuous with exponent $\beta := \min\{1/2, \alpha/2\}$. More precisely, for all ϵ_0 we can find a numerical constant $C_{\beta} > 0$ such that:

$$d_{H}(\sigma(T_{\epsilon_{0}+\delta}),\sigma(T_{\epsilon_{0}})) \leq C_{\beta} ||T||_{2\beta} |\delta|^{\beta}.$$

The result is sharp for $\alpha \geq 1$.

The second problem 19 / 31

Theorem

[H.C. and Purice 2011]. Let $H \in \mathcal{C}^{\alpha}$ with $\alpha > 0$ be self-adjoint and consider a family of Harper-like operators $\{T_{\epsilon}\}_{{\epsilon} \in \mathbb{R}}$ as above. The map

$$\mathbb{R} \ni \epsilon \mapsto d_H(\sigma(T_\epsilon), \sigma(T)) \in \mathbb{R}_+$$

is Hölder continuous with exponent $\beta := \min\{1/2, \alpha/2\}$. More precisely, for all ϵ_0 we can find a numerical constant $C_{\beta} > 0$ such that:

$$d_H(\sigma(T_{\epsilon_0+\delta}),\sigma(T_{\epsilon_0})) \leq C_\beta ||T||_{2\beta} |\delta|^{\beta}.$$

The result is sharp for $\alpha \geq 1$.

Previous contributors: Elliot, Avron, Herbst, Simon, Helffer, Sjöstrand, Nenciu, Bellissard, Măntoiu, Iftimie,...

The second problem 19 / 31

The third problem

Denote by $\mathcal{E}(\epsilon)$ one of the quantities $\sup \sigma(T_{\epsilon})$, $\inf \sigma(T_{\epsilon})$ or $||T_{\epsilon}||$, where T_{ϵ} is as before.

Denote by $\mathcal{E}(\epsilon)$ one of the quantities $\sup \sigma(T_{\epsilon})$, $\inf \sigma(T_{\epsilon})$ or $||T_{\epsilon}||$, where T_{ϵ} is as before.

Question: is $\mathcal{E}(\epsilon)$ more regular than the other points of the spectrum?

Denote by $\mathcal{E}(\epsilon)$ one of the quantities $\sup \sigma(T_{\epsilon})$, $\inf \sigma(T_{\epsilon})$ or $||T_{\epsilon}||$, where T_{ϵ} is as before.

Question: is $\mathcal{E}(\epsilon)$ more regular than the other points of the spectrum?

[Bellissard 1995] proved Lipschitz regularity for Harper like operators and constant magnetic field.

Denote by $\mathcal{E}(\epsilon)$ one of the quantities $\sup \sigma(T_{\epsilon})$, $\inf \sigma(T_{\epsilon})$ or $||T_{\epsilon}||$, where T_{ϵ} is as before.

Question: is $\mathcal{E}(\epsilon)$ more regular than the other points of the spectrum?

[Bellissard 1995] proved Lipschitz regularity for Harper like operators and constant magnetic field.

What about the general case?

Theorem

[H.C. and Purice 2014].

If $1 \le \alpha < 2$, then there exists a numerical constant $C_{\alpha} > 0$ with $\lim_{\alpha \nearrow 2} C_{\alpha} = \infty$, such that

$$|\mathcal{E}(\epsilon) - \mathcal{E}(0)| \leq C_{\alpha} ||T||_{\alpha} |\epsilon|^{\alpha/2};$$

Theorem

[H.C. and Purice 2014].

If $1 \le \alpha < 2$, then there exists a numerical constant $C_\alpha > 0$ with $\lim_{\alpha \nearrow 2} C_\alpha = \infty$, such that

$$|\mathcal{E}(\epsilon) - \mathcal{E}(0)| \leq C_{\alpha} ||T||_{\alpha} |\epsilon|^{\alpha/2};$$

If $\alpha \geq 2$, then there exists a numerical constant C > 0 such that

$$|\mathcal{E}(\epsilon) - \mathcal{E}(0)| \leq C||T||_2 |\epsilon| \ln(1/|\epsilon|);$$

Theorem

[H.C. and Purice 2014].

