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“From the atomistic view to the laws of
motion of continua”. . .

David Hilbert

1. A short historical introduction

2. Mean-field particle systems and propagation of chaos
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The Stoßzahlansatz and the early kinetic theory of gas

Clausius Maxwell Boltzmann

The hard-sphere gas
A simple mechanical model? The fundamental assumption

The velocities of two colliding particles
are uncorrelated.

▶ The Maxwellian is the equilibrium distribution
▶ The entropy increases (H-theorem).
▶ The time evolution of the distribution of

velocities is given by the Boltzmann equation.

This cannot be true for at least two reasons:
1. The collisions create correlations.
2. The Boltzmann equation is irreversible. 3 / 45



Toward a rigorous mathematical kinetic theory

David Hilbert

Hilbert 6th problem (1900)

Developing mathematically the limiting processes [. . . ] which
lead from the atomistic view to the laws of motion of continua.

Microscopic scale.
N identical particles in a space E.
Nd-dimensional dynamical system.

Mesoscopic scale when N → +∞.
ft ∈ P(E) distribution of a typical particle.
Compute the evolution of statistical quantities

Goal: extend this framework to other types of particle systems. . .
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Collisional and mean-field models

Tatyana and Paul Ehrenfest

The Conceptual Foundations of the Statistical
Approach in Mechanics (1912)

From the Stoßzahlansatz to the molekular Unordnung:
a statistical point of view.

−→ The rigorous formulation of Boltzmann’s ideas for the hard-sphere gas remains
extremely difficult: the best available results are only valid in a very dilute regime
[Grad, 1963] and for short times [Lanford, 1975], [Gallagher, Saint-Raymond, Texier, 2014].

An alternative approach: (stochastic) mean-field models. . .

−→ Point particles in a dense regime with continuous rescaled interactions by 1/N .

Mark Kac

Foundations of Kinetic Theory (1956)

Probabilistic interpretation of the Boltzmann equation and the
mathematical notion of propagation of chaos.

Henry P. McKean

Propagation of chaos for a class of non-linear parabolic
equations (1967)

Extension of Kac ideas to diffusion and other stochastic
particle models.
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Kac theory: stochastic exchangeable particle systems
Definition: N-particle system

Given a state space E, a N -particle system is a EN -valued Markov process
XN

t = (X1
t , . . . , X

N
t ). Its law at time t is denoted by fNt ∈ P(EN ) and is

characterized by the (weak-forward) Kolmogorov equation:

∀φN ∈ Cb(E
N ),

d

dt
E
[
φN (XN

t )
]
≡ d

dt
⟨fNt , φN ⟩ = ⟨fNt ,LNφN ⟩,

where LN : Cb(E
N ) → Cb(E

N ) is the Markov generator.

Assumption: Indistinguishability

The process is symmetric: ∀π ∈ SN , (X
π(1)
t , . . . , X

π(N)
t ) ∼ (X1

t , . . . , X
N
t ).

The N -particle system can thus be represented by its empirical measure

µXN
t

:=
1

N

N∑
i=1

δXi
t
∈ P(E).

This is a random measure whose law is denoted by FN
t ∈ P(P(E)).

About exchangeability, independence, random measures: [Dawson, St Flour 1991 ] 7 / 45



Kac collision processs

Kac model

“Rare stochastic
collisions”

A mean-field stochastic collision process

Consider a stochastic Poisson process on each pair of
particles with “collision” rate λ(Zi

t , Z
j
t )/N .

E.g. : Hard-sphere gas λ(x, y) = δ|x−y|=2R.

Collision event at time t, post-collisional states:

Zi
t+ , Z

j
t+ ∼ Γ(2)(Zi

t , Z
j
t ,dz,dz

∗)

Note: Γ(2)(z1, z2,dz
′
1,dz

′
2) = Γ(2)(z2, z2,dz

′
2,dz

′
1).

Two-particle Markov generator: for φ2 ∈ Cb(E
2),

L(2)φ2(z1, z2) = λ(z1, z2)

∫
E2

{
φ2(z

′
1, z

′
2)− φ2(z1, z2)

}
Γ(2)(z1, z2,dz

′
1,dz

′
2).

N-particle Markov generator: for φN ∈ Cb(E
N ),

LNφN =
1

N

∑
i<j

L(2) ⋄ij φN .

L(2) ⋄ij φN (z1, . . . , zN ) := L(2)[(ui, uj) 7→ φN (z1, . . . , ui, . . . , uj , . . . zN )](zi, zj).
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Kac model: example

The random collision time T between two particles depends on the distance:

P(T ≥ t) = e−
∫ t
0
λ(|X1

s−X2
s |)ds

with r 7→ λ(r) non-increasing and new velocities are sampled randomly.

