THE SHAFAREVICH CONJECTURE ABOUT ABELIAN
VARIETIES /Q WITH EVERYWHERE GOOD
REDUCTION AND RELATED TOPICS

VICTOR ABRASHKIN

INTRODUCTION
We discuss the following results.

1. There are no abelian varieties over Q with everywhere good re-
duction.

2. If X is a projective smooth algebraic variety with everywhere
good reduction then for its Hodge numbers we have h' = 0, h? = bt
h? =0 (and h* = h*? modulo General Riemann Hypothesis).

3. If X/Q is projective smooth with bad semi-stable reduction mod-
ulo 3 and good reduction modulo all primes [ # 3 then h? = hbl.

We give more detailed exposition of some parts of the author overview
“A semi-stable case of the Shafarevich Conjecture” (to appear in “Au-
tomorphic forms and galois representations”, London Mathematical
Society lecture note series, v. 414, pp.1-31, cf. also the online version
on the site “www.maths.dur.ac.uk/ dmaOva/”). All references will be
given below according to the list of references from that paper.

The first result appears as an application of the theory of finite flat
group schemes over Z. The main reference is Fontaine’s paper [21], but
we follow alternative author’s approach from [3,4,5] paying attention
also to earlier results from [1,2].

The second result appears as an application of Fontaine’s theory of
crystalline representations, the Fontaine-Messing result on the compar-
ison of etale and De Rham cohomology in dimensions < p (which was
proved later in a full generality by Faltings), and the Fontaine-Laffaille
theory. The main reference is Fontaine’s paper [23] and slightly alterna-
tive author’s approach (together with the modification of the Fontaine-
Laffaille theory to the case of Hodge-Tate weights from [0, p — 1]) from
6,7].

The third result appears as an application of the theory of semi-
stable representations and in particular of the analogue of the Fontaine-
Laffaille theory of semistable torsion representations developed by Breuil,

cf. [14-16]. Strictly speaking we need a modification of Breuil’s theory
1
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to the case of the HT weights from [0,p — 1] developed in the paper
[11], which contains also a complete proof of this (third) result.

Note that in the first two cases we have also similar results for va-
rieties defined over some algebraic number fields with small discrimi-
nants and the appropriate methods have been considerably developed
in 2000’s mainly in two directions:

— abelian varieties with everywhere good reduction, cf. Schoof’s
paper in Math Annalen (2003);

— Abelian varieties with bad semi-stable reduction at one small
prime p and good reduction at all primes [ # p, cf. e.g. the results
of Brumer-Cramer [13], Schoof [27], Verhoek (Journal Number Theory,
2013).

1. ABELIAN VARIETIES OVER Q WITH EVERYWHERE GOOD
REDUCTION

1.1. ICM 1962, Stockholm.

[.R.Shafarevich’s talk “Algebraic Number Fields”:
— [K : Q] < 00 4> Riemannian surfaces over C
— 8 C DivK finite, the Galois groups 'k s, 'k s(p)
<+ ramification of maps of Riemannian surfaces
(the problem of existence of infinite Hilbert’s towers if S = ()!)
— Galois groups of p-ext local fields <+ Burnside problem &

fundamental groups (Demushkin)
— Gal(Q,/Q,) =? (later done by Koch, Jakovlev, Jannssen-Wingberg)

ANALOGS TO ALGEBRAIC NUMBER THEORY:

e K'/K alg.n.f., CRITICAL (= unramified) S C DivK requires inte-
gral models Ok /Ok

—{K'" | [K': K] = const, S(K'/K) = const} is finite (Hermite);
— {K'| S(K'/Q) = 0} = {Q} (Minkowski).

e X /K proper non-singular algebraic variety;

integral model X' /O — divisors of bad reduction S(X) C DivK,
|IS(X)| < oo  — simplest case dimg X =1, g = g(X) — genus:
Conjectures:

— g > 1then {X/K | S(X) = S, 9(X) = g} is FINITE
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—ifg=1& X(K) #( then {SIMILAR SET} is FINITE
—ifg>1& {K=Q} & {Sp =0} then NO SUCH CURVES

All these conjectures have geometrical flavour because of the non-
uniqueness of integral models.

