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General setting

Let B : R? — R be a magnetic field and consider the Schrédinger operator H(B)
in L?(R?) formally given by

H(B) = (iV + A)?

where A : R? — R? is such that |A] € L? (R?) and curl A = B holds in the
distributional sense.

We will work under the condition |A| € L°°(R?); hence we define H(B) as the
unique self-adjoint operator associated with the closed quadratic form

Qlu] = /R2 (iV + A) u|? dz, d(Q) = WH2(R?).
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General setting

Obviously, H(B) > 0. We assume that B is such that

o(H(B)) =10, 00).

Let V' : R? — R be a bounded electric potential with a suitable decay at infinity
such that o.,(H(B) + V) = [0, ).

The problem: we want to study the influence of the magnetic on the asymptotic
behavior of the solutions to the Schrédinger equation

iow=(H(B)+V)u
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General setting

Hence the object our interest is the unitary group e~ #(H(B)+V)

In particular, we want to compare the time decay of

e~ HH(B)+V) PP as t — +o0

where P5 is the projection onto the continuous subspace of L?(R?) with respect

to H(B) + V, with the decay of its non-magnetic counterpart:
e~ H(=A+V) P. as t — 400

Here P, is the projection onto the continuous subspace of L?(R?) with respect
to —-A4+V
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Time decay: non-magnetic Schrodinger operators

L' — L estimates: one considers the propagator e *(=2+V) P as operator
from L1(R"™) to L>°(R™) and studies the time decay of the corresponding norm

He_it(_AJrv) Pell g1y pos

If V =0, then

e (x,y) = (4imt)” /2 e W zr,y € R"

Hence
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Time decay: non-magnetic Schrodinger operators

An alternative, thought less precise, way to measure the time decay is to consider
e~ (=A+V) a5 an operator between weighted L2—spaces;

e HEATVI P LA(RY, p? dx) — L*(R™, p~2dx),
or equivalently
,0_1 6—it(—A—|—V) Pc p—l : LQ(RTL) N LQ(Rn),

where p > 0 is a suitable weight function.

For V' = 0 the Cauchy-Schwarz inequality gives

“letd pmly lL2@®ny S I~ H2L2(Rn) el 2@y

_n
2

N

| p

provided
plz) = (1+|z))27=, e>0.
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Time decay: non-magnetic Schrodinger operators

If V' # 0, then the decay rate depends on the validity of the estimate

limsup|| p” (A +V —2) pHame < o0 (1)

z—0

If (1) holds true for some p, then we say that zero is a regular point of —A 4+ V;
(generic situation).

Zero is not a regular point of —A in L*(R") for n =1, 2.

Zero is a regular point of —A in L?(R") for n > 3:

limsup || p~ (A —2) " p7 a2 < o0

z—0

if p(x) = (1 + |z])?, with 8 > 1.
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Time decay: non-magnetic Schrodinger operators
Dimension n = 3. If zero is a regular point of —A 4+ V', then as t — o0
| o7t e AP, p oy = O(17) 2)
[Rauch 1978]: p(x) = efl*l and V() < el e > 0.
[Jensen-Kato 1979]: p(z) = (1 + |z|)?, 8> 5/2, and V(z) < (1 + |z|) 3.

[Journeé-Soffer-Sogge 1991, Goldberg-Schlag 2004, Goldberg 2006] ....

If zero is not a regular point of —A 4 V/, then (2) fails and one
observes a slower decay: [Rauch 1978, Jensen-Kato 1979, Murata 1982]

Hynek Kova¥ik, (Universita degli Studi di Brescia) 8



Magnetic fields and semi-classical analysis, Rennes May 19-22 Dispersive estimates for magnetic Schrodinger operators

Time decay: non-magnetic Schrodinger operators

Dimension n = 2. [Schlag 2005] : if zero is a regular point of —A 4V, then

| p e AP p7 e = O@TY)  t— o (3)

holds for p(z) = (1 + |z|)?, B8 > 1 and V(z) < (1 + |z])~3. This is again the
decay rate of the free evolution. However, (3) can be improved, still under the
condition that zero is a regular point, provided p grows fast enough:

| pte ™ CAVIP p7l as = Ot (logt)™?)  t—oo  (4)

where p(z) = (1 +|z|)?, >3, and V(z) < (1 + |2[?)73, [Murata 82], see
also [Goldberg-Green 2013].

Hence adding a potential V' might improve the decay rate, contrary to the case
n > 3.
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Time decay: magnetic Schrodinger operators

Dimension n = 3. [Murata: 1982] showed, under suitable regularity and decay
assumptions on B and V/, that if zero is a regular point of H(B) + V, and
p(z) = (1 + |z|)? with § large enough, then

H/O_l 6—it(H(B)+V) P, ,0_1 H2—>2 _ O(t_3/2) s 60 (5)

Moreover it follows from [Murata: 1982] hat the decay rate in (5) is sharp.

Hence a magnetic field, decaying at infinity, does not improve the decay rate
of e~ H(B)+V) in dimension three.