Collision (likely) No collision (rare but possible)

Other applications: social sciences, games, opinion dynamics, economics. . .
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McKean-Vlasov diffusion model

McKean-Vlasov model

“Small deterministic
binary forces plus
individual noise”

A mean-field diffusion process

Each particle i feels a small force of size 1/N from each
of the other particles:

dXi
t = F ⋆ µXN

t
(Xi

t)dt+ σdBi
t.

where F ⋆ µ(x) :=
∫
E
F (y − x)µ(dy).

One-particle Markov generator: for φ ∈ Cb(E), µ ∈ P(E),

Lµφ(x) := F ⋆ µ(x) · ∇φ+
1

2
σ2∆φ

N-particle Markov generator: for φN ∈ Cb(E
N ), xN = (x1, . . . , xN ),

LNφN (xN ) =
N∑
i=1

LµxN
⋄i φN (xN ),

with Lµ ⋄i φN (x1, . . . , xN ) := Lµ[ui 7→ φN (x1, . . . , ui, . . . , x
N )](xi).
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McKean-Vlasov model: example

Self-propulsion and short-range repulsion:

dXi
t

dt
= V i

t ,
dV i

t

dt
= (1− |V i

t |2)V i
t − 1

N

N∑
j=1

∇xi e−|Xj
t−Xi

t |/R .
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Propagation of chaos

Definition: Kac chaos at a fixed time t

The N -particle distribution fNt is ft-chaotic for a given distribution ft ∈ P(E)

when for any s ∈ N, the s-th marginal fs,Nt ∈ P(Es) of fNt ∈ P(EN ) satisfies

fs,Nt −→
N→+∞

f⊗s
t weakly in P(Es).

−→ “ When N is large, any group of s particles is close to be independent.”

Definition: Propagation of chaos

It means: fN0 is f0-chaotic implies fNt is ft-chaotic for t ≥ 0.

From now on, fN0 = f⊗N
0 (the particles are initially i.i.d.).

Lemma
The two following assertions are equivalent to Kac chaos.
(i) Kac chaos for the marginal s = 2, i.e. f2,Nt → f⊗2

t weakly in P(E).
(ii) The empirical measure process converges in law towards the deterministic

measure ft, i.e. ∀Φ ∈ Cb(P(E)), E
[
Φ
(
µXN

t

)]
→ Φ(ft).
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The two building block theorems of Kac
and McKean.

1. Kac theorem: Markov generator and series expansion

2. McKean theorem: empirical measure, stochastic paths, coupling

3. Variations and alternative points of view
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Kac theorem [Kac, 1956], [Carlen, Degond, Wennberg, Ma. Mo. Me. Ap. Sc. 23, 2013]

Recall: LNφN = 1
N

∑
i<j L

(2) ⋄ij φN and L(2) is a two-particle jump operator.

Cut-off assumption

The operator L(2) is bounded in L∞. E.g. the collision rate λ ≡ 1 is constant.

Consequence: LN is bounded in L∞ and for φs ≡ φs⊗1N−s ∈ Cb(E
s) ⊂ Cb(E

N )

⟨fs,Nt , φs⟩ = ⟨fN0 , etLN φs⟩ =
+∞∑
k=0

tk

k!
⟨fN0 ,Lk

Nφs⟩.

−→ Take the limit N → +∞ of each term uniformly in t.

Main observation for k = 1

⟨fN0 ,LNφs⟩ =
s

N
⟨fs,N0 ,Lsφs⟩+

N − s

N
⟨fs+1,N

0 ,Dφs⟩,

where the operator D : Cb(E
s) → Cb(E

s+1) is defined by:

Dφs =
s∑

i=1

L(2) ⋄i,s+1 (φs ⊗ 1).

Note: hierarchy structure or “recollision tree” [Graham, Méléard, Ann. Prob. 25, 1997]
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Kac theorem [Kac, 1956], [Carlen, Degond, Wennberg, Ma. Mo. Me. Ap. Sc. 23, 2013]

The main lemma
For k > 1, the same structure holds and under the initial chaos assumption
fs0 = f⊗s

0 ,
⟨fN0 ,Lk

Nφs⟩ −→
N→+∞

⟨f⊗(s+k)
0 ,Dkφs⟩.

Moreover the series converges absolutely uniformly in N on (0, t0).

Consequently, this defines a limit distribution fs,∞t ∈ P(Es) by:

⟨fs,Nt , φs⟩ =
+∞∑
k=0

tk

k!
⟨fN0 ,Lk

Nφs⟩ −→
N→+∞

+∞∑
k=0

tk

k!
⟨f⊗(s+k)

0 ,Dkφs⟩ =: ⟨fs,∞t , φs⟩.

It remains to prove that fs,∞t = f⊗s
t where ft = f1,∞t . . .

This follows from Leibniz formula and the following observation (due to McKean)

D(φs1 ⊗ φs2) = Dφs1 ⊗ φs2 + φs1 ⊗Dφs2 .