Example:
e g =1, 5(X)={2} there are 24 CURVES:
— y* = x(2? — a) with a = £1, 42, +4, +8;
— y? = 2(r — ac)(x — ad’) with
a==41,42, a=1+4+i1+v2 (1+v2)%2+V2

MAIN STEPS:
— X : y?* = P(x) with cubic P(X) € Z[X] — MINIMAL MODEL
outside (2)

(by Riemann-Roch theorem Q-1+ Qz + Qy is well-defined in Q(X))

— GOOD REDUCTION away from (2) = {Disc(P) = POWER OF 2}
— P(X) is REDUCIBLE (use class field theory!)

— P(X) = X(X — a)(X — B) where «, 8, o — 8 are coprime to (2)
alg. integers

eg=1,5=(0 = all above 24 curves have bad reduction at 2
Literally, Shafarevich stated:

e [s there a field of algebraic functions in one variable over Q without
critical prime numbers different from Q(t)?

In modern language:

e There are no projective algebraic curves over Q with genus > 1
and everywhere good reduction.

Later his PhD student (Volynsky) studied curves of GENUS 2 (=
hyperelliptic!); enormous calculations (not published)

Later switching: {curves} — {AV's}

e There are no abelian varieties over Q of dimension g > 1 with
everywhere good reduction.

This is more general:

— X — JacX has polarization of degree 1;

— JacX mod! can be non-singular for singular X mod;
It is easier to approach: AV has ADDITIONAL STRUCTURE
Finally, it can be stated as

o There are no non-trivial abelian schemes over 7.
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Affine group schemes over Z do exist — e.g. G,,, Gg;
Highly delicate geometrical property:
if A is abelian scheme [Z then Nid4 : A — A is faithfully flat.

If such A exists then Ker (Nid4) is a finite flat group scheme over Z
of order N%9.

Problem (Geometry has gone!):

— What are FINITE, FLAT GROUP SCHEMES (ffgs) over Z7

1.2. ffgs over a ring R (quick reminder).
General definition over arbitrary (commutative with 1 etc) ring R;
Algp — FLAT R-algebras A, rkpA < oo;
Grr — the category of G = SpecA with COALGEBRA structure
— COADDITION A: A — A® A
— COUNIT e: A — R;
— COINVERSION ¢ : A — A
|G| = tkgA — the ORDER of G.
Axioms are dual w.r.t. A — Hompg_00(A, R) —>
— the CARTIER DUALITY G — GP

Grgr — additive category with Kernels, Cokernels;

0 — Gy — G -2+ Gy — 0 is SHORT EXACT means:
— ¢ — closed embedding; j — faithfully flat;

— Kerj = (Gy,i) & Cokeri = (Gs,7)

e D(A(G)) = D(A(G1))/%ID(A(G»)) !

e Grp is not abelian (but abelian if R is a field).

1.3. Finite flat group schemes /Z. :
Relation to Grg and Grg
— G = SpecA € Gryz then
Ag =Map'?(G(Q),Q) =Qa (?Ka), all [K, : Q] < oo.

— H CG®Qthen d'1H CGEst. HRQ =H'
— G € Grg, |G| is a power of p then
all K,/Q are UNRAMIFIED away from p

Constant etale ¢,
— A(e,) = Map(Z/n, Z) with
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e : A(e,) — Z such that a — a(0);
A A(e,) — Alen) @ Aley,) such that A(a)(hy, he) = a(hy + ho).
— Say, A(e2) =Z®Z; Alear) = RER.
Remark. One can define constant etale groups Hpy for any abstract
(abelian) group H over any ring R. The Minkowski Theorem implies

that for R = Z, any extension of constant etale via constant etale is
again constant etale.

Constant multiplicative:

— A(pn) = Z|Z/n] = Z|X]/ (X" — 1) with

e: A(pn) — Z such that X — 1,

A A(py) — A(pn) ® A(py) such that X — X @ X
— A(pe) = {(a,0) e ZOZ | a+ b= 0mod 2}:

1= (1,1), X — (1,—1) gives

fo : €9 — g such that §§ : A(ue) C Z & Z;

(1) Ker fo = Coker fo = 0.

