

The Ginzburg-Landau model in the surface superconductivity regime

Nicolas Rougerie LPMMC, CNRS & Université Grenoble-Alpes

Champs magnétiques et analyse semiclassique Rennes, Mai 2015

Joint work with Michele Correggi (Rome 3).

KORK ERKER ADAM ADA

1. Ginzburg-Landau theory of type II superconductors

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- 2. Surface superconductivity
- 3. Leading order results between H_{c2} and H_{c3}
- 4. Elements of proof
- 5. Expansion beyond the leading order

Superconductors in magnetic fields

- \triangleright Superconductivity = absence of resistivity at low temperature in some materials
- Peculiar response to applied magnetic fields $=$ small fields do not penetrate (Meissner effect)
- \triangleright Ginzburg-Landau 50 : phenomenological theory, order parameter
- ▶ Bardeen-Cooper-Schrieffer 57 : microscopic theory, Cooper pairing
- ► Gor'kov 59: BCS \Rightarrow GL, mathematically rigorous derivation Frank-Hainzl-Seiringer-Solovej 12

Superconductor levitating above a magnet
Superconductor levitating above a magnet

Ginzburg-Landau theory

Sample $=$ infinite cylinder of <u>smooth</u> cross-section $\Omega \subset \mathbb{R}^2$, in a uniform external magnetic field perpendicular to $Ω$.

- ► Order parameter $\Psi : \mathbb{R}^2 \to \mathbb{C}$. $|\Psi|^2 =$ relative density of superconducting electrons (bound in Cooper pairs)
- Induced magnetic field $h \neq$ applied magnetic field h_{ex}
- Induced magnetic vector potential **A** with curl $A = h$.
- \triangleright κ = penetration depth. $\kappa \sigma$ = strength of applied magnetic field

 \blacktriangleright Type II superconductor : κ > 1/ \sqrt 2, "extreme type II": $\kappa \to \infty$ Energy functional to be minimized:

$$
\mathcal{G}_{\kappa,\sigma}^{\rm GL}[\Psi,\mathbf{A}]=\int_{\Omega} \left|(\nabla+i\kappa\sigma\mathbf{A})\,\Psi\right|^2-\kappa^2|\Psi|^2+\tfrac{1}{2}\kappa^2|\Psi|^4+\left(\kappa\sigma\right)^2\left|\text{curl}\,\mathbf{A}-1\right|^2
$$

Gauge invariance: energy invariant under

$$
\Psi \to \Psi e^{-i\kappa\sigma\varphi}, \quad \mathbf{A} \to \mathbf{A} + \nabla\varphi
$$

Phenomenology of type II superconductors

For minimizers $|\Psi|$ < 1.

- $\blacktriangleright |\Psi| = 1$: purely superconducting state, all electrons in Cooper pairs.
- $\blacktriangleright |\Psi| = 0$: normal state, no Cooper pairs.
- \triangleright Low magnetic field, $\kappa\sigma \leq H_{c1}$: superconducting state $|\Psi| \approx 1$ a.e.
- \blacktriangleright First critical field:

$$
\kappa\sigma=\textit{H}_{\rm c1}\approx\textit{C}_{\Omega}\log\kappa
$$

isolated normal regions (vortices) start to appear.

- $H_{c1} < \kappa \sigma < H_{c2}$: vortex lattice state, Abrikosov lattice.
- \blacktriangleright Second critical field:

$$
\kappa\sigma=H_{\rm c2}\approx\kappa^2
$$

superconductivity disappears uniformly in the bulk.

- $H_{c2} < \kappa \sigma < H_{c3}$: surface superconductivity state, $|\Psi| \approx 0$ in the bulk, $|\Psi| > 0$ close to the boundary.
- \triangleright Normal state $|\Psi| \equiv 0$ above the third critical field:

$$
\kappa\sigma > H_{c3} \approx \Theta_0^{-1}\kappa^2, \qquad \Theta_0 < 1.
$$

Mixed state: Abrikosov lattice

- \blacktriangleright Theoretical prediction: Abrikosov 57, first observation 67.
- \triangleright External magnetic field penetrates in small normal regions.
- ▶ Mathematical literature: cf Sandier-Serfaty's 2007 book.