⟨fs1+s2,∞
t , φs1 ⊗ φs2⟩ =

+∞∑
k=0

tk

k!

k∑
ℓ=0

(
k

ℓ

)
⟨f⊗(s1+s2+k)

0 ,Dℓφs1 ⊗Dk−ℓφs2⟩

= ⟨fs1,∞t , φs1⟩⟨f
s2,∞
t , φs2⟩.
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Kac theorem [Kac, 1956], [Carlen, Degond, Wennberg, Ma. Mo. Me. Ap. Sc. 23, 2013]

Computing d
dt ⟨ft, φ⟩ =

∑+∞
k=0

tk

k! ⟨f
⊗(s+2)
0 ,Dk[Dφ]⟩ = ⟨f2,∞t ,Dφ⟩ leads to:

Theorem: The Kac-Boltzmann equation

For any s ≤ N , fs,Nt → f⊗s
t and the limit law ft satisfies for all φ ∈ Cb(E),

d

dt
⟨ft, φ⟩ = ⟨f⊗2

t ,Dφ⟩.

Recall,

⟨f⊗2
t ,Dφ⟩ =

∫
E3

{
φ(z′1)− φ(z1)

}
Γ(2)(z1, z2,dz

′
1, E)ft(dz1)ft(dz2).

−→ The equation is written in weak form, the strong form ∂tft = Q(ft, ft) can
(sometimes) be obtained by computing the dual operator

D∗ : P(E2) → P(E).

−→ In the final equation only the marginal Γ(2)(z1, z2,dz
′
1, E) appears which

means that the details of the interaction mechanism is lost in the limit:
different Kac processes can have the same mean-field limit.
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The two building block theorems of Kac
and McKean.

1. Kac theorem: Markov generator and series expansion

2. McKean theorem: empirical measure, stochastic paths, coupling

3. Variations and alternative points of view
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First step: guess the limit

Recall: LNφN (xN ) =
∑N

i=1 LµxN
⋄i φN (xN ) where Lµ is a one-particle operator.

d

dt
⟨f1,Nt , φ⟩ =

∫
E

LµxN
φ(x1)fNt (dxN ) =

∫
E

( 1

N

N∑
i=1

LµxN
φ(xi)

)
fNt (dxN )

=

∫
E

⟨µxN , LµxN
φ⟩fNt (dxN ) =

∫
P(E)

⟨µ,Lµφ⟩FN
t (dµ).

If µXN
t

→ ft then f1,Nt = EµXN
t

→ ft and ft satisfies the nonlinear equation

d

dt
⟨ft, φ⟩ = ⟨ft, Lftφ⟩ i.e. ∂tft = L⋆

ftft.

Fokker-Planck equation

Drift b(x, µ) = F ⋆ µ(x) and diffusion matrix σ(x, µ),

Lµφ(x) = b(x, µ) · ∇φ+
1

2

d∑
i,j=1

σijσ
T
ij(x, µ) ∂xi∂xjφ.

∂tft = −∇x · (b(x, ft)ft) +
1

2

d∑
i,j=1

∂xi∂xj{σijσT
ij(x, ft)ft}.
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Wasserstein distance between marginals and coupling
Definition: Wasserstein distance

Let P2(Rd) be the set of probability measures with bounded second moment.
Then for µ, ν ∈ P2(Rd),

W 2
2 (µ, ν) := inf

X∼µ, Y∼ν
E|X − Y |2

defines a distance on P2(Rd) which metrizes the weak convergence.

In particular let X
i

t ∼ ft, i ∈ {1, . . . , N} be N i.i.d. random variables, then

W 2
2 (f

s,N
t , f⊗s

t ) ≤
s∑

i=1

E|Xi
t −X

i

t|2 = sE
∣∣X1

t −X
1

t

∣∣2
Everything boils down to proving that

E
∣∣X1

t −X
1

t

∣∣2 −→
N→+∞

0 . . .

. . . for some X1
t , X

1

t ∼ f1,Nt , ft that can be constructed as one wishes.

−→ Such random variables are called a coupling.

Note: EW 2
2 (µXN

t
, ft) → 0 also implies FN

t → δft . 19 / 45



McKean Theorem in the bounded Lipschitz case

Consider the McKean-Vlasov model with an arbitrary drift b : Rd × P(Rd) → Rd,

dXi
t = b

(
Xi

t , µXN
t

)
dt+

√
2 dBi

t.

Introduce the synchronous coupling with N independent nonlinear processes

dX
i

t = b
(
X

i

t, ft
)
dt+

√
2 dBi

t, X
i

0 = Xi
0.

where ft = Law(X
i

t) satisfies the nonlinear Fokker-Planck equation:

∂tft = −∇x ·
(
b(x, ft)ft

)
+∆xft.

Theorem (well-posedness)

Let b be bounded and Lipschitz for the W2 distance:

|b(x, µ)− b(y, ν)| ≤ C
(
|x− y|+W2(µ, ν)

)
.

Then for any T > 0, the nonlinear Fokker-Planck equation is well-posed in
C([0, T ],P2(Rd)) and the associated SDE has a unique strong solution.