For any prime p, ¢, and p, — the only ffgs /Z of order p.
(Tate-Oort)

— pl = e, and ¢, = p (Cartier duality)

Group schemes G of order 4 over Z, 2idg =0
— Extoiq—o(€2, €2) = 0 — use Minkowski Thm;

— Extojq—o(p2, 2) = 0 (use Cartier duality);

— Extojg—o(p2, 82) = 0 — use D(A(G)) = 21 & G ® Fy splits (max
reduced subscheme) & A(G) C Q® Q® Q & Q (by Minkowski Thm);

— Extoiq=o(2, pt2) = Z/2
A(Gy) = A(us) ® B with D(B/Z) = 22, i.e. B = Z]i]; (exercise)

e G € Grz, |G| =4, 2idg = 0 THEN G IS EITHER PRODUCT OF [y
OR €3, OR COINCIDES WITH (:

Indeed, two cases:
— A(G)=Q&Qa --- then one of the above;

— A(G) = Q& K, [K : Q] = 3, ramified only at 2 = no such K
(class field theory)

Group schemes of order p?, pidg = 0, p > 2
— Extpia=o(&p, €) = Extpia=o(kp, ptp) = 0;
— Extyia—o(ttp, €p) = 0 (property of Bernoulli numbers)
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— Extpia—o(€p, 1) = 0 — special case that over any R, this group is

R*/R*P:
A(G) = @ R[T;], where T} =r € R* and p, acts via T; — 2 ® T;

i€L/p
(= a description of principal homogeneous spaces of y, over ring R)

Remark. Any G € Grz, |G| = p?, pidg = 0 is the product of y, or €,
(corollary of Serre’s conjecture proved by Khare and Wintenberger)

1.4. p-divisible groups /R.
p-DIVISIBLE GROUP in Grpg is an inductive system C = (C™, i, )n>0
of objects of Grg such that for all 0 < m < n,

0 — Clm) Imn ) Trng olnem)

pmidc(n

)
O
ol

: )

n—m)

Remark. There is h = h(C) € Z (the HEIGHT of C) s.t. for any n,
Examples /Z:
— CONSTANT ETALE (Q,/Z,)z = {€ym }n>0
— CONSTANT MULTIPLICATIVE (Q,/Z,)(1)z = {ftpn }n>0

— TRIVIAL p-div group Z — the product of copies of constant etale
and multiplicative

Are there non-trivial p-divisible groups /Z? (J.TATE)
— A is abelian scheme over Z of dimension g > 1

p a prime,

p-divisible group A(p) associated with A.

A(p) = lim(Ker(p"id4) over Z.

No non-trivial p-div groups /Z — Shafarevich Conjecture.
Otherwise, (A ® F,)(F,) is infinite
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1.5. 2-divisible groups of height < 2.

G ={GM™}, -0 — 2-div. group /Z

— if height of G is 1 then G is trivial,

G = ¢, (use Minkowski),

G = piy (use Cartier duality)

— if GW is €5 X € Or p1y X py then G is trivial (similarly);

— GW € Ext(eg, t2), 0 — g g Iy €& — 0

then for all n, 0 — pon Jny GO0 Iy egn — 0

and, therefore,

00— (Q2/Z2)(1)z — G — (Q2/Zs)z — O
Prove this for n = 2.

— ¢ induces

0 G ae a0 0

b S

0 G = H Lo 0

— J1+ induces

0 el = H Lo 0
\jl lé \id
0 €9 H' Lo 0
— diagramm chasing gives 2idp = 0 & 6-terms Hom — Ext
0 fho D 2 0
jil L(s lid
B

0 GW = H Lo 0

The upper row is actually the segment of length 2 of (Qy/Zs)7
0 — pg —> pg —> 2 — 0
and we obtained i =y o0d : g ~ D — G?.

e There are non-trivial 2-divisible groups of height 2 /Z but
they all are isogeneous to (Q2/Zs)z X (Q2/Zs)(1)z,

cf. V.Abrashkin, Mat. Zametki (1976)
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1.5.1. The case g = 1 of the Shafarevich Conjecture.

In this case A(2) is an extension of (Q2/Zs)z via (Q2/Z2)(1)z. This
extension splits over Fy (use the existence of a maximal reduced sub-
scheme over perfect fields of positive characteristic) and Ap, = A mod 2
contains infinitely many Fy-rational points.