Vortex lattice in a type II superconductor, Hess-et al-Waszczak 89.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Mixed state: surface superconductivity

- \triangleright Theoretical prediction: Saint-James and de Gennes 63, observed 64.
- Bulk is normal, magnetic field penetrates.
- A thin superconducting layer survives along the boundary.
- ▶ Mathematical literature: cf Fournais-Helffer's 2010 book.

Surperconductivity in increasing magnetic fiel[ds,](#page-5-0) [Ni](#page-7-0)[n](#page-5-0)[g-e](#page-6-0)[t](#page-7-0) [al](#page-0-0)[-X](#page-26-0)[ue](#page-0-0) [09](#page-26-0)[.](#page-0-0)

つくい

1. Ginzburg-Landau theory of type II superconductors

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

2. Surface superconductivity

- 3. Leading order results between H_{c2} and H_{c3}
- 4. Elements of proof
- 5. Expansion beyond the leading order

Transition from the normal state in decreasing fields

$$
\mathcal{G}_{\varepsilon}^{\mathrm{GL}}[\Psi,\mathbf{A}]=\int_{\Omega}\left|\left(\nabla+i\varepsilon^{-2}\mathbf{A}\right)\Psi\right|^{2}+\frac{1}{2b\varepsilon^{2}}\left(|\Psi|^{4}-2|\Psi|^{2}\right)+\frac{b}{\varepsilon^{4}}\left|\mathrm{curl}\,\mathbf{A}-1\right|^{2}.
$$

- ▶ New parameters: $\sigma = b\kappa$, b fixed, $\varepsilon = (\sigma \kappa)^{-1/2} \ll 1$.
- ► Correspondence: $H_{c2} \leftrightarrow b = 1$, $H_{c3} \leftrightarrow b = \Theta_0^{-1}$
- \triangleright St-James/de Gennes 63: Start at large b, normal state $|\Psi| \equiv 0$, curl $\mathbf{A} \equiv 1$. When does this become unstable ?
- ► At first, curl **A** stays fixed \equiv 1. Choice of gauge **A** \approx **F**

$$
\begin{cases}\n\text{curl } \mathbf{F} = 1 \text{ in } \Omega \\
\text{div } \mathbf{F} = 0 \text{ in } \Omega \\
\nu. \mathbf{F} = 0 \text{ on } \partial\Omega\n\end{cases}
$$

 \triangleright Close to transition, for small values of Ψ , energy to leading order

$$
\int_{\Omega} \left| \left(\nabla + i \varepsilon^{-2} \mathbf{F} \right) \Psi \right|^2 - \frac{1}{b \varepsilon^2} |\Psi|^2
$$

^I Can one make this < 0, smaller than energ[y o](#page-7-0)f [t](#page-9-0)[he](#page-7-0) [n](#page-8-0)[o](#page-9-0)[rm](#page-0-0)[al](#page-26-0) [sta](#page-0-0)[te](#page-26-0) [?](#page-0-0)

The critical fields H_{c2} and H_{c3}

$$
\mathcal{E}[\Psi] = \left\langle \Psi \left| H_{\varepsilon} - \frac{1}{b \varepsilon^2} \right| \Psi \right\rangle
$$

 $H_\varepsilon = -\left(\nabla + i\varepsilon^{-2}\mathsf{F}\right)^2$, magnetic Laplacian, uniform field $=\varepsilon^{-2}$.

