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Definition of Entropy

The differential entropy of a random vector X with density function f is
defined as

H(f ) = −
∫
X
f (x) log f (x) dx = −E[log f (X )]

where X = {x : f (x) > 0}. It is usually thought of as a measure of the
unpredictability of X .

Maximised among random variables on a compact set A of positive
Lebesgue measure by the uniform distribution on A.

For N(µ, σ2) random variables H = (1/2) log(2πeσ2), the maximum
possible for a distribution on R with fixed variance.

The above are examples of maximum entropy distributions.
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Nearest Neighbour Distances

Given X1, . . . ,Xn define the nearest neighbours X(1),i , . . . ,X(n−1),i

such that ‖X(1),i − Xi‖ ≤ . . . ≤ ‖X(n−1),i − Xi‖ and

ρ(k),i = ‖X(k),i − Xi‖

We use
k ≈ (n − 1)ρd(k),iVd f (Xi )

for X1, . . . ,Xn
iid∼ f to estimate f (Xi ).

Kozachenko and Leonenko (1987) used this idea for the estimator

Ĥn =
1

n

n∑
i=1

log

(ρd(k),iVd(n − 1)

eΨ(k)

)
in the special case k = 1.
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Bias Results

Let α be the number of moments of f . Then, under regularity conditions
(including twice continuous differentiability):

For d ≥ 3 and α > 2d/(d − 2) we have

E(Ĥn)− H = − Γ(k + 2/d)

2V
2/d
d (d + 2)Γ(k)n2/d

∫
Rd

∆f (x)

f (x)2/d
dx + o

(
k2/d

n2/d

)
as n→∞.

If d ≤ 2 or d ≥ 3 and α ≤ 2d/(d − 2) we have

E(Ĥn)− H = o

((
k

n

)α/(α+d)−τ)
as n→∞ for every τ > 0.
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Asymptotic Normality and Efficiency

Assume d ≤ 3, k diverges with n (with restrictions) and regularity
conditions on f . Then

n1/2(Ĥn − H)
d→ N

(
0,Var log f (X1)

)
,

and
nE{(Ĥn − H)2} → Var log f (X1)

as n→∞.

For d ≤ 3 and appropriate k and regularity conditions the
Kozachenko–Leonenko estimator can be efficient.

For d ≥ 4 a non-negligible bias prevents efficiency.
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Efficiency in Higher Dimensions

For w ∈ Rk such that
∑k

j=1 wj = 1 define the estimator

Ĥw
n =

1

n

n∑
i=1

k∑
j=1

wj log ξ(j),i ,

where ξ(j),i = e−Ψ(j)Vd(n − 1)ρd(j),i , a weighted sum of previous estimators

for different values of the tuning parameter. For d ≥ 3, α > 2d/(d − 2)
and with restrictions on w we have

EĤw
n −H = − n−2/d

2V
2/d
d (d + 2)

{∫
X

∆f (x)

f (x)2/d
dx

} k∑
j=1

wj
Γ(j + 2/d)

Γ(j)
+o

(
k2/d

n2/d

)
.

Looks like we can choose w to cancel out the leading bias.
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Efficiency in Higher Dimensions

More generally, consider

Wn :=

{
w ∈ Rk :

k∑
j=1

wj
Γ(j + 2`/d)

Γ(j)
= 0 for ` = 1, . . . , bd/4c

k∑
j=1

wj = 1 and wj = 0 if j /∈ {bk/dc, b2k/dc, . . . , k}
}
.

Then, for wn ∈ Wn with supn ‖wn‖ <∞ and regularity conditions on k
and f (including d/2 times continuous differentiability)

n1/2(Ĥwn
n − H)

d→ N
(
0,Var log f (X1)

)
,

and
nE{(Ĥwn

n − H)2} → Var log f (X1).
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