Contradiction.

1.6. General approach.

1.6.1. 2-divisible groups.
Suppose G is a 2-div group /Z and for some a,b
0 — ps, — G — (Z/2)}, — 0 (the main difficulty)

Then G is an extension of (Qy/Z5)% via (Q2/Z3)(1)% and there is no
abelian scheme A over Z such that A(2) ~ G (similarly to the case

g=1)
1.6.2. The case g = 2.
Here G = GV € Gry, |G| = 2%
Gal(Q(G)/Q) C GL4(F5) — non-soluble.
A(G)g = Q@ (®K,) corresponds to orbits of the ['g-action on F3.

Remark. We can assume that 1.6.1. takes place for ffgs of order 8. If
at least one orbit spans a proper subspace in Fj then we get a proper
subgroup scheme in G and we obtain property 1.6.1.

The only ways for the lengths of these orbits to consider are:
14+15,1+54+10,14+54+5+5,1+6+9and 14+7+8

(use that the sum of elements in each orbit should be 0, otherwise
we shall have a subgroup of order 2)

— all K, are unramified outside 2;

— [[D(K,/Q) divides D(A(G)/Z)

Tate’s formula, [31]: v2(D(A(G))) =n2" n=dimG ® F,

gives [[D(K,) < 272" = 232;

e Lower bounds come from either the Minkowski or the Odlyzko
estimates for |D(K,/Q)|/IKQ

— ODLYZKO’S ESTIMATES (see for the tables in the appendix):

[K:Q=N = |[DK)'N >dy—ds

(Here: do &~ 22.352 and d ~ 41.122 (under GRH).)
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— First case: [K : Q] = 15 implies 8.423'° = d}2 > 2%
— Second case: 3.927° - 6.585'0 > 232
— Third case: (d2)® = 3.927" < 232 — no contradiction:

but such lengths of orbits appear only if all K,,/Q are cyclic of degree
5 over Q & unramified outside 2, but such fields do not exist (use class
field theory)

— Fourth case: here didy = 4.549° - 6.134° > 232

— Fifth case: here d7 - d5 > 23? (can be treated also directly)

1.7. The case g = 3.

Still works with Odlyzko’s estimates but requires much more com-
plicated count of orbits, [7]. Resulted in:

e 2-divisible groups /Z of height < 6 are isogeneous to the trivial
ones.

e there are no A over Z with g < 3.
e Tate’s estimate is not good enough for g > 4

e Our hope: index of A(G) in its integral closure should be very big.

1.7.1. What about p > 27
In this case Tate’s estimate is too bad.
But we have even more: if G is a p-divisible group /Z and
0 — py — G — el — 0 (the main difficulty!)

then G ~ iy X g,1° and G is a trivial p-divisible group.

Remark. If there is a non-trivial abelian scheme over Z then we should
have examples of non-trivial p-div groups over Z for all primes p.

1.8. The Shafarevich Conjecture almost everywhere.
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1.8.1. AV’s with good ordinary reduction at 2.
— A2 =G € Grg, GRF, = “gﬁz X ngz’
— equiv, over O := W (IF,)

0—>”g,o—>G(1)®O_>EZ,O—>O

—G®0 = Z” Gij € @i jExt(€20, 12,0),
— Field-of-definition of pts Qs (Gij) = Qa.ur(/V5;) With v;; € O*

. I‘&) acts trivially on Q2(G) C Qo ({035 | 1 <4, j < g}) if v > 1;

o |D(Q(G))|ROUT <22 < dy, [Q(G) : Q] <3 = Q(G) C Qi)
— at least one of K, equals Q

So, no such abelian schemes over Z.

1.8.2. AV’s with good ordinary reduction at p > 3.
— if A®F, is ordinary at p, G = A(p)®!) then
o F(UP) acts trivially on Q,(G) if v > 1/(p — 1);
o |D(Q(G)/Q)| )™ < pp/le-1)
For p < 17:
—Q(G) c Q¥
— e.g. 17V7/16 = 20.293 < dggo but Q( V/1) € Q(G), so 16-60 > 600

and we can proceed via class field theory.
Remark. 19'%/18 x~ 22.37 > dyo7 77?7 (under GRH?)