- \blacktriangleright When does H_ε have an eigenvalue strictly less than $1/(b\varepsilon^2)$?
- Eigenfunctions of H_{ε} are localized over length scales of order ε \int localization in the bulk \leadsto magnetic Laplacian in the plane localization close to boundary \leadsto magnetic Laplacian in a half-plane
- First eigenvalues for small ε (semi-classics, e.g. Helffer-Morame)

 \int magnetic Laplacian in the plane $\rightarrow \lambda_1 \sim \varepsilon^{-2}$ magnetic Laplacian in a half-plane $\rightarrow \lambda_1 \sim \Theta_0 \varepsilon^{-2} < \varepsilon^{-2}$

- \blacktriangleright $\overline{ }$ $\overline{ }$ $\overline{ }$ $\overline{ }$ $\overline{ }$ \blacktriangleright $\overline{ }$ $\overline{ }$ $\overline{ }$ $\overline{ }$ $\overline{ }$ \blacktriangleright $\overline{ }$ $\overline{ }$ $\overline{ }$ $\overline{ }$ $\overline{ }$ $\$ the boundary, but only there.
- Second critical field: if $b < 1$, favorable to also put mass in the bulk.

More precise effective model between H_{c2} and H_{c3}

- \blacktriangleright $1 < b < \Theta_0^{-1}$, Ψ concentrated close to boundary on length scale ε .
- ► Magnetic field penetrates curl $A \approx 1$, choose a convenient gauge.
- ► In scaled boundary coordinates (s,t) (units of ε^{-1}), curvature $k(s)$

$$
\int_{s=0}^{|\partial\Omega|} \int_{t=0}^{c_0|\log\varepsilon|} (1 - \varepsilon k(s)t) \left\{ |\partial_t \psi|^2 + \frac{1}{(1 - \varepsilon k(s)t)^2} |(\varepsilon \partial_s + i a_\varepsilon(s,t)) \psi|^2 + \frac{1}{2b} [|\psi|^4 - 2|\psi|^2] \right\}
$$

 \blacktriangleright To leading order in ε , after scaling s:

$$
\mathcal{E}_{\mathrm{hp}}[\psi] = \int_{s=0}^{|\partial\Omega|\varepsilon^{-1}} \int_{t=0}^{+\infty} \left\{ \left| \left(\nabla - i t \mathbf{e}_s \right) \psi \right|^2 + \frac{1}{2b} |\psi|^4 - \frac{1}{b} |\psi|^2 \right\}.
$$

► Natural ansatz $\psi(s,t) = f(t)e^{-i\alpha s}$ (exact in the linear case) leads to

$$
\mathcal{E}_{0,\alpha}^{1D}[f] := \int_0^{+\infty} |\partial_t f|^2 + (t+\alpha)^2 f^2 + \frac{1}{2b} \left(f^4 - 2f^2\right)_0^2
$$

 Ω

1. Ginzburg-Landau theory of type II superconductors

- 2. Surface superconductivity
- 3. Leading order results between H_{c2} and H_{c3}
- 4. Elements of proof
- 5. Expansion beyond the leading order

Previously known results

- \blacktriangleright $b \rightarrow \Theta_0^{-1}$ "easier case", cf Lu-Pan, Fournais-Helffer ...
- \blacktriangleright $b \to 1^+$: transition boundary to bulk behavior, Fournais-Kachmar 09
- \blacktriangleright $b \to 1^-$, cf Almog, Sandier-Serfaty, Aftalion-Serfaty, circa 07
- ► X.B. Pan 02, if $1 < b < \Theta_0^{-1}$, for some implicit constant $E_b < 0$

$$
E_{\varepsilon}^{\text{GL}} = \frac{|\partial \Omega| E_b}{\varepsilon} + o(\varepsilon^{-1})
$$

► Minimize $\mathcal{E}_{0,\alpha}^{\mathrm{1D}}[f] \Rightarrow$ optimal energy E_{0}^{1D} , phase α_{0} , density f_{0} . Almog-Helffer 07, Fournais-Helffer-Persson 11, for $1.25 \leq b < \Theta_0^{-1}$

$$
E_{\varepsilon}^{\rm GL} = \frac{|\partial \Omega| E_0^{\rm 1D}}{\varepsilon} + o(\varepsilon^{-1}), \qquad |\Psi^{\rm GL}|^2 \approx f_0^2(t) \text{ in } L^2(\Omega)
$$

KORK EXTERNE PROVIDE

Methods (cf Fournais-Helffer's book)

- \triangleright Decay estimates à la Agmon + Magnetic field estimates (elliptic PDEs methods) \rightsquigarrow boundary problem
- \blacktriangleright Linear problem has unique non degenerate ground state
- \blacktriangleright Treat non linearity "perturbatively"

New energy and density estimates

The simplified 1D limit problem gives the leading order for all field strengths between H_{c2} and H_{c3} .

