Distance to a measure to compare samples of points

Claire Brécheteau

Université Paris-Sud 11, Laboratoire de Mathématiques d'Orsay and Inria Select Team - Inria Saclay, Data Shape Team
Under the supervision of Pascal Massart (Université Paris-Sud 11) and Frédéric Chazal (Inria Saclay)

$$
23 \text { juin } 2016
$$

Can a dragon pretend to be a bunny?

Bunny

Dragon

Data from the Stanford 3D Scanning Repository

A metric measure space (mm-space) is a triple $(\mathcal{X}, \mathrm{d}, \mu)$ s.t. : $(\mathcal{X}, \mathrm{d})$ is a metric space and μ a borel measure supported on \mathcal{X}.

Two mm-spaces $(\mathcal{X}, \mathrm{d}, \mu)$ and $\left(\mathcal{Y}, \mathrm{d}^{\prime}, \nu\right)$ are isomorphic if : $\exists \phi: \mathcal{X} \mapsto \mathcal{Y}$ a one-to-one isometry, s.t. for all borel set A,

$$
\nu(\phi(A))=\mu(A)
$$

How to build a test of level $\alpha>0$ to test the null $H_{0}(\mathcal{X}): "\left(\mathcal{Y}, \mathrm{~d}^{\prime}, \nu\right)$ is isomorphic to $(\mathcal{X}, \mathrm{d}, \mu)$ "?

$(\mathcal{X}, \mathrm{d}, \mu)$

$\left(\mathcal{Y}, \mathrm{d}^{\prime}, \nu\right)$

The distance to a measure [Chazal, Cohen-Steiner, Mérigot 2009] is defined for all $x \in \mathcal{X}$ and $m \in[0,1]$ by :

$$
\mathrm{d}_{\mu, m}(x)=\frac{1}{m} \int_{0}^{m} \delta_{\mu, l}(x) \mathrm{d} / .
$$

If $X \sim \mu$, the distance-to-a-measure signature $\mathrm{d}_{\mu, m}(\mu)$, is the distribution of $\mathrm{d}_{\mu, m}(X)$.

N-samples on the Bunny and the Dragon

The empirical distance-to-a-measure signature is defined by $\mathrm{d}_{\widehat{\mu}_{N-n}, m}\left(\widehat{\mu}_{n}\right)$ from two independent $(N-n)$ and n-samples of law μ.

Our test statistic : $T=\sqrt{n} W_{1}\left(\mathrm{~d}_{\widehat{\mu}_{N-n}, m}\left(\widehat{\mu}_{n}\right), \mathrm{d}_{\widehat{\nu}_{N-n}, m}\left(\widehat{\nu}_{n}\right)\right)$,
\sqrt{n} times the area between the two cdf.

Under the null, we approximate $\mathcal{L}\left(\sqrt{n} W_{1}\left(\mathrm{~d}_{\widehat{\mu}_{N-n}, m}\left(\widehat{\mu}_{n}\right), \mathrm{d}_{\widehat{\nu}_{N-n}, m}\left(\widehat{\nu}_{n}\right)\right)\right)$ by the bootstrap law : $\mathcal{L}^{*}\left(\sqrt{n} W_{1}\left(\mathrm{~d}_{\widehat{\mu}_{N}, m}\left(\mu_{n}^{*}\right), \mathrm{d}_{\widehat{\nu}_{N}, m}\left(\nu_{n}^{*}\right)\right) \mid \widehat{\mu}_{N}, \widehat{\nu}_{N}\right)$.

Comparison of the law of the statistic T and its bootstrap version

