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Part 1. McKean-Vlasov equations

» Solving McKean-Vlasov equation with various interaction
coefficients via relative entropy.

> Smoothness of density in the case of an interaction kernel.

» Uniform in time propagation of chaos with a sharp rate
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McKean-Vlasov SDEs with non-Lipschitz interaction

Intensive research in recent years on solving McKean-Vlasov type
equations given b : [0, 00) x R? — R¢,

dXt = <Mt7 b(tv Xt; )>dt + th’ Ht = LaW(Xt) (1)

given W a d-dimensional Brownian motion or stable Lévy process.
» When b is Lipschitz continuous in its last variable, one may
solve directly via a Gronwall argument.
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McKean-Vlasov SDEs with non-Lipschitz interaction
Intensive research in recent years on solving McKean-Vlasov type
equations given b : [0, 00) x R? — R¢,

dX; = <Mt, b(t, X, >>dt +dWy, = Law(Xt) (]_)

given W a d-dimensional Brownian motion or stable Lévy process.
» When b is Lipschitz continuous in its last variable, one may
solve directly via a Gronwall argument.
» When b is merely bounded measurable, one may write the
drift as B(t, Xy, puy) with B continuous in y in total variation
distance in the sense that for any t > 0, 2 € R,

|B(t,x,p) = B(t,z,v)| < Cllp = vlrv, (2)
Let ®(u) be solution to (1) for each 1 € P([0,T];RY), then

H(@(n) | 2(v) = JEP| /0 |B(s, X, 1) — B(s, Xa, v)ds]

(3)
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Solution-continued
» The right hand side becomes

CQ t 5 T
<G [ nlbvas<c [ G s @

The first inequality follows from Lipschitz continuity of B in
the measure component, and the second follows from
Pinsker’s inequality. Then the existence and uniqueness of a
solution follows from a fixed point argument.
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» This method has appeared in several different papers in the
2010s. See for example [Lacker,2018].
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Solution-continued
» The right hand side becomes

CQ t 5 T
<G [ nlbvas<c [ G s @

The first inequality follows from Lipschitz continuity of B in
the measure component, and the second follows from
Pinsker’s inequality. Then the existence and uniqueness of a
solution follows from a fixed point argument.

» This method has appeared in several different papers in the
2010s. See for example [Lacker,2018].

> We can solve McKean-Vlasov equation in a much wider
generality, where the assumption

|B(t,x,p) = B(t,z,v)| < Cllp = vlrv, (3)

is no longer valid.
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Examples of new results

» Linear growth, path dependent coefficients:
b(t, z,y)| < K1+ [[«fl: + llyll:), t<[0,T]
we can solve (extending Lacker 2021)

dXy = (p,b(t, X, -))dt + dW;, p = Law(X)
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Examples of new results

» Linear growth, path dependent coefficients:
bt z,y)| < KU+ [lzfle + llyll), ¢ <[0, 7T (6)
we can solve (extending Lacker 2021)
dXy = <,Ua b(tv X, )>dt +dWi, p= LaW(X) (7)
» Singular and linear growth coefficients: given pil + q% <1,
|b1(t, z,y)| < hi(z —y) for some h € L <[O,T], L (Rd)) ,
sup |ba(t, 2, )| < K(1+4 |2]%) for K >0,8€[0,1), (8)
Ly
we can solve (extending Rdckner-Zhang 2019)
dXt = (//,t, b1 =+ bg(t, Xt, )>dt + th, Mt = LaW(Xt) (9)

b1 must be state dependent, but b2 can be path dependent.
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Examples for fractional Brownian driving noise
(Extending Galeati, Harang Mayorcas 2021 and other works)
> Assume H € (0,1) and o > 1 — 75, and

IB(t,-, ) =B(t,,v)llps, . S lu—vlrv, mv € P(RY), (10)
we can solve, via Girsanov transform for FBMs,
dX; = B(t, Xy, pe)dt + dBE | Law(X;) = p, (11)

and when the interaction has linear growth and path
dependent, i.e. |b(t,z,y)| < K(1+ ||z|t + ||y|), solve

dX; = (u,b(t, X, ))dt + dBE, ;i = Law(X). (12)
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Examples for fractional Brownian driving noise
(Extending Galeati, Harang Mayorcas 2021 and other works)
> Assume H € (0,1) and o > 1 — 75, and

IB(t,-, ) =B(t,,v)llps, . S lu—vlrv, mv € P(RY), (10)
we can solve, via Girsanov transform for FBMs,
dX; = B(t, Xy, pe)dt + dBE | Law(X;) = p, (11)

and when the interaction has linear growth and path

dependent, i.e. |b(t,z,y)| < K(1+ ||z|t + ||y|), solve
dX; = (u,b(t, X, ))dt + dBE, ;i = Law(X). (12)