Theorem (Correggi-NR 13)

Let $\Omega \subset \mathbb{R}^2$ be any smooth simply connected domain. For any fixed $1 < b < \Theta_0^{-1}$, in the limit $\varepsilon \to 0$, it holds

$$
\mathcal{E}_{\varepsilon}^{\text{GL}} = \frac{|\partial\Omega|\mathcal{E}_0^{\text{1D}}}{\varepsilon} + \mathcal{O}(1),
$$

and

$$
\left\||\Psi^{\mathrm{GL}}|^2-f_0^2\left(t\right)\right\|_{L^2\left(\Omega\right)}\leq \mathit{C}\varepsilon \ll \left\|f_0^2\left(t\right)\right\|_{L^2\left(\Omega\right)}.
$$

 \blacktriangleright Idea of proof : don't think perturbatively around the linear problem

 \triangleright Use the physics of the problem : "quantum fluid mechanics"

Uniform density estimates and degree estimates

Conjecture by Pan 02: $|\Psi^{{\rm GL}}|^{2} \rightarrow C(b)>0$ pointwise on $\partial \Omega$. Theorem (Correggi-NR 14) For any $\mathbf{r} \in \Omega$ with $dist(\mathbf{r}, \partial \Omega) \leq \varepsilon$ we have

$$
\left|\left|\Psi^{\mathrm{GL}}(\mathbf{r})\right|-f_{0}\left(t\right)\right|\rightarrow0
$$

- \triangleright No defects (e.g. vortices) in the surface superconductivity layer.
- ► Phase is well-defined along $\partial \Omega$: $\Psi^{\text{GL}} = \sqrt{\rho} e^{i\varphi}$.
- \triangleright Phase circuclation along $\partial\Omega \leftrightarrow$ number of vortices in the bulk.

Theorem (Correggi-NR 14)

Any GL minimizer $\Psi^{\rm GL}$ satisfies in the limit $\varepsilon \to 0$

$$
\frac{1}{2\pi} \int_{\partial \mathcal{B}_R} \partial_\tau \varphi = \deg \left(\Psi^{\mathrm{GL}}, \partial \Omega \right) = \frac{|\Omega|}{\varepsilon^2} + \frac{|\alpha_0|}{\varepsilon} (1 + o(1)).
$$

KID KA KERKER KID KO

1. Ginzburg-Landau theory of type II superconductors

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- 2. Surface superconductivity
- 3. Leading order results between H_{c2} and H_{c3}
- 4. Elements of proof
- 5. Expansion beyond the leading order

Preliminary reductions

- Agmon estimates \rightarrow exponential decay of order parameter away from the boundary (distances $\gg \varepsilon$).
- \triangleright Magnetic field replacement, induced field \approx applied field. $\mathbf{A} \rightarrow \mathbf{F}$
- \triangleright Clever choice of gauge to represent the field.
- \blacktriangleright Mapping to boundary coordinates
- ⇒ all this previously known, cf Fournais-Helffer's book

Model problem in scaled boundary coordinates, gives the original energy in units of ε^{-1} :

$$
\mathcal{E}_{\mathrm{hp}}[\psi] = \int_{s=0}^{|\partial\Omega|\varepsilon^{-1}} \int_{t=0}^{+\infty} \left\{ \left| \left(\nabla - it\mathbf{e}_s \right) \psi \right|^2 + \frac{1}{b} |\psi|^4 - \frac{2}{b} |\psi|^2 \right\}.
$$

- \triangleright s = tangential coordinate, impose periodicity of ψ in s
- \blacktriangleright t = normal coordinate
- **If Only large parameter: length of the domain [in](#page-15-0) [s](#page-17-0)-[d](#page-15-0)[ire](#page-16-0)[ct](#page-17-0)[io](#page-0-0)[n](#page-26-0)**

