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Superconductors in magnetic fields

I Superconductivity = absence of resistivity at low temperature in
some materials

I Peculiar response to applied magnetic fields = small fields do not
penetrate (Meissner effect)

I Ginzburg-Landau 50 : phenomenological theory, order parameter

I Bardeen-Cooper-Schrieffer 57 : microscopic theory, Cooper pairing

I Gor’kov 59: BCS ⇒ GL, mathematically rigorous derivation
Frank-Hainzl-Seiringer-Solovej 12

Superconductor levitating above a magnet



Ginzburg-Landau theory

Sample = infinite cylinder of smooth cross-section Ω ⊂ R2, in a uniform
external magnetic field perpendicular to Ω.

I Order parameter Ψ : R2 → C. |Ψ|2 = relative density of
superconducting electrons (bound in Cooper pairs)

I Induced magnetic field h 6= applied magnetic field hex

I Induced magnetic vector potential A with curl A = h.

I κ = penetration depth. κσ = strength of applied magnetic field

I Type II superconductor : κ > 1/
√

2, “extreme type II”: κ→∞
Energy functional to be minimized:

GGL
κ,σ[Ψ,A] =

∫
Ω

|(∇+ iκσA) Ψ|2 − κ2|Ψ|2 + 1
2κ

2|Ψ|4 + (κσ)2 |curl A− 1|2

Gauge invariance: energy invariant under

Ψ→ Ψe−iκσϕ, A→ A +∇ϕ



Phenomenology of type II superconductors

For minimizers |Ψ| ≤ 1.

I |Ψ| = 1: purely superconducting state, all electrons in Cooper pairs.

I |Ψ| = 0: normal state, no Cooper pairs.

I Low magnetic field, κσ ≤ Hc1 : superconducting state |Ψ| ≈ 1 a.e.

I First critical field:
κσ = Hc1 ≈ CΩ log κ

isolated normal regions (vortices) start to appear.

I Hc1 ≤ κσ ≤ Hc2: vortex lattice state, Abrikosov lattice.

I Second critical field:
κσ = Hc2 ≈ κ2

superconductivity disappears uniformly in the bulk.

I Hc2 ≤ κσ ≤ Hc3: surface superconductivity state, |Ψ| ≈ 0 in the
bulk, |Ψ| > 0 close to the boundary.

I Normal state |Ψ| ≡ 0 above the third critical field:

κσ > Hc3 ≈ Θ−1
0 κ2, Θ0 < 1.



Mixed state: Abrikosov lattice

I Theoretical prediction: Abrikosov 57, first observation 67.

I External magnetic field penetrates in small normal regions.

I Mathematical literature: cf Sandier-Serfaty’s 2007 book.

Vortex lattice in a type II superconductor, Hess-et al-Waszczak 89.



Mixed state: surface superconductivity

I Theoretical prediction: Saint-James and de Gennes 63, observed 64.

I Bulk is normal, magnetic field penetrates.

I A thin superconducting layer survives along the boundary.

I Mathematical literature: cf Fournais-Helffer’s 2010 book.

Surperconductivity in increasing magnetic fields, Ning-et al-Xue 09.
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Transition from the normal state in decreasing fields

GGL
ε [Ψ,A] =

∫
Ω

∣∣∣∣(∇+ iε−2A

)
Ψ

∣∣∣∣2 +
1

2bε2

(
|Ψ|4 − 2|Ψ|2

)
+

b

ε4
|curl A− 1|2 .

I New parameters: σ = bκ, b fixed, ε = (σκ)−1/2 � 1.

I Correspondence: Hc2 ↔ b = 1, Hc3 ↔ b = Θ−1
0

I St-James/de Gennes 63: Start at large b, normal state
|Ψ| ≡ 0, curl A ≡ 1. When does this become unstable ?

I At first, curl A stays fixed ≡ 1. Choice of gauge A ≈ F
curl F = 1 in Ω

div F = 0 in Ω

ν.F = 0 on ∂Ω

I Close to transition, for small values of Ψ, energy to leading order∫
Ω

∣∣∣∣(∇+ iε−2F

)
Ψ

∣∣∣∣2 − 1

bε2
|Ψ|2

I Can one make this < 0, smaller than energy of the normal state ?