Theorem (McKean)

∀T > 0, lim
N→+∞

E
[
sup
t≤T

∣∣Xi
t −X

i

t

∣∣2] = 0.
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McKean Theorem: proof (1/2) [Sznitman, St Flour, 1989]

By construction and the BDG inequality (. . . or Itō lemma), for i ∈ {1, . . . , N},

E
[
sup
t≤T

|Xi
t −X

i

t|2
]
≤ 2T

∫ T

0

E
∣∣∣b(Xi

t , µXN
t

)
− b
(
X

i

t, ft
)∣∣∣2dt

≤ 4T

∫ T

0

E
∣∣∣b(Xi

t , µXN
t

)
− b
(
X

i

t, µXN
t

)∣∣∣2 + E
∣∣∣b(Xi

t, µXN
t

)
− b
(
X

i

t, ft
)∣∣∣2dt

where µXN
t
= 1

N

∑N
i=1 δXi

t
. Then,

• E
∣∣∣b(Xi

t , µXN
t

)
− b
(
X

i

t, µXN
t

)∣∣∣2 ≤ C
(
E
∣∣Xi

t −X
i

t

∣∣2 + EW 2
2

(
µXN

t
, µXN

t

))
≤ C

(
E
∣∣Xi

t −X
i

t

∣∣2 + 1

N

N∑
j=1

E
∣∣Xj

t −X
j

t

∣∣2) ≤ 2C E
∣∣Xi

t −X
i

t

∣∣2.
• E

∣∣∣b(Xi

t, µXN
t

)
− b
(
X

i

t, ft
)∣∣∣2 ≤ C EW 2

2

(
µXN

t
, ft
)
.

In conclusion,

E
[
sup
t≤T

|Xi
t −X

i

t|2
]
≤ C1

∫ T

0

EW 2
2

(
µXN

t
, ft
)
dt+ C2

∫ T

0

E|Xi
t −X

i

t|2 dt.
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McKean Theorem: proof (2/2) [Sznitman, St Flour, 1989]

By Gronwall lemma,

E
[
sup
t≤T

|Xi
t −X

i

t|2
]
≤ C1 e

C2T

∫ T

0

EW 2
2

(
µXN

t
, ft
)
dt.

▶ By the strong Law of Large Numbers, for some constant M2 > 0,

µXN
t
→ ft a.s., EW 2

2

(
µXN

t
, ft
)
≤M2 and EW 2

2

(
µXN

t
, ft
)
→ 0.

[Carmona, Lectures on BSDEs [. . . ], SIAM, 2015]

▶ If f0 has sufficiently high-order moments,

EW 2
2

(
µXN

t
, ft
)
=


O(N−2/d) if d > 4
O(N−1/2) if d < 4

O(N−1/2 log(1 +N)) if d = 4

.

[Fournier, Guillin, Prob. Th. Rel. Fi. 162, 2015]

▶ If b(x, µ) = F ⋆ µ(x) (or a function of F ⋆ µ(x)) with F bounded Lipschitz,

E
∣∣∣b(Xi

t, µXN
t

)
− b
(
X

i

t, ft
)∣∣∣2 ≤ C

N
.

[Sznitman, St Flour, 1989], [McKean, 1967]
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The two building block theorems of Kac
and McKean.

1. Kac theorem: Markov generator and series expansion

2. McKean theorem: empirical measure, stochastic paths, coupling

3. Variations and alternative points of view
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Variation 1: McKean by McKean (1967)

Synchronous coupling between a N -particle system and a M > N particle system:

dXi,N
t = F ⋆ µXN

t
(Xi,N

t )dt+ σ dBi
t, Xi,N

0 = Xi
0,

dXi,M
t = F ⋆ µXM

t
(Xi,M

t )dt+ σ dBi
t, Xi,M

0 = Xi
0.

1. By the same (slightly simpler) computations: E supt≤T |Xi,N
t −Xi,M

t |2 → 0
when N,M → +∞.

2. For any i, the process (Xi,N
t )t is Cauchy in L2(Ω, C([0, T ],Rd)) and thus

there are limit points (X
i

t)t which are identically distributed.
3. By construction

X
i

t ∈ σ(X1
0 , (B

1
t )t, X

2
0 , (B

2
t )t, . . .).

However, by exchangeability and by Hewitt-Savage 0-1 law,

X
i

t ∈ σ
(
Xi

0, (B
i
t)t
)
,

and these processes are thus independent.

4. Check that the process (X
i

t)t solves the nonlinear SDE.
24 / 45



Extension: Mean-field jump processes
The generator of mean-field jump processes

Lµφ(x) = a · ∇φ(x) + λ(x, µ)

∫
E

{φ(y)− φ(x)}Pµ(x, dy),

where
• a : E → E deterministic flow Ẋt = a(Xt),
• λ(x, µ) (non-homogeneous) jump frequency,
• Pµ(x, dy) law of the post-jump state.