If $1 \le \alpha < 2$, then there exists a numerical constant $C_{\alpha} > 0$ with $\lim_{\alpha \nearrow 2} C_{\alpha} = \infty$, such that

$$|\mathcal{E}(\epsilon) - \mathcal{E}(0)| \leq C_{\alpha} ||T||_{\alpha} |\epsilon|^{\alpha/2};$$

If $\alpha \geq 2$, then there exists a numerical constant C > 0 such that

$$|\mathcal{E}(\epsilon) - \mathcal{E}(0)| \leq C||T||_2 |\epsilon| \ln(1/|\epsilon|);$$

Let $\alpha \geq 2$ and assume that the magnetic field perturbation comes from a constant magnetic field. Then there exists a numerical constant C>0 such that

$$|\mathcal{E}(\epsilon) - \mathcal{E}(0)| \le C||T||_2 |\epsilon|.$$

The fourth problem

Consider a slowly varying magnetic field $B_{\epsilon,\eta}(\mathbf{x}) := \epsilon(1 + \eta b(\epsilon \mathbf{x}))$ and the corresponding magnetic matrix

$$e^{i\phi_{\epsilon,\eta}(\gamma,\gamma')}\int_{\Omega}e^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}\lambda(\mathbf{k})d\mathbf{k}.$$

Consider a slowly varying magnetic field $B_{\epsilon,\eta}(\mathbf{x}) := \epsilon(1 + \eta b(\epsilon \mathbf{x}))$ and the corresponding magnetic matrix

$$\mathrm{e}^{i\phi_{\epsilon,\eta}(\gamma,\gamma')}\int_{\Omega}\mathrm{e}^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}\lambda(\mathbf{k})d\mathbf{k}.$$

Question 1: if $\eta = 0$, do we get Landau-like spectrum around the maximum and minimum of λ ?

Consider a slowly varying magnetic field $B_{\epsilon,\eta}(\mathbf{x}) := \epsilon(1 + \eta b(\epsilon \mathbf{x}))$ and the corresponding magnetic matrix

$$\mathrm{e}^{i\phi_{\epsilon,\eta}(\gamma,\gamma')}\int_{\Omega}\mathrm{e}^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}\lambda(\mathbf{k})d\mathbf{k}.$$

Question 1: if $\eta = 0$, do we get Landau-like spectrum around the maximum and minimum of λ ?

Yes: Bellissard, Helffer, Sjöstrand, Kerdelhue,...

Consider a slowly varying magnetic field $B_{\epsilon,\eta}(\mathbf{x}) := \epsilon(1 + \eta b(\epsilon \mathbf{x}))$ and the corresponding magnetic matrix

$$\mathrm{e}^{i\phi_{\epsilon,\eta}(\gamma,\gamma')}\int_{\Omega}\mathrm{e}^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}\lambda(\mathbf{k})d\mathbf{k}.$$

Question 1: if $\eta=0$, do we get Landau-like spectrum around the maximum and minimum of λ ?

Yes: Bellissard, Helffer, Sjöstrand, Kerdelhue,...

Question 2: if $\eta \neq 0$ is small, are the gaps preserved?

Consider a slowly varying magnetic field $B_{\epsilon,\eta}(\mathbf{x}) := \epsilon(1 + \eta b(\epsilon \mathbf{x}))$ and the corresponding magnetic matrix

$$\mathrm{e}^{i\phi_{\epsilon,\eta}(\gamma,\gamma')}\int_{\Omega}\mathrm{e}^{i2\pi\mathbf{k}\cdot(\gamma-\gamma')}\lambda(\mathbf{k})d\mathbf{k}.$$

Question 1: if $\eta=0$, do we get Landau-like spectrum around the maximum and minimum of λ ?

Yes: Bellissard, Helffer, Sjöstrand, Kerdelhue,...

Question 2: if $\eta \neq 0$ is small, are the gaps preserved?

Ongoing work with Helffer and Purice.

Comments on the bibliography

Existence and construction of localized Wannier functions:

Existence and construction of localized Wannier functions:

 Fiorenza, D., Monaco, D., Panati, G.: Construction of real-valued localized composite Wannier functions for insulators. Preprint 2014 http://arxiv.org/abs/1408.0527

Existence and construction of localized Wannier functions:

- Fiorenza, D., Monaco, D., Panati, G.: Construction of real-valued localized composite Wannier functions for insulators. Preprint 2014 http://arxiv.org/abs/1408.0527
- 2. When N = 1: Nenciu, Helffer-Sjöstrand.

Existence and construction of localized Wannier functions:

- Fiorenza, D., Monaco, D., Panati, G.: Construction of real-valued localized composite Wannier functions for insulators. Preprint 2014 http://arxiv.org/abs/1408.0527
- 2. When N = 1: Nenciu, Helffer-Sjöstrand.
- 3. If $d \le 2$, ongoing work H.C., I. Herbst and G. Nenciu.