Dimension n = 2. Our motivation is to show that a compactly supported
magnetic field in dimension two does improve the decay of e #(H(B)+V) 45
t — oo and that the decay rate is given by its total flux.
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Main results: weighted L°—estimates

Assumption 1: Let B € C*°(R?;R) be such that for some o > 4 we have

sup (|B(7°,(9)| + |(9QB(7“,9)\) < (14+7r)"°.
0c(0,2m)

Under this assumption we can define the following quantities:

L [ Ba)de < oo, pla):=min|k—al €[0,1/2].

o= —
2T JRe2 kELZ

Assumption 2: Let V : R? — R be bounded and such that the operator
H(B) + V has no positive eigenvalues.

ges(H(B)+ V) =0.(H(B)+ V) =]0,00).
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Main results: weighted L°—estimates

Theorem (K.): Let o € Z. Put p(z) = (1 + |x|)® with s > 5/2 and suppose that
[V (z)] < (1+|z])~3. If zero is a regular point of H(B) + V, then there exists an
operator

K(B,V) e B(L*(R?))
such that

p—l e—it(H(B)—I—V) PCB ,0_1 _ t—l—,u(oz) K(B,V)—FO(t_l_M(a))

in B(L*(R?)) as t — cc.
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Main results: weighted L°—estimates
The maximal decay rate t=3/2, for p(a) = 1/2, is the same as in dimension

three.

The operator K (B, V') can be expressed explicitly in terms of B and V. Its
L?—norm is gauge-invariant.

If p(x) = (1 + |z|)” then we must have 5 > 1.

If V' =0, then zero is a regular point of H(B):

1

T3 ~ )

in the sense of quadratic forms on W1 2(R?); [Laptev-Weidl 1999].
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Main results: weighted L°—estimates

Theorem (K.): Let a € Z. Put p(z) = (1 + |x|)® with s > 5/2 and suppose that
[V (z)] < (1+|z])~3. If zero is a regular point of H(B) + V, then there exists an
operator

K(B,V) € Z(L*(R?))
such that

p~t e MHBIFV) pB =1 — 4 =Log )2 K(B,V) + o(t~*(log t)~2)

in (L*(R?)) as t — oc.
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Main ingredients of the proof

Assume that a ¢ Z and that V' = 0.

By the spectral theorem and Stone formula we have
,0_1 e—itH(B) ,0_1 :/ e—it/\ E(Oz,)\) d)\, (6)
0

where FE(a, \) is the (weighted) spectral density associated to H(B):

Ela,\) = i lim p~ ' [(H(B)—A—ie) ' —(H(B) = A+ie) | p~*

271 e—0+

We will use the notation

T B -1
Re(a,\) = lim (H(B) =\ i)
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Main ingredients of the proof

Let ¢ € C°°(0,00), 0 < ¢ < 1, be such that ¢(z) = 0 for = large enough and
¢(x) =1 in a neighborhood of 0.

/OOO e " B(a,\) d\ = /OOO e (1 — @) E(a, \) d\ + /OOO e ¢ E(a, \) dX
Our aim is to show that
/OOO e "M (1 — o(N) E(a, \)d\ = o(t™?)
and
/000 e A (\) Ba, \)d\ = ¢t 1) K(B V) + ot~ #(@)

in B(L*(R?%)) ast — oo.
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Main ingredients of the proof

We need to prove that

E(a,X\) = By M@ Loy N 50

for some E; € #(L*(R?)). We have to show that

p P Ri(aN) pTt = Fy+ By MY oAy xS0

Recall that in the absence of magnetic field we have

p VRN pt =Fylogh+0O(1) A—0.
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Resolvent expansion at threshold

Consider a radial magnetic field By generated by the vector potential

z|~! |l <1
Ao(z) = 04(—332,931){ ;x}—z IZCI S 1 V-40=0.

ozt x| <1

Bo(x) = curl Ap(z) = : - Bo(x) dx = a.

0 2] > 1 2T Jre

Using the partial wave decomposition, after some calculations we find that

p P RU(a,)\) p7t = Go+ G @ 1 oMY X 50

for some Go, G1 in B(L*(R?)), where RY (a, A) is the resolvent of H(By).
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Resolvent expansion at threshold

Lemma: Let o > 0 be the flux of B through R?. Then there exists a bounded
vector field A = (a1,as2) s. t. curl A = 01as — 92017 = B in the distributional
sense, and

V-A@)] = o(l2177) ,  [A(@) = Ao(@)] = o(|z]™)

The above Lemma implies that

T(B):=H(B)— H(By) =2i (A—Ag) -V + (V-4 + \\A|2—\A0\3

~

o (1217%) o (I«17?) o (1217%)

since V - Ag = 0. This allows us to show that the operator
Go pT(B)p=p~ ' H(Bo) ' T(B)p

is compact in Z(L*(R?)).