Example (Run-and-tumble motion). E = Rd × Rd with Zi
t = (Xi

t , V
i
t ) and

• a(x, v) = (v, 0) (free transport),
• λ(x, µ) ≡ 1 constant,
• Pµ((x, v),dx

′,dv′) = δx(dx
′)⊗ Mµ,x(v

′)dv′ with the Maxwellian,

Mµ,x(v) =
1

(2πT )d/2
exp

( |v − u|2

2T

)
,

where (ρ, u, T ) are defined by (ρ, ρu, ρ|u|2 + ρT ) :=
∫
Rd(1, v, |v|2)K ⋆µ(x, dv).

−→ Mean-field limit: ∂tft + v · ∇xft = ρft(x)Mft,x(v)− ft. (BGK equation)

[Buttà, Hauray, Pulvirenti, ARMA 240, 2021], [D., EJP 25, 2020]. . . 25 / 45



SDE representation of mean-field jump and Kac processes

Assume that Pµ(x, dy) is parametrized by fixed parameter probability space
(Θ, ν(dθ)) and a given function ψ : E × P(E)×Θ → E such that∫

E

φ(y)Pµ(x, dy) =

∫
Θ

φ
(
ψ(x, µ, θ)

)
ν(dθ).

Xi
t = Xi

0+

∫ t

0

∫ +∞

0

∫
Θ

{
ψ
(
Xi

s− , µXN
s−
, θ
)
−Xi

s−

}
1(

0,λ
(
Xi

s−
,µXN

s−

)](u)N i(ds,du,dθ),

where N i(ds,du,dθ) are N independent Poisson random measures with intensity
ds⊗ du⊗ ν(dθ) on [0,+∞)× [0,+∞)×Θ.
L1 framework: [Graham, Ann. Inst. H. Poincaré 28, 1992], [Graham, Sto. Pr. App. 40, 1992],
[Andreis, Dai Pra, Fischer, Sto. Ana. Appl. 36, 2018]

Boltzmann-Kac equation. . . (with constant collision rate)
New state function ψ, collision partner α, collision type σ, and non-independent N i

Zi
t = Zi

0 +

∫ t

0

∫
Θ

∫
{0,1}

∫
{1,...,N}

{
ψσ(Z

i
s− , Z

α
s− , θ)− Zi

s−

}
N i(ds,dθ,dσ,dα).

[Tanaka, Z. Wahr. verw. Geb. 46, 1978], [Murata, Hiroshima Math. J. 7, 1977], [Cortez,
Fontbona, Ann. App. Pro. 26, 2016], [Cortez, Fontbona, Comm. Math. Phys. 357, 2018],
[Fournier, Mischler, Ann. Pro. 44, 2016]
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Pathwise point of view on I = (0, T )

• Pointwise propagation of chaos holds towards a flow of measures
(ft)t ∈ C(I,P(E)) when the law fNt ∈ P(EN ) of XN

t is ft-chaotic for every
time t ∈ I.

• Pathwise propagation of chaos holds towards a distribution fI ∈ P(D(I, E))
on the space D(I, E) of càdlàg functions when the law fNI ∈ P(D(I, E)N ) of
the process XN

I seen as a random element in D(I, E)N is fI -chaotic.
Example.

(Pointwise) W 2
2 (f

s,N
t , f⊗s

t ) ≤ sE
∣∣X1

t −X
1

t

∣∣2 ≤ s sup
t∈I

E|X1
t −X

1

t |2.

(Pathwise) W2
2 (f

s,N
I , f⊗s

I ) ≤ sE
∥∥X1

I −X
1

I

∥∥2
C(I,E)

= sE
[
sup
t∈I

∣∣X1
t −X

1

t

∣∣2].
There are two pathwise empirical measure processes:

• The measure-valued process
(
µXN

t

)
t

with law Fµ,N
I ∈ P(D(I,P(E))).

• The empirical measure of the processes µXN
I

with law FN
I ∈ P(P(D(I, E))).

[FN
I → δfI ] =⇒ [Fµ,N

I → δ(ft)t ] =⇒ [FN
t → δft ]

Pathwise p.o.c. Functional L.L.N. Pointwise p.o.c.
P(P(D(I, E))) P(D(I,P(E))) P(P(E))
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Pathwise point of view: Martingale problems

−→ The N -particle process is defined as the solution of a martingale problem.

Pathwise particle martingale problem

∀φN ∈ Dom(LN ), MφN

t := φN

(
XN

t

)
− φN

(
XN

0

)
−
∫ t

0

LNφN

(
XN

s

)
ds,

is a fNI -martingale, where XN
t (ω) = ω(t) is the canonical process in D(I, EN ).

−→ Similarly for the limit nonlinear processes. . .