— GW is a product of constant etale and mult group schemes /Z;
— A(p) is trivial and, therefore, no such (non-triv) AV’s A over Z.

So, the Shafarevich Conjecture holds almost everywhere.
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1.9. The Shafarevich Conjecture, general case.

Same method but the ramification estimates proved in general situ-
ation:

— G € Gry), k — perfect of char.p, pidg = 0; Frac W (k) = K,
. F%(p_l)) acts trivially on Ky(G);

o |D(Ko(G)/Ky)|VIFo(@):Kol < pl+1/(P=1) (same as for ordinary!)
Two ways to prove the ramification estimate:

a) J.-M.Fontaine: very elegant and general approach:

— G € Gro,, pVidg = 0, [K : Ky| = e then

o F(Kv) acts trivially on K(G) if v > e(N +e¢/(p—1)) — 1

The proof is based on:

— there is an embedding G C p-div gr/Ok;

— rigidity properties of p-div groups

b) Alternative way:

— Fontaine’s classification of G € Gryy )

identifies the objects of Gry () with the Fontaine-Laffaille modules
with filtration of length 1 (if p = 2 we should restrict to the subcategory
of unipotent objects)

— improved classification for p = 2 (removing the restriction to
unipotent objects, cf. [4])

— extract equations for G € Gryy ) s.t. pidg = 0:
if the FL. module of G is given via
(1(ma), po(mo) = (M1, m0)C

with C' € GL(W (k)) then

A(G) = W(k)[X1, Xo] with equations

o (=1/p)XT,XF) = (X1, Xo)C

(seems no good presentation via equations for pidg # 0)

— explicit computations with upper ramification numbers;
Remark. In author’s overview we mentioned in the very beginning

one can find very short new proof of the above ramification estimate;
cf. also recent author’s paper in the archive.
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1.10. Extras.

— The above approach could be applied to study the existence of
AV’s with everywhere good reduction over algebraic number fields with
small discriminants, cf. [21]. [5] and, especially,

R.SCHOOF: There are AV with good reduction everywhere over cy-
clotomic fields Q({y) if and only if f ¢ {1,3,4,5,7,8,9,11,12,15}. For
f =11,15 he used estimates under GRH

— A characterization of Galois modules coming from group schemes
over W (k), [5]

2. PROJECTIVE VARIETIES OVER (Q WITH EVERYWHERE GOOD
REDUCTION

For projective Y/C, let

AN (Y) = dime HN(Y, C), h¥(Y) = dimg H'(Y, Q).

Theorem X/Q projective with good reduction everywhere then
a) h(Xc) =0, h*(Xc) = b (Xe), h¥(Xc) = 0;

b) h*(Xc) = h?*(Xc) modulo GRH.

2.1. General approach.
X/Q a projective non-singular variety; p — prime, N € N;
— V = H[(Xy,Q,) — f.dim /Q, with continuous I'g-action.
— X has everywhere good reduction <
X =X ®Q, X proper smooth /7Z

Want: V=V,2DViD>:---DVy_1 DVy=0
with Q,[['g]-modules V;, V;/Vii1 = Q,(:)*, s; = 0
Then
— VI # p, Frob; of X ® F; acts on V;/V;;; via mult by [’
— Riemann Conjecture over F; (proved by Deligne) = all I’ = ["/2;

(use that H,(X,Q,) = H,(X @ F;,Q,))

— Comparison to the De Rham cohomology:
if Nisodd = A" =dimV = 0.

if N =2N; iseven = V ~Q,(N;)?, hY = pNM1,

Achieving “Want”:
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Step I. X has good reduction modulo | # p = V unramified at [.
(use again H,(X,Q,) = Hi(X © F,,Q,))

T — T'g-inv lattice in V, Qr is the f-of-def of points T'/pT then

e D(Qr/Q) is a power of p.