Magnetic pseudo-differential calculus / Gauge covariant magnetic perturbation theory:

Magnetic pseudo-differential calculus / Gauge covariant magnetic perturbation theory:

1. Nenciu, G.: On asymptotic perturbation theory for quantum mechanics: Almost invariant subspaces and gauge invariant magnetic perturbation theory. J. Math. Phys. **43**(3), 1273-1298 (2002)

Magnetic pseudo-differential calculus / Gauge covariant magnetic perturbation theory:

- Nenciu, G.: On asymptotic perturbation theory for quantum mechanics: Almost invariant subspaces and gauge invariant magnetic perturbation theory. J. Math. Phys. 43(3), 1273-1298 (2002)
- 2. Briet, P., H.C.: Locating the spectrum for magnetic Schrödinger and Dirac operators. Comm. P.D.E. **27**(5-6), 1079–1101 (2002)

 $\label{lem:magnetic pseudo-differential calculus / Gauge covariant magnetic perturbation theory: \\$

- Nenciu, G.: On asymptotic perturbation theory for quantum mechanics: Almost invariant subspaces and gauge invariant magnetic perturbation theory. J. Math. Phys. 43(3), 1273-1298 (2002)
- 2. Briet, P., H.C.: Locating the spectrum for magnetic Schrödinger and Dirac operators. Comm. P.D.E. **27**(5-6), 1079–1101 (2002)
- 3. Măntoiu, M., Purice, R.: The magnetic Weyl calculus. J. Math. Phys. **45** (4), 1394–1417 (2004)

Magnetic pseudo-differential calculus / Gauge covariant magnetic perturbation theory:

- Nenciu, G.: On asymptotic perturbation theory for quantum mechanics: Almost invariant subspaces and gauge invariant magnetic perturbation theory. J. Math. Phys. 43(3), 1273-1298 (2002)
- 2. Briet, P., H.C.: Locating the spectrum for magnetic Schrödinger and Dirac operators. Comm. P.D.E. **27**(5-6), 1079–1101 (2002)
- 3. Măntoiu, M., Purice, R.: The magnetic Weyl calculus. J. Math. Phys. **45** (4), 1394–1417 (2004)
- Iftimie, V., Măntoiu, M., Purice, R.: Commutator Criteria for magnetic pseudodifferential operators. Comm. P.D.E. 35, 1058–1094 (2010)

Effective band Hamiltonians at weak magnetic fields:

Effective band Hamiltonians at weak magnetic fields:

1. Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. Springer Lecture Notes in Phys. **345**, 118-197 (1989)

- Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. Springer Lecture Notes in Phys. 345, 118-197 (1989)
- 2. Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l'équation de Harper. II. Comportement semi-classique près d'un rationnel. Mém. Soc. Math. France (N.S.) **40**, 1-139 (1990)

- Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. Springer Lecture Notes in Phys. 345, 118-197 (1989)
- Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l'équation de Harper. II. Comportement semi-classique près d'un rationnel. Mém. Soc. Math. France (N.S.) 40, 1-139 (1990)
- 3. Helffer, B., Sjöstrand, J.: Semiclassical analysis for Harper's equation. III. Cantor structure of the spectrum. Mém. Soc. Math. France (N.S.) **39**, 1-124 (1989)

- 1. Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. Springer Lecture Notes in Phys. **345**, 118-197 (1989)
- Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l'équation de Harper. II. Comportement semi-classique près d'un rationnel. Mém. Soc. Math. France (N.S.) 40, 1-139 (1990)
- 3. Helffer, B., Sjöstrand, J.: Semiclassical analysis for Harper's equation. III. Cantor structure of the spectrum. Mém. Soc. Math. France (N.S.) **39**, 1-124 (1989)
- Nenciu, G.: Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians. Rev. Mod. Phys. 63(1), 91-127 (1991)

- Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. Springer Lecture Notes in Phys. 345, 118-197 (1989)
- Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l'équation de Harper. II. Comportement semi-classique près d'un rationnel. Mém. Soc. Math. France (N.S.) 40, 1-139 (1990)
- 3. Helffer, B., Sjöstrand, J.: Semiclassical analysis for Harper's equation. III. Cantor structure of the spectrum. Mém. Soc. Math. France (N.S.) **39**, 1-124 (1989)
- Nenciu, G.: Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians. Rev. Mod. Phys. 63(1), 91-127 (1991)
- 5. H.C., Purice, R., Iftimie, V.: ongoing work.