Pathwise nonlinear Boltzmann-Kac martingale problem

∀φN ∈ Cb(E), Mφ
t := φ

(
Xt

)
− φ

(
X0

)
−
∫ t

0

⟨fs,Dφ
(
Xs, ·)⟩ds,

is a fI -martingale, where Xt(ω) = ω(t) and fs = (Xs)#fI ∈ P(E).

Pathwise nonlinear McKean-Vlasov martingale problem

∀φN ∈ Cb(E), Mφ
t := φ

(
Xt

)
− φ

(
X0

)
−
∫ t

0

Lfsφ
(
Xs

)
ds,

is a fI -martingale, where Xt(ω) = ω(t) and fs = (Xs)#fI ∈ P(E).
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Pathwise point of view: Martingale methods

General outline of the proof

1. Show that (FN
I )N is tight using classical tightness criteria: Aldous,

Rebolledo, Joffe-Métivier. . .
By Prokhorov theorem, there exists a limit point π ∈ P(P(D(I, E))).

2. Identify the π-distributed limit points as solutions of the limit martingale
problem (this provides an existence result).

3. Prove the uniqueness of the limit martingale problem. This implies that π
is a Dirac mass at this point.

A very general methodology!
For the Boltzmann-equation. . .
[Tanaka, Proc. IFIP-WG 7/1, Bangalore 1982, 1983], [Sznitman, Zeit. Wah. Ver.
Geb. 66, 1984], [Wagner, Sto. An. App. 14, 1996]. . .

For McKean-Vlasov systems and more. . .
[Sznitman, J. Fun. An. 56, 1984], [Oelschläger, An. Prob. 12, 1984], [Gärtner,
Math. Nachr. 137, 1988], [Graham, Méléard, Ann. Probab. 25, 1997]. . .

Some drawbacks: no convergence rate, typically much more technical.
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Two important questions and some
applications. . .

1. Long-time behaviour and uniform-in-time propagation of chaos

2. Low regularity, singular and abstract interactions
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Long-time behaviour

(One) motivation. Understand the long-time behaviour of mesoscopic nonlinear
systems via their particle representation.

Example: trend to equilibrium for the granular media equation:

∂tft = ∇ ·
(
ft∇(V +W ⋆ ft)

)
+∆ft.

• V confinement potential (e.g. V (x) = |x|2/2).
• W (symmetric) interaction potential.

[Carrillo, McCann, Villani, Rev. Ma. Iberoa. 19, 2003], [Bolley, Gentil, Guillin, ARMA 208, 2013]

Mean-field particle representation:

dXi
t = −∇V (Xi

t)dt−
1

N

N∑
j=1

∇W (Xj
t −Xi

t)dt+
√
2dBi

t.

High-dimensional Langevin dynamics with invariant measure:

πN
∞(dxN ) ∝ exp

−
N∑
i=1

V (xi)− 1

2N

N∑
i,j=1

W (xi − xj)

 dx1 . . . dxN .
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Long-time behaviour: Malrieu’s theorem

Earlier work in 1D: [Benachour, Roynette, Vallois, Sto. Pro. App. 75, 1998]

Theorem (Malrieu, Sto. Pro. App. 95, 2001)

If V is β-uniformly convex, W is symmetric, convex, ∇W is locally Lipschitz
with polynomial growth then the synchronous coupling is uniform in time:

sup
t≥0

E|Xi
t −X

i

t|2 ≤ C

N
.

It implies the exponential convergence of ft towards a unique invariant measure.

Key idea: With Itō’s formula,
d
dt |X

i
t −X

i

t|2 ≤ −2(Xi
t −X

i

t) · (∇V (Xi
t)−∇V (X

i

t))+ . . . ≤ −2β|Xi
t −X

i

t|2 + . . .

Extensions, and related works. . .
Non uniformly convex V : [Cattiaux, Guillin, Malrieu, Pr. Th. Rel. Fi. 140, 2008]. . .

Kinetic (2nd order) systems: [Bolley, Guillin, Malrieu, ESAIM Ma. Mo. Nu. An. 44, 2010],
[Monmarché, Sto. Pr. App., 127, 2017]. . .

New coupling methods: [Durmus, Eberle, Guillin, Zimmer, Proc. Amer. Math. Soc. 148,
2020], [Guillin, Le Bris, Monmarché, EJP 27, 2022]. . .
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Long-time behaviour: Phase transitions

Unlike the particle system, the mean-field limit can have several invariant measures.

The Kuramoto model: synchronization of oscillators θit ∈ S1 with strength γ > 0

dθit =
γ

N

N∑
j=1

sin(θjt − θit)dt+ dBi
t, ∂tft(θ) = −γ∇θ · (ft(sin ⋆ft)) +

1

2
∆ft

Stable invariant measure of the mean-field equation: for θ0 ∈ R,

Mκ,θ0(θ) ∝ exp(−κ cos(θ − θ0)), κ = 2γ
I1(κ)

I0(κ)
.

Phase transition:
• If γ < 1, κ = 0 is the unique solution.
• If γ > 1, there is another solution κ∗ > 0 and Mκ∗,θ0 is asymptotically stable.