The critical fields Hc2 and Hc3

E [Ψ] =

〈
Ψ

∣∣∣∣Hε − 1

bε2

∣∣∣∣Ψ

〉
I Hε = −

(
∇+ iε−2F

)2
, magnetic Laplacian, uniform field = ε−2.

I When does Hε have an eigenvalue strictly less than 1/(bε2) ?

I Eigenfunctions of Hε are localized over length scales of order ε{
localization in the bulk  magnetic Laplacian in the plane

localization close to boundary magnetic Laplacian in a half-plane

I First eigenvalues for small ε (semi-classics, e.g. Helffer-Morame){
magnetic Laplacian in the plane→ λ1 ∼ ε−2

magnetic Laplacian in a half-plane→ λ1 ∼ Θ0ε
−2 < ε−2

I Third critical field: if 1 < b < Θ−1
0 , favorable to put mass close to

the boundary, but only there.

I Second critical field: if b < 1, favorable to also put mass in the bulk.



More precise effective model between Hc2 and Hc3

I 1 < b < Θ−1
0 , Ψ concentrated close to boundary on length scale ε.

I Magnetic field penetrates curl A ≈ 1, choose a convenient gauge.

I In scaled boundary coordinates (s, t) (units of ε−1), curvature k(s)∫ |∂Ω|

s=0

∫ c0| log ε|

t=0

(1− εk(s)t)
{
|∂tψ|2

+
1

(1− εk(s)t)2
|(ε∂s + iaε(s, t))ψ|2

+
1

2b

[
|ψ|4 − 2|ψ|2

]}
I To leading order in ε, after scaling s:

Ehp[ψ] =

∫ |∂Ω|ε−1

s=0

∫ +∞

t=0

{
|(∇− ites)ψ|2 +

1

2b
|ψ|4 − 1

b
|ψ|2

}
.

I Natural ansatz ψ(s, t) = f (t)e−iαs (exact in the linear case) leads to

E1D0,α[f ] :=

∫ +∞

0

|∂t f |2 + (t + α)2f 2 +
1

2b

(
f 4 − 2f 2

)
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Previously known results

I b → Θ−1
0 “easier case”, cf Lu-Pan, Fournais-Helffer ...

I b → 1+: transition boundary to bulk behavior, Fournais-Kachmar 09

I b → 1−, cf Almog, Sandier-Serfaty, Aftalion-Serfaty, circa 07

I X.B. Pan 02, if 1 < b < Θ−1
0 , for some implicit constant Eb < 0

EGL
ε =

|∂Ω|Eb

ε
+ o(ε−1)

I Minimize E1D0,α[f ] ⇒ optimal energy E1D
0 , phase α0, density f0.

Almog-Helffer 07, Fournais-Helffer-Persson 11, for 1.25 ≤ b < Θ−1
0

EGL
ε =

|∂Ω|E1D
0

ε
+ o(ε−1), |ΨGL|2 ≈ f 2

0 (t) in L2(Ω)

Methods (cf Fournais-Helffer’s book)

I Decay estimates à la Agmon + Magnetic field estimates (elliptic
PDEs methods)  boundary problem

I Linear problem has unique non degenerate ground state

I Treat non linearity “perturbatively”



New energy and density estimates

The simplified 1D limit problem gives the leading order for all field
strengths between Hc2 and Hc3.

Theorem (Correggi-NR 13)
Let Ω ⊂ R2 be any smooth simply connected domain. For any fixed
1 < b < Θ−1

0 , in the limit ε→ 0, it holds

EGL
ε =

|∂Ω|E1D
0

ε
+O(1),

and ∥∥|ΨGL|2 − f 2
0 (t)

∥∥
L2(Ω)

≤ Cε�
∥∥f 2

0 (t)
∥∥
L2(Ω)

.

I Idea of proof : don’t think perturbatively around the linear problem

I Use the physics of the problem : “quantum fluid mechanics”



Uniform density estimates and degree estimates

Conjecture by Pan 02: |ΨGL|2 → C (b) > 0 pointwise on ∂Ω.

Theorem (Correggi-NR 14)
For any r ∈ Ω with dist(r, ∂Ω) . ε we have∣∣∣∣ΨGL(r)

∣∣− f0 (t)
∣∣→ 0

I No defects (e.g. vortices) in the surface superconductivity layer.