Spectral stability:

1. Elliott, G.: Gaps in the spectrum of an almost periodic Schrodinger operator. C.R. Math. Rep. Acad. Sci. Canada **4**, 255-259 (1982)

- 1. Elliott, G.: Gaps in the spectrum of an almost periodic Schrodinger operator. C.R. Math. Rep. Acad. Sci. Canada 4, 255-259 (1982)
- Avron, J.E., Simon, B.: Stability of gaps for periodic potentials under variation of a magnetic field. J. Phys. A: Math. Gen. 18, 2199-2205 (1985)

- 1. Elliott, G.: Gaps in the spectrum of an almost periodic Schrodinger operator. C.R. Math. Rep. Acad. Sci. Canada 4, 255-259 (1982)
- Avron, J.E., Simon, B.: Stability of gaps for periodic potentials under variation of a magnetic field. J. Phys. A: Math. Gen. 18, 2199-2205 (1985)
- 3. Bellissard, J.: Le papillon de Hofstadter. Séminaire Bourbaki **34**, 7-39 (1991-1992)

- 1. Elliott, G.: Gaps in the spectrum of an almost periodic Schrodinger operator. C.R. Math. Rep. Acad. Sci. Canada 4, 255-259 (1982)
- Avron, J.E., Simon, B.: Stability of gaps for periodic potentials under variation of a magnetic field. J. Phys. A: Math. Gen. 18, 2199-2205 (1985)
- 3. Bellissard, J.: Le papillon de Hofstadter. Séminaire Bourbaki **34**, 7-39 (1991-1992)
- Bellissard, J., Kreft, C., Seiler, R.: Analysis of the spectrum of a particle on a triangular lattice with two magnetic fluxes by algebraic and numerical methods. J. of Phys. A 24(10), 2329-2353 (1991)

- 1. Elliott, G.: Gaps in the spectrum of an almost periodic Schrodinger operator. C.R. Math. Rep. Acad. Sci. Canada 4, 255-259 (1982)
- Avron, J.E., Simon, B.: Stability of gaps for periodic potentials under variation of a magnetic field. J. Phys. A: Math. Gen. 18, 2199-2205 (1985)
- 3. Bellissard, J.: Le papillon de Hofstadter. Séminaire Bourbaki **34**, 7-39 (1991-1992)
- 4. Bellissard, J., Kreft, C., Seiler, R.: Analysis of the spectrum of a particle on a triangular lattice with two magnetic fluxes by algebraic and numerical methods. J. of Phys. A **24**(10), 2329-2353 (1991)
- H.C., Purice, R.: On the Regularity of the Hausdorff Distance Between Spectra of Perturbed Magnetic Hamiltonians. Operator Theory: Advances and Applications 224, 55–66 (2012)

Lipschitz regularity of spectral edges:

 Bellissard, J.: Lipshitz Continuity of Gap Boundaries for Hofstadter-like Spectra. Commun. Math. Phys. 160, 599-613 (1994)

- Bellissard, J.: Lipshitz Continuity of Gap Boundaries for Hofstadter-like Spectra. Commun. Math. Phys. 160, 599-613 (1994)
- 2. Kotani, M.: Lipschitz continuity of the spectra of the magnetic transition operators on a crystal lattice. J. Geom. Phys. **47** (2-3), 323–342 (2003)

- Bellissard, J.: Lipshitz Continuity of Gap Boundaries for Hofstadter-like Spectra. Commun. Math. Phys. 160, 599-613 (1994)
- Kotani, M.: Lipschitz continuity of the spectra of the magnetic transition operators on a crystal lattice. J. Geom. Phys. 47 (2-3), 323–342 (2003)
- 3. Nenciu, G.: On the smoothness of gap boundaries for generalized Harper operators. Theta Ser. Adv. Math. **5**, Theta, 173–182 (2005)

- Bellissard, J.: Lipshitz Continuity of Gap Boundaries for Hofstadter-like Spectra. Commun. Math. Phys. 160, 599-613 (1994)
- Kotani, M.: Lipschitz continuity of the spectra of the magnetic transition operators on a crystal lattice. J. Geom. Phys. 47 (2-3), 323–342 (2003)
- 3. Nenciu, G.: On the smoothness of gap boundaries for generalized Harper operators. Theta Ser. Adv. Math. **5**, Theta, 173–182 (2005)
- H.C.: On the Lipschitz Continuity of Spectral Bands of Harper-Like and Magnetic Schrödinger Operators. Annales Henri Poincaré 11(5), 973–990 (2010)

- Bellissard, J.: Lipshitz Continuity of Gap Boundaries for Hofstadter-like Spectra. Commun. Math. Phys. 160, 599-613 (1994)
- Kotani, M.: Lipschitz continuity of the spectra of the magnetic transition operators on a crystal lattice. J. Geom. Phys. 47 (2-3), 323–342 (2003)
- 3. Nenciu, G.: On the smoothness of gap boundaries for generalized Harper operators. Theta Ser. Adv. Math. **5**, Theta, 173–182 (2005)
- H.C.: On the Lipschitz Continuity of Spectral Bands of Harper-Like and Magnetic Schrödinger Operators. Annales Henri Poincaré 11(5), 973–990 (2010)
- H.C., Purice, R.: Spectral edge regularity of magnetic Hamiltonians, to appear in J. Lond. Math. Soc. (2015), http://arxiv.org/abs/1406.6624

Thank you!