{1,
> When H € (3,1), and 3> H — £ > 0, assume

bt %,2) = b(s,5,9)| S (o =gl + |’ = /| + |t = 5I7) |

we can then solve the state dependent version of (12).
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Examples for SPDEs

» Stochastic heat equation on [0,1], f bounded measurable,

82
AY (t,0) = AW (1) + kg Y (t,0)dt

/ﬁy(t) (dZ) / f(Y(t,0),Z(c"))do'dt.

and its more abstract version, assuming G is Lipschitz in p in
total variation,
0 9y = 0?
ot 0o

(13)

Y (t)dt + G(t, Y (t), w)dt + dW(t),  (14)
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Examples for SPDEs

» Stochastic heat equation on [0,1], f bounded measurable,

82
AY (t,0) = AW (1) + i Y (t,0)dt

/ﬁy 1 (dZ) / f(Y(t,0),Z(c"))do'dt.

and its more abstract version, assuming G is Lipschitz in p in
total variation,

(13)

0 0?
8tY( ) = @Y(t)dt + G, Y (t), ue)dt +dW(t), (14)
» Stochastic wave equation
P vy = L v+ oy, Ly, wdt + aw o)
8t2 - 80'2 ) 78t y Mt )

(15)
» For (13), we can recover the O(k?/n?) rate of propagation of
chaos in relative entropy (Lacker 2021).
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Questions

What if the diffusion coefficient also depends on the measure ©?
dXt = B(t, Xt, Mt)dt + O'(Xt, ,U,t)th, LaW(Xt) = Ut (16)

where B is Lipschitz continuous in g in total variation distance?

> A refined relative entropy estimate for diffusion processes with
different diffusion coefficient solves this question.
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Questions

What if the diffusion coefficient also depends on the measure ©?
dXt = B(t, Xt, Mt)dt + O'(Xt, ,U,t)th, LaW(Xt) = Ut (16)

where B is Lipschitz continuous in g in total variation distance?

> A refined relative entropy estimate for diffusion processes with
different diffusion coefficient solves this question.

» Huang, Ren and Wang, arXiv:2304.07562.
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Smoothness of density for McKean-Vlasov SDEs
Given b : R — R? bounded measurable, the SDE

dX; = b(Xt)dt + dW; (17)
has a density but is quite irregular, while the McKean-Vlasov SDE
dX; = <,LLt, b(Xt — )>dt + dWy, LaW(Xt) = Ut (18)

has a much smoother density. Possible ways to see this:

» Malliavin calculus: when b is at least C!, we can fix p and
show ; has some Besov regularity via Malliavin calculus.
Then bootstrap to prove u; has a smooth density.
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Smoothness of density for McKean-Vlasov SDEs
Given b : R — R? bounded measurable, the SDE

dX; = b(Xt)dt + dW; (17)
has a density but is quite irregular, while the McKean-Vlasov SDE
dX; = <,LLt, b(Xt — )>dt + dWy, LaW(Xt) = Ut (18)

has a much smoother density. Possible ways to see this:

» Malliavin calculus: when b is at least C!, we can fix p and
show ; has some Besov regularity via Malliavin calculus.
Then bootstrap to prove u; has a smooth density.

» Stochastic taylor expansion (Debussche and Fournier 2013,
Debussche and Romito 2014, etc.) when b is less regular,
deduce p; has some Besov regularity and bootstrap.

» A more direct approach, better use of Besov space norms with
exponent p, get smoothness of density for short time and very
irregular b (Hao, Rockner and Zhang, arxiv 2302.04392).
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Related smoothing phenomenon

This phenomenon has appeared in other situations such as

» 2D Navier-Stokes equation with (degenerate) additive white
noise forcing, [Mattingly and Pardoux 2005].

» The mean field convolution structure is critical for solving
dXt = <,U,t7 b(Xt — )>dt + th, LaW(Xt) = Ut (19)

for distributional b in the regularity class b € Cb_He, e > 0.
(de Raynal, Jabir, Menozzi arXiv:2205.11866).
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Propagation of chaos with a sharp rate

Let Pt”’k be the k-marginal density of a weakly interacting
diffusion process with n components,

1
n—1

X = > b XM )dt + dW (20)
J#i

Let also y be the law of the (limiting) McKean-Vlasov equation.
Then

P It is classically understood that

1B — 1@2¥ |y = O(Vk/n). (21)
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Let Pt”’k be the k-marginal density of a weakly interacting
diffusion process with n components,

1

X} = ——

> b XM )dt + dW (20)
J#i

Let also y be the law of the (limiting) McKean-Vlasov equation.
Then

P It is classically understood that

1B — 1@2¥ |y = O(Vk/n). (