I Phase is well-defined along ∂Ω: ΨGL =
√
ρe iϕ .

I Phase circuclation along ∂Ω ↔ number of vortices in the bulk.

Theorem (Correggi-NR 14)
Any GL minimizer ΨGL satisfies in the limit ε→ 0

1

2π

∫
∂BR

∂τϕ = deg
(
ΨGL, ∂Ω

)
=
|Ω|
ε2

+
|α0|
ε

(1 + o(1)).
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Preliminary reductions

I Agmon estimates → exponential decay of order parameter away
from the boundary (distances � ε).

I Magnetic field replacement, induced field ≈ applied field. A→ F

I Clever choice of gauge to represent the field.

I Mapping to boundary coordinates

⇒ all this previously known, cf Fournais-Helffer’s book

Model problem in scaled boundary coordinates, gives the original energy
in units of ε−1:

Ehp[ψ] =

∫ |∂Ω|ε−1

s=0

∫ +∞

t=0

{
|(∇− ites)ψ|2 +

1

b
|ψ|4 − 2

b
|ψ|2

}
.

I s = tangential coordinate, impose periodicity of ψ in s

I t = normal coordinate

I Only large parameter: length of the domain in s-direction



The boundary problem

I Insert (formally) the ansatz ψ(s, t) = f (t)e−iαs

E1D0,α[f ] :=

∫ +∞

0

|∂t f |2 + (t + α)2f 2 +
1

2b

(
f 4 − 2f 2

)
I Minimize in f and α  energy E1D

0 , phase α0, density f0

Proposition
Let Ehp be the infimum of Ehp under perdiodic boundary conditions in
the s-direction. Assume 1 ≤ b < Θ−1

0 , then

|∂Ω|
ε

E1D
0 +O(ε| log ε|) ≥ Ehp ≥

|∂Ω|
ε

E1D
0 .

I Trivial upper bound, take trial state of the form

ψ(s, t) = f0(t) exp
(
−iε

⌊α0

ε

⌋
s
)

I Lower bound is the main part.

I For a lower bound, think of the case where only |ψ| is periodic.



Sketch of the lower bound 1

Inspired by earlier works (Correggi-Pinsker-NR-Yngvason) on the
Gross-Pitaevskii theory of rotating superfluids (cf book by Aftalion).

1. State decoupling : since f0 > 0, to any ψ associate a v by setting

ψ(s, t) = f0(t)e−iα0sv(s, t).

2. Energy decoupling: Variational equation for f0 ⇒ reduced energy

Ehp[ψ] =
|∂Ω|
ε

E1D
0 + E0[v ],

E0[v ] =

∫ |∂Ω|ε−1

s=0

∫ +∞

t=0

f 2
0 (t)

{
|∇v |2 − 2(t + α0)es · j(v)

+
1

2b
f 2
0 (t)

(
1− |v |2

)2
}
,

with the superconducting current

j(v) = i
2 (v∇v∗ − v∗∇v) = ρ∇φ if v =

√
ρe iφ

3. Suffices to prove that the reduced energy is positive for any v

E0[v ] ≥ 0.



Sketch of the lower bound 2

4. Write 2(t + α0)f 2
0 (t)es = ∇⊥F0 with a potential function

F0(t, s) = F0(t) = 2

∫ t

0

dη (η + α0)f 2
0 (η).

5. By definition F0 ≤ 0, F0(0) = F0(+∞) = 0.

6. Stokes’ formula

E0[v ] :=

∫ |∂Ω|ε−1

s=0

∫ +∞

t=0

f 2
0 (t) |∇v |2+F0(t)µ(v)+

1

2b
f 4
0 (t)

(
1− |v |2

)2
,

with the vorticity

µ(v) = curl j(v), |µ(v)| ≤ |∇v |2,

7. Then, setting K0(t) := f 2
0 (t) + F0(t)

E0[v ] ≥
∫ |∂Ω|ε−1

s=0

∫ +∞

t=0

K0(t) |∇v |2 .