The boundary problem

▶ Insert (formally) the ansatz $\psi(s,t) = f(t)e^{-i\alpha s}$

$$
\mathcal{E}_{0,\alpha}^{\text{1D}}[f] := \int_0^{+\infty} |\partial_t f|^2 + (t+\alpha)^2 f^2 + \frac{1}{2b} (f^4 - 2f^2)
$$

 \blacktriangleright Minimize in f and $\alpha \leadsto$ energy $E_0^{\rm 1D}$, phase α_0 , density f_0

Proposition

Let E_{ho} be the infimum of \mathcal{E}_{ho} under perdiodic boundary conditions in the s-direction. Assume $1 \leq b < \Theta_0^{-1}$, then

$$
\frac{|\partial \Omega|}{\varepsilon} \mathcal{E}_0^{\mathrm{1D}} + \mathcal{O}(\varepsilon |\log \varepsilon|) \geq \mathcal{E}_{\mathrm{hp}} \geq \frac{|\partial \Omega|}{\varepsilon} \mathcal{E}_0^{\mathrm{1D}}.
$$

 \triangleright Trivial upper bound, take trial state of the form

$$
\psi(s,t) = f_0(t) \exp\left(-i\varepsilon \left\lfloor \frac{\alpha_0}{\varepsilon} \right\rfloor s\right)
$$

 \blacktriangleright Lower bound is the main part.

For a lower bound, think of the case where [on](#page-16-0)l[y](#page-18-0) $|\psi|$ $|\psi|$ $|\psi|$ i[s](#page-18-0) [pe](#page-0-0)[rio](#page-26-0)[di](#page-0-0)[c.](#page-26-0)

Sketch of the lower bound 1

Inspired by earlier works (Correggi-Pinsker-NR-Yngvason) on the Gross-Pitaevskii theory of rotating superfluids (cf book by Aftalion).

1. State decoupling : since $f_0 > 0$, to any ψ associate a v by setting

$$
\psi(s,t)=f_0(t)e^{-i\alpha_0 s}v(s,t).
$$

2. Energy decoupling: Variational equation for $f_0 \Rightarrow$ reduced energy

$$
\mathcal{E}_{\mathrm{hp}}[\psi] = \frac{|\partial \Omega|}{\varepsilon} E_0^{\mathrm{1D}} + \mathcal{E}_0[\nu],
$$
\n
$$
\mathcal{E}_0[\nu] = \int_{s=0}^{|\partial \Omega| \varepsilon^{-1}} \int_{t=0}^{+\infty} f_0^2(t) \left\{ |\nabla \nu|^2 - 2(t + \alpha_0) \mathbf{e}_s \cdot \mathbf{j}(\nu) + \frac{1}{2b} f_0^2(t) (1 - |\nu|^2)^2 \right\},
$$

with the *superconducting current*

$$
\mathbf{j}(v) = \frac{i}{2} (v \nabla v^* - v^* \nabla v) = \rho \nabla \phi \text{ if } v = \sqrt{\rho} e^{i\phi}
$$

3. Suffices to prove that the reduced energy is positive for any v

 $\mathcal{E}_0[v] > 0.$

KID KA KERKER KID KO

Sketch of the lower bound 2

4. Write $2(t+\alpha_0)f_0^2(t)\mathbf{e}_s = \nabla^{\perp}F_0$ with a potential function $F_0(t,s) = F_0(t) = 2 \int_0^t d\eta (\eta + \alpha_0) f_0^2(\eta).$

- 5. By definition $F_0 < 0$, $F_0(0) = F_0(+\infty) = 0$.
- 6. Stokes' formula

$$
\mathcal{E}_0[v] := \int_{s=0}^{|\partial\Omega|\varepsilon^{-1}} \int_{t=0}^{+\infty} f_0^2(t) \left| \nabla v \right|^2 + F_0(t) \mu(v) + \frac{1}{2b} f_0^4(t) \left(1 - |v|^2 \right)^2,
$$

with the vorticity

$$
\mu(v) = \operatorname{curl} \mathbf{j}(v), \quad |\mu(v)| \leq |\nabla v|^2,
$$