Long-time behaviour: there exists a Brownian noise (Wt)t

1

N

N∑
i=1

δθi
Nt

≈Mκ∗, θ0+Wt
̸=Mκ∗,θ0 .

[Bertini, Giacomin, Poquet, Prob. Th. Rel. Fi. 160, 2014]

−→ The propagation of chaos breaks down at time proportional to N .
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Long-time behaviour: some research directions
A (not so) recent trend: explore the links between phase transitions, uniform in
time propagation of chaos and log-Sobolev inequalities. . .
[Malrieu, Sto. Pro. App. 95, 2001], [Delgadino, Gvalani, Pavliotis, Ar. Ra. Me. An. 241, 2021],
[Delgadino, Gvalani, Pavliotis, Smith, Comm. Math. Phys., 2023], [Guillin, Monmarché, J. Stat.
Phys. 185, 2021]. . .

A long-standing problem: Trend to equilibrium for Boltzmann models [Kac, 1956],
[Grünbaum, ARMA 42, 1971], [Mischler, Mouhot, Inv. Math. 193, 2013]. . .

An open problem: phase transitions in the Vicsek model (and other kinetic models)

∂tft(x, v) + v · ∇xft = [some mean-field operator acting on v with phase transition].

Local alignment + noise
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Two important questions and some
applications. . .

1. Long-time behaviour and uniform-in-time propagation of chaos

2. Low regularity, singular and abstract interactions
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Low-regularity and singular interactions
• Interaction kernel in collective dynamics models

Flocking in the Cucker-Smale model.

dXi
t = V i

t dt, dV i
t =

1

N

N∑
j=1

V j
t − V i

t

(1 + |Xj
t −Xi

t |2)γ
dt+dBi

t

• (Overdamped) Keller-Segel and Coulomb-type interactions

[Glover et al., 2017]

∂tρ = −∇ · (ρ∇c) + 1

2
∆ρ, −∆c = ρ.

dXi
t =

1

N

N∑
j=1

K(Xj
t −Xi

t)dt+ dBi
t, K(r) = ξ

x

|x|d
.

• Unbounded jump rates in Boltzmann-Kac and mean-field jumps models
Spiking neurons rate λ(r) = (r/r0)

α [Fournier, Löcherbach, Ann. IHP Pr. St. 52, 2015]

Xi
t = Xi

0 − λ

∫ t

0

(
Xi

s −
1

N

N∑
j=1

Xj
s

)
ds−

∫ t

0

∫ +∞

0

Xi
s−1z≤λ(Xi

s−
) N i(ds,dz)

+
1

N

∑
j ̸=i

∫ t

0

∫ +∞

0

1z≤λ(Xj

s−
) N

j(ds,dz).
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Coupling-related methods

▶ Cut-off and mollifiers.
• Define Kε → K as ε → 0 where Kε sufficiently nice to prove propagation of

chaos with convergence speed rN (Kε) −→
N→+∞

0 for a fixed ε > 0.

• Use a sequence εN −→
N→+∞

0 depending on N .

• Try to prove propagation of chaos such that rN (KεN ) −→
N→+∞

0.

Example 1. Kε(x) =
x

max(|x|,ε)d → x/|x|d.
[Carrillo, Choi, Salem, Comm. Con. Math. 21, 2019]

Example 2 (moderate interaction). Kε(x) = ε−dK0(x/ε) → δx.
[Oelschläger, Ze. Wa. Ve. Ge. 69, 1985]. [Jourdain, Méléard, Ann. IHP Pro. St. 34, 1998]

▶ Local Lipschitz and exponential moments.
[Bolley, Cañizo, Carrillo, Ma. Mo. Me. App. Sc. 21, 2011]

• K local Lipschitz with polynomial growth or order p.

• The exponential moments E[eκ|X
i
t |

p′
] and E[eκ|X

i
t|

p′
] are bounded on (0, T ) for

some κ > 0 and p′ ≥ p.
•

∫
|K(y − x)|2ft(dx)ft(dy) < +∞.
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Entropy methods

For two probability measures µ, ν ∈ P(E ), the relative entropy is defined by

H(ν|µ) :=
∫

E

dν

dµ
log

(
dν

dµ

)
dµ.

Lemma: chaos from entropy bounds

For any k ≤ N , fN ∈ P(EN ) and f ∈ P(E),

1

2
∥fk,N − f⊗k∥2TV ≤ H(fk,N |f⊗k) ≤ k

N
H(fN |f⊗N ).

[Ben Arous, Zeitouni, Ann. IHP Prob. Sta. 35, 1999]
[Ben Arous, Brunaud, Sto. and Sto. Rep. 31, 1990]

Lemma: bounding the entropy

Let dXi
t = b(Xi

t , µXN
t
)dt+ σdBi

t be a McKean-Vlasov process,

H(fNI |f⊗N
I ) =

N

2
E

[∫ T

0

|b(X1
t , µXN

t
)− b(X1

t , ft)|2dt

]
.