Hynek Kova¥ik, (Universita degli Studi di Brescia) 19




Magnetic fields and semi-classical analysis, Rennes May 19-22 Dispersive estimates for magnetic Schrodinger operators
Resolvent expansion at threshold

With this we prove that 1+ Gy pT'(B) p is invertible in L?(R?). Then
1+p 'R (a,\) T(B)p=1+Go pT(B) p +G1 pT(B) p MY 1 o(A*))
is invertible for A small enough. From the resolvent equation we thus obtain
p~  Ri(a, ) pt = (14 p7 RY(a, \) T(B) p)~ p' RY(a, ) p!
Since
(14 p~"RO(a,\) T(B)p) ' = (1+Go pT(B) p)~" + S(B) M) 4 o(x#(@)),

we arrive at

p L Ri(a,\) p7t = Fy+ Fy 3 L oAy X 0.
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Remark

In order that the coefficients of H(B;,V)—H (B3, V) decay faster than o(|z|™1)
at infinity, the fluxes of By and By must be equal.

Indeed, if curl A; = By and curl Ay = By, then by the Stokes Theorem we have

|Ai(z) — As(z)| =o(Jz]™h) J2| 200 = g Bi(x)dx = /1&2 Bs(x) dzx.
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L' — L™ estimates: scaling critical Schrodinger operators

We consider Schrédinger operators in L?(R"™), n > 2 of the form

H(A0) = (~i9+ o] 4 (é)y el ().

where A € WhHe(S" 1 R"), a € WH(S" 1 R) and S" ! denotes the
n—dimensional unit sphere.

Under the scaling x — A x we have
H(A,a)— AN"2H(A,a).

We are interested in the unitary group e~ "*H(4:@) generated by H(A, a).
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L' — L™ estimates: scaling critical Schrodinger operators

The behaviour of e~ #H(4:a) is closely related to the spectral properties of the
operator

L(A,a) = (—iVe1+ A’ +a  in LAS"),

where Vgn—1 denotes the spherical gradient on S* 1. If A =a =0, then L(A,a)
coincides with the Laplace-Beltrami operator on L?(S"!). The spectrum of
L(A,a) is purely discrete.

We denote by {\x(A,a)} and {x} the sequences of its eigenvalues and norma-
lized eigenfunctions:

L(A,a) s = M(A,a)dp, [kl panny = 1
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L' — L™ estimates: scaling critical Schrodinger operators

Theorem (Fanelli, Grillo, K.): Let n > 2 and assume that A\;(A,a) > 0. Denote

by
g(n)—\/(n22)2+)\1(A,a) —”;2 >0,

If, for all £ > 0 and some Cy, the following estimate holds

—itH(A,a) HL1 L

e ®MY—Loomny < Cot™ 2,

then there exists a constant (' such that

H |x|—g(n) o~ itH(Aa) m—g(n) HLl(Rn)—>LOO(Rn) < Ct 39

holds for all ¢ > 0.
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L' — L™ estimates: scaling critical Schrodinger operators

One of the main ingredients of the proof is the representation formula for the
integral kernel of e~ (4.4) which was found by
[Fanelli-Felli-Fontelos-Primo, 14], for any ug € C3°(R"™) we have

_; a re 4 X Y iy
(6 tH {4, )’LL())(QT) — _(Qt)n/2 /nK(m’ \/27t) e 4 uO(y) dya

where

and
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L' — L[> estimates: Aharonov-Bohm operator

If we put n =2, a =0 and
Alx) = App(x) = — (—x2, x1), n =2

then the operator H(Aup,0) describes the energy of a particle interacting with
the so-called Aharonov-Bohm magnetic field of flux o in R?.

Since

: 1
He—ZtH(Aabao)||L1(R2)_>LOO(R2) 5 z \V/ t > O’ n = 2

holds true by [Fanelli-Felli-Fontelos-Primo, 14], the above Theorem implies
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L' — L[> estimates: Aharonov-Bohm operator

Corollary (Fanelli, Grillo, K.): Let n = 2. Then

H m—u(a) e~ 1H (Agp,0) ||~ < ¢t 1w

) HLl(R2)—>Loo(R2)

holds for all ¢ > 0.

For a € 7Z we have p(a) = 0 and the above equation turns into

He_itH(Aab’O) HLl(R2)—>LOO(R2) < Ct

which is the decay rate of the free evolution; H(A4,0) ~ —A if a € Z.
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L' — L*° estimates: Schrédinger operators with inverse
square potentials

Consider the case n = 3, A = 0 and

5
a(m)_W7 5>0
so that 3
H(O’Q)Z_A—I_W’ B> 0.

Then, again by [Fanelli-Felli-Fontelos-Primo,14] we have

(VI[d)

—itH (0,a) HLl

He (R3)—>LOO(R3) g t \V/ t > O, n = 3.

Hence the Theorem above gives
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L' — L*° estimates: Schrédinger operators with inverse
square potentials

Corollary (Fanelli, Grillo, K.): Let n = 3 and let

s
H(0,a) = —A+ —= 0.
(0, a) + ek g >
Then
—~ _—itH(0,a — e
Hm Te (0:0) |z 7HL1(1R<1’>)—>LO<>(R3) < Ct2
where

1 1
7—\/1+5—§-
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