7. Then, setting $K_0(t) := f_0^2(t) + F_0(t)$

$$
\mathcal{E}_0[v] \geq \int_{s=0}^{|\partial\Omega|\varepsilon^{-1}} \int_{t=0}^{+\infty} \mathcal{K}_0(t) \left| \nabla v \right|^2.
$$

8. <u>Lemma:</u> the cost function $K_0(t) \geq 0$ for any $t \in \mathbb{R}^+$ and $1\leq b<\Theta_0^{-1}.$ KID KA KERKER KID KO 1. Ginzburg-Landau theory of type II superconductors

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- 2. Surface superconductivity
- 3. Leading order results between H_{c2} and H_{c3}
- 4. Elements of proof
- 5. Expansion beyond the leading order

Motivation

Local density deviations:

- \blacktriangleright Pan's conjecture $|\Psi^{{\rm GL}}|^{2} \to C(b)>0$ on $\partial \Omega$ does <u>not</u> follow from leading order energy considerations.
- ► Optimal bound $|\nabla |\Psi^{\rm GL}|| \propto \varepsilon^{-1}$: holes in the density are repaired over a length scale $\mathcal{O}(\varepsilon)$.
- ► Density terms come multiplied by $\varepsilon^{-2} \Rightarrow$ potential energy cost of a hole $\sim \varepsilon^{-2} \times$ length² = $\mathcal{O}(1)$
- \triangleright Local density deviations are controled by the $\mathcal{O}(1)$ remainder in previous estimates. Normal inclusions are not ruled out yet.

Role of the curvature:

- **IX** Known to play a role in corrections to H_{c3} : Helffer-Morame, Fournais-Helffer, Raymond ...
- \triangleright Superconductivity starts to appear where curvature is maximum.
- \triangleright Special behavior of domains with corners (infinite curvature): Bonnaillie-Noël with Dauge, Fournais, Martin-Vial.
- ► For smooth domains, when $1 < b < \Theta_0^{-1}$, curvature appears only at subleading order.4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Reintroducing curvature: case of the disc

 \blacktriangleright Effective functional in boundary coordinates, including corrections due to curvature $s \mapsto k(s)$:

$$
\begin{aligned} \int_{s=0}^{|\partial\Omega|}\int_{t=0}^{c_0|\log\varepsilon|}\left(1-\varepsilon k(s)t\right)\left\{|\partial_t\psi|^2\right.\\ \left.+\frac{1}{(1-\varepsilon k(s)t)^2}\left|(\varepsilon\partial_s+ia_\varepsilon(s,t))\,\psi\right|^2\right.\\ \left.+\frac{1}{2b}\left[|\psi|^4-2|\psi|^2\right]\right\} \end{aligned}
$$

with

$$
a_{\varepsilon}(s,t):=-t+\tfrac{1}{2}\varepsilon k(s)t^2+\varepsilon \delta_{\varepsilon},\quad \delta_{\varepsilon}=\mathcal{O}(1)
$$

Easier case: disc sample, constant curvature k .

► Keep the same ansatz $\psi(s,t)=f(t)e^{-i\alpha s}$, obtain $(c_0=\text{cst})$

$$
\mathcal{E}_{k,\alpha}^{1\mathrm{D}}[f] := \int_0^{c_0|\log\varepsilon|} \mathrm{d} t \left(1 - \varepsilon k t\right) \left\{ |\partial_t f|^2 + \frac{(t+\alpha-\frac{1}{2}\varepsilon k t^2)^2}{(1-\varepsilon k t)^2} f^2 \right\}
$$