Key idea: Girsanov theorem
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Entropy methods

▶ With the global Lipschitz bounded assumption of McKean’s theorem, this is a
strengthening result from Wasserstein to Total Variation convergence.
[Malrieu, Sto. Pro. App. 95, 2001]

▶ No regularity assumption on b (only the well-posedness of the limit system).
For linear interactions b(x, µ) = K ⋆ µ(x) with interaction kernel K:
Bounded forces: K ∈ L∞ [Jabin, Wang, J. Fun. An. 271, 2016],
Less than bounded K ∈W−1,∞ : [Jabin, Wang, Inv. Math. 214, 2018]
Singular gradient systems K = −∇W : [Bresch, Jabin, Wang, Duke Math. Journal,
2022], [Serfaty, ICM 2018 ], [Duerinckx, SIAM J. Ma. An. 48, 2016]. . .
Stochastic version: [Jabir, arXiv:1907.09096, 2019]
−→ Change of measure argument: bound observables for ft instead of fNt .

▶ No assumption on the form of b [Lacker, Elec. Com. Pro. 23, 2018].
▶ Hierarchy of marginal entropies, quantitative chaos with optimal rate O(k/N).

[Lacker, arXiv:2105.02983, 2021]

Entropy methods for jump and Boltzmann-Kac models via Girsanov transform?
[Léonard, Séminaire de Probabilités XLIV, 2012]
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Beyond the classical theory

1. Some extensions

2. Some applications in numerical analysis, data science and
optimization
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Some extensions (check the program!)

▶ Changing the noise. . .

dXi
t = b

(
Xi

t , µXN
t

)
dt+ dM i

t + dBt, Xi
T = ξi.

• Individual noise: M i
t martingale measure, α-stable Lévy driven noise, terminal

condition ξi. . .

• Environmental noise Bt: SPDE limit, conditional propagation of chaos.

▶ Changing the interactions. . .

dXi
t =

1

N

N∑
i=1

Γij b(X
i
t , X

j
t , µXN

t
, αi

t)dt+ dBi
t.

• Non-exchangeable systems: (random) graph interactions (Γij)ij , non-metric
interactions (“topological”) with K-nearest neighbors. . .

• Control process αi
t maximizing J i(α1, . . . , αN ).

▶ Changing the scaling. . .
• Boltzmann-Grad scaling: binary interactions in a dilute regime.

• Diffusion scaling: 1/
√
N instead of 1/N .

• Fluctuation process: ηN
t =

√
N
(
µXN

t
− ft

)
.

• Measure-valued limit: e.g. Fleming-Viot process
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Beyond the classical theory

1. Some extensions

2. Some applications for the numerical analysis of PDE, data science
and optimization

[Bird, DSMC
algorithm, 1970]

[Totzeck, Active
Particles 3, 2021]

[Clarté, D., Feydy,
EJS 16, 2022]
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Some applications in PDE, data science and optimization

• Particle methods for nonlinear PDEs: construct X1
t , . . . , X

N
t such that

(some functional of) µXN
t

≈ ft,

where ft is the solution of a complicated PDE (e.g. Boltzmann, Burgers,
vortex, Landau. . . ).

• Particle swarm optimization: construct X1
t , . . . X

N
t such that

X1
t , . . . X

N
t −→

t→+∞
x⋆

where x⋆ is the minimizer of an objective function G.
• MCMC sampling: construct X1

t , . . . , X
N
t such that as t→ +∞,

(X1
t , . . . , X

N
t ) ∼ π⊗N ,

where π is a probability density known up to a multiplicative constant.
• Neural networks: construct θ1, . . . , θN which minimize the risk functional

R(θN ) :=
∑
ℓ

Loss

(
Y ℓ,

1

N

N∑
i=1

σ(Xℓ, θi)

)
,

where (Xℓ, Y ℓ) are some labelled data and σ is an activation function.
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Simulating mean-field particle systems, final advertisment. . .

−→ In all the previous applications, a critical limitation comes from the
high-computational cost O(N2) of discrete convolutions:

Compute yi =

N∑
j=1

K(xi, xj) for i ∈ {1, . . . , N}

▶ Verlet list methods in MD simulations for short-range interactions.
[Leimkuhler, Matthews, Molecular Dynamics, 2015]

▶ Super particles and tree methods for long-range interactions.
[Rokhlin, J. Comp. Phys. 60, 1985]

▶ “Approximate” K using so-called kernel methods.
[Yang et al., NeurIPS 25, 2012]

▶ Randomly subsample the interactions via random batch methods.
[Jin, Li, Liu, J. Comp. Phys. 400, 2020]

▶ Massively parallelized symbolic computations using GPU routines.

[Charlier, Feydy, Glaunès, Collin, Durif, J. Mach. Lea. Res. 22, 2021]
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Thank you for your attention!
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