Step I1..ys. X good reduction modp = V crystalline I'g,-module
(via some embedding I'g, C I'g)

e N <p—1=V comes from Fontaine-Laffaille theory, [19].

e N < p— 2 = all finite subquotients of V' come from FL theory
(here the FL functor is fully faithful);

(if N = p—1 = we need the modification of the FL theory from [6])

e Q(p, N) D Qr is the f-of-def of points of all T/pT =
Fgﬁ acts trivially on Q,(p, N) if v > N/(p — 1)
(ramification estimates)

e |D(Q(p, N)/Q)|EA < pH+N/ =1 (ready for Odlyzko)

Step 111.,s. Odlyzko’s estimates:
Reminder: [K: Q] =N = |D(K/Q)|'N > dy v deo
—00

— do &~ 22.352 and dy, ~ 41.122 (under GRH).
— p=>5, N =1,2,3, then 5'73/% = 16.7185... < dyso = 18.788

e Gal(Q(5,3)/Q) is soluble, Q(5,3) C Q((s, v/ G + G ).
o N =4 then (under GRH) Q(5,4) is still totally ramified at 5 with
the same maximal tamely ramified subfield Qj((5).

Step IV,s. Tg-equivariant filtration for T'/p
Suppose for some (p, N) where N < p—1 (our caseisp =5, N < 4):

Q(p, N) is totaly ramified at p =
e {global behaviour of 7'/p} = {local behaviour of T'/p over Q, .}

— over p, Q(p7 N)tr = Q(Cp) =
o I'g-filtration T/p=Hy D H; D --- D Hy =0

o (Cruciall) Extyon(Fp(2), Fp(j)) = Extpcrys(Fp(7), Fp(j)) = 0ifi > 5

— if N < p — 2 use Fontaine-Laffaille theory
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— if N = p — 1 use modification of FL theory
this modification takes values in the category of filtered Galois

modules, e.g. there are two simple objects
Fy(0) = (Fp, Fp) and Fy(p — 1) = (F,, 0)).

Step ‘/Ycrys-
Lo-filtration V=V, D V) D -+- D Vy =0 with V;/Viy1 = Q,(4)*

— devissage in pre-abelian categories, cf. [7,11]

3. SEMI-STABLE CASE OF THE SHAFAREVICH CONJECTURE

Theorem X/Q projective non-singular with good reduction at | # 3
and semi-stable reduction at 3 then h*(Xc) = h''(X¢).

3.1. General approach.

— AV’s over Q with bad semi-st reduction modulo one small prime:

Brumer-Kramer, Schoof, Verhoek etc (“tr” ramification at bad re-
duction + cryst in others)

Again choose a prime p and N € N;

— V = H}(X5,Q,) — f.dim /Q, with continuous I'g-action.
Want:

— if Nisodd = Y =dimV = 0.

— if N=2N;iseven = V ~Q,(N;)*, hY = pNt:N1,

Steps [, [11 s, V.

X has s-st reduction at p = V s-st I'g,-module (via some I'g, C I'g)

T — T'g-inv lattice in V/,

Qsi(p, N) — the field-of-definition of pts of T'/p.

e N < p =V can be described via Breuil’s theory.

e N < p — 2 = Breuil’s theory describes T'/p over Q,;

e N = p — 1 = modification of Breuil’s theory describes T'/p over

@p,ur~
¢ |D(Qu(p, N)/Q))|[@t:N):Q™"  p24+N/(p=1)=1/p
— N =2,p=>5= 52215 > d_ (even under GRH)
e can’t apply Breuil’s theory
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e N =2, p =3 (use modification!), 3°71/% < dy35 —soluble case!
[Q(3,2) : Q] < dass, Qut(3,2) = Q(Co, V/3).

Computational Part — SAGE

Theorem Q,(3,2) = K; = Q((y, V/3)

a) hr, = 1;

b) Ki(¥/) : {8 fund. units & (o}; let m € Ky, (7'®) = (3).
Non-trivial extension K(/7) inside K(3,2) means

(quiet typical for all Schoof’s papers)

n =1 mod(7'?) (use ramification estimate)

BUT there is a basis €;, 1 < 9, of units modulo cubes such that
18v5(5: — 1) = 1,2,4,5,7,8, 11, 13, 16.

Step V.

Similar to V., but Exts g (F3(1),F5(1)) = Fs # 0.

We overcome this problem by proving that such subquotient never
appears as a subquotient of any such 3-divisible group.