8. Lemma: the cost function K0(t) ≥ 0 for any t ∈ R+ and
1 ≤ b < Θ−1

0 .
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Motivation

Local density deviations:

I Pan’s conjecture |ΨGL|2 → C (b) > 0 on ∂Ω does not follow from
leading order energy considerations.

I Optimal bound |∇|ΨGL|| ∝ ε−1: holes in the density are repaired
over a length scale O(ε).

I Density terms come multiplied by ε−2 ⇒ potential energy cost of a
hole ∼ ε−2× length2 = O(1)

I Local density deviations are controled by the O(1) remainder in
previous estimates. Normal inclusions are not ruled out yet.

Role of the curvature:

I Known to play a role in corrections to Hc3: Helffer-Morame,
Fournais-Helffer, Raymond ...

I Superconductivity starts to appear where curvature is maximum.

I Special behavior of domains with corners (infinite curvature):
Bonnaillie-Noël with Dauge, Fournais, Martin-Vial.

I For smooth domains, when 1 < b < Θ−1
0 , curvature appears only at

subleading order.



Reintroducing curvature: case of the disc

I Effective functional in boundary coordinates, including corrections
due to curvature s 7→ k(s):∫ |∂Ω|

s=0

∫ c0| log ε|

t=0

(1− εk(s)t)
{
|∂tψ|2

+
1

(1− εk(s)t)2
|(ε∂s + iaε(s, t))ψ|2

+
1

2b

[
|ψ|4 − 2|ψ|2

]}
with

aε(s, t) := −t + 1
2εk(s)t2 + εδε, δε = O(1)

I Easier case: disc sample, constant curvature k.

I Keep the same ansatz ψ(s, t) = f (t)e−iαs , obtain (c0 = cst)

E1Dk,α[f ] :=

∫ c0| log ε|

0

dt (1− εkt)

{
|∂t f |2 +

(t + α− 1
2εkt2)2

(1− εkt)2
f 2

+
1

2b

(
f 4 − 2f 2

)}



Refined results in the disc case

Minimize E1Dk,α[f ]  energy E1D
? (k), phase α(k), density fk .

Theorem (Correggi-NR 13)
Let Ω be a disc of radius R = k−1. For any fixed 1 < b < Θ−1

0

EGL
ε =

2πE1D
? (k)

ε
+O(ε| log ε|),

and ∥∥|ΨGL|2 − f 2
k

(
R−r
ε

)∥∥
L2(Ω)

= O(ε3/2| log ε|1/2).

I Does contain the subleading order:

E1D
? (k) = E1D

0 +O(ε), α(k) = α0 +O(ε), fk = f0 +O(ε).

I Method similar as before, second order cost function.

I Significant but technical additional difficulties.



Refined results in the general case

I Associate E1D
? (k(s)), αk(s), fk(s) to smooth curvature k(s)

I Approximate locally the boundary by a disc: think of

ΨGL(r) = ΨGL(s, t) ≈ fk(s)

(
t
ε

)
exp

(
−iαk(s)

s
ε

)
Theorem (Correggi-NR 14)
For any fixed 1 < b < Θ−1

0 ,

EGL
ε =

1

ε

∫ |∂Ω|

0

E1D
? (k(s)) ds +O(ε| log ε|∞).

and ∥∥∥|ΨGL|2 − fk(s)

(
t
ε

)2
∥∥∥
L2(Ω)

≤ Cε3/2| log ε|∞.

I Curvature k(s)→ approximate by constants in cells of side length ε

I Use the disc analysis locally in each cell

I Patch things together and control unphysical boundary terms

I Requires a fine analysis of the k-dependence of the model problem



Effect of curvature on surface superconductivity

I It was previously known (Pan, Fournais-Kachmar ...) that

1

ε
|ΨGL|4dr −→

ε→0
C (b)ds.

I C (b) > 0 identified by previous theorems, ds = 1D Lebesgue
measure along the boundary.

Superconductivity density is (roughly) uniform along the boundary.

I Corollary of the previous results: estimate of subleading order

1

ε

(
1

ε
|ΨGL|4dr − C (b)ds

)
−→
ε→0

C2(b)k(s)ds.

I k(s) = curvature.

I C2(b) > 0 (not so) explicitely identified.

Superconductivity density is (slightly) larger in regions of larger curvature.



Thank You !