Refined results in the disc case

Minimize $\mathcal{E}_{k,\alpha}^{\rm 1D}[f] \leadsto$ energy $E_{\star}^{\rm 1D}(k)$, phase $\alpha(k)$, density f_k . Theorem (Correggi-NR 13) Let Ω be a disc of radius $R = k^{-1}$. For any fixed $1 < b < \Theta_0^{-1}$

$$
E_{\varepsilon}^{\text{GL}} = \frac{2\pi E_{\star}^{\text{1D}}(k)}{\varepsilon} + \mathcal{O}(\varepsilon |\log \varepsilon|),
$$

and

$$
\big\||\Psi^{\mathrm{GL}}|^2-f_k^2\left(\tfrac{R-r}{\varepsilon}\right)\big\|_{L^2(\Omega)}=\mathcal O(\varepsilon^{3/2}|\log\varepsilon|^{1/2}).
$$

 \triangleright Does contain the subleading order:

 $\mathcal{E}^\text{1D}_\star(k) = \mathcal{E}^\text{1D}_0 + \mathcal{O}(\varepsilon), \quad \alpha(k) = \alpha_0 + \mathcal{O}(\varepsilon), \quad f_k = f_0 + \mathcal{O}(\varepsilon).$

- ▶ Method similar as before, second order cost function.
- \triangleright Significant but technical additional difficulties.

Refined results in the general case

- Associate $E^{\text{1D}}_{\star}(k(s)), \alpha_{k(s)}, f_{k(s)}$ to <u>smooth</u> curvature $k(s)$
- \triangleright Approximate locally the boundary by a disc: think of

$$
\Psi^{\rm GL}(\mathbf{r}) = \Psi^{\rm GL}(s, t) \approx f_{k(s)}\left(\frac{t}{\varepsilon}\right) \exp\left(-i\alpha_{k(s)}\frac{s}{\varepsilon}\right)
$$

Theorem (Correggi-NR 14) For any fixed $1 < b < \Theta_0^{-1}$,

$$
E_{\varepsilon}^{\text{GL}} = \frac{1}{\varepsilon} \int_0^{|\partial \Omega|} E_{\star}^{\text{1D}}(k(s)) \, \mathrm{d} s + \mathcal{O}(\varepsilon |\log \varepsilon|^{\infty}).
$$

and

$$
\left\| |\Psi^{\mathrm{GL}}|^2 - f_{k(s)} \left(\frac{t}{\varepsilon} \right)^2 \right\|_{L^2(\Omega)} \leq C \varepsilon^{3/2} |\log \varepsilon|^\infty.
$$

- ► Curvature $k(s) \rightarrow$ approximate by constants in cells of side length ε
- \triangleright Use the disc analysis locally in each cell
- \triangleright Patch things together and control unphysical boundary terms
- Requires a fine analysis of the k-dependenc[e o](#page-23-0)[f t](#page-25-0)[h](#page-23-0)[e m](#page-24-0)[od](#page-0-0)[el](#page-26-0) [pro](#page-0-0)[ble](#page-26-0)[m](#page-0-0) 2990

Effect of curvature on surface superconductivity

It was previously known (Pan, Fournais-Kachmar \dots) that

$$
\frac{1}{\varepsilon}|\Psi^{\text{GL}}|^4\text{d}\mathbf{r} \xrightarrow[\varepsilon \to 0]{} C(b)\text{d}s.
$$

 $C(b) > 0$ identified by previous theorems, $ds = 1D$ Lebesgue measure along the boundary.

Superconductivity density is (roughly) uniform along the boundary.

 \triangleright Corollary of the previous results: estimate of subleading order

$$
\frac{1}{\varepsilon}\left(\frac{1}{\varepsilon}|\Psi^{\text{GL}}|^4\mathrm{d}\mathbf{r}-C(b)\mathrm{d}s\right)\underset{\varepsilon\to 0}{\longrightarrow}C_2(b)k(s)\mathrm{d}s.
$$

$$
\blacktriangleright k(s) = curvature.
$$

 $C_2(b) > 0$ (not so) explicitely identified.

Superconductivity density is (slightly) larger in regions of larger curvature.

KORK ERKER ADAM ADA

Thank You !

K ロ K K d K K B K K B K X A K K K D K C K