Appendix. Odlyzko tables for lower bounds of the root discriminants

of algebraic number fields

Table 1: GRH BOUNDS FOR DISCRIMINANTS

n b D~{1/n} b D~{1/n}
1 0.340 0.996 0.300 0.874
2 0.700 2.225 0.580 1.721
3 1.050 3.630 0.800 2.519
4 1.350 5.124 1.050 3.263
5 1.550 6.640 1.200 3.954
6 1.750 8.143 1.350 4.592
7 1.900 9.611 1.500 5.185
8 2.050 11.036 1.600 5.734
9 2.200 12.410 1.700 6.247
10 2.300 13.736 1.800 6.726
11 2.400 15.012 1.900 7.176
12 2.500 16.238 2.000 7.598
13 2.550 17.422 2.050 7.997
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180 5.200 72.5563 4.600 22.236
190 5.300 73.760 4.700 22.493
200 5.300 74.909 4.700 22.735
220 5.400 77.026 4.800 23.178
240 5.500 78.943 4.900 23.575
260 5.600 80.689 5.000 23.934
280 5.700 82.283 5.100 24 .258
300 5.700 83.775 5.100 24 .560
320 5.800 85.155 5.200 24.838
340 5.900 86.424 5.200 25.091
360 5.900 87.642 5.300 25.332
380 6.000 88.760 5.400 25.552
400 6.000 89.833 5.400 25.763
480 6.200 93.555 5.600 26.485
600 6.400 97.979 5.800 27.328
720 6.600 101.488 6.000 27.984
840 6.800 104.361 6.100 28.515
960 6.900 106.815 6.300 28.961
1000 6.900 107.548 6.300 29.094
1200 7.200 110.728 6.500 29.673
1332 7.200 112.575 6.600 29.992
2400 7.800 122.112 7.200 31.645
4800 8.400 132.020 7.800 33.298
4840 8.600 132.126 7.800 33.315
8862 9.200 139.766 8.400 34 .541
10000 9.200 141.218 8.600 34.768
31970 10.400 153.252 9.800 36.613
100000 11.600 162.651 10.800 37.994
254228 12.500 168.971 11.800 38.895
Table 2: UNCONDITIONAL BOUNDS FOR DISCRIMINANTS
n b D~{1/n} b D~{1/n}

1 0.420 0.996 0.360 0.874
2 0.900 2.222 0.700 1.719
3 1.350 3.609 1.000 2.513
4 1.750 5.062 1.300 3.250
5 2.050 6.514 1.550 3.927
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121
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100 9.200 41.728 7.400 16.454
110 9.400 42.678 7.600 16.756
120 9.800 43.513 7.800 17.020
130 10.000 44 .256 8.200 17.255
140 10.400 44 .921 8.400 17.466
150 10.600 45.522 8.600 17.655
160 10.800 46.067 8.800 17.826
170 11.200 46.565 9.000 17.982
180 11.400 47.021 9.200 18.125
190 11.600 47 .444 9.400 18.257
200 11.800 47.833 9.600 18.379
220 12.000 48.530 10.000 18.597
240 12.500 49.142 10.200 18.788
260 13.000 49.680 10.600 18.955
280 13.500 50.156 10.800 19.104
300 13.500 50.588 11.200 19.237
320 14.000 50.977 11.400 19.358
340 14.000 51.328 11.600 19.467
360 14.500 51.652 11.800 19.567
380 15.000 51.947 12.000 19.658
400 15.000 52.221 12.500 19.742
480 16.000 53.130 13.000 20.023
600 17.000 54.122 14.000 20.329
720 18.000 54.842 15.000 20.551
840 19.000 55.396 16.000 20.722
960 20.000 55.837 17.000 20.856
1000 21.000 55.966 17.000 20.895
1200 22.000 56.500 18.000 21.059
1332 23.000 56.780 19.000 21.144
2400 28.000 58.061 23.000 21.535
4800 35.000 59.069 29.000 21.843
4840 35.000 59.079 29.000 21.845
8862 42.500 59.655 35.000 22.021
10000 45.000 59.746 37.500 22.049
31970 67.500 60.332 57.500 22.226
100000 75.000 60.582 75.000 22.308
254228 75.000 60.656 75.000 22.335
1000000 75.000 60.691 75.000 22.348
2391978 75.000 60.698 75.000 22.350
10000000 75.000 60.702 75.000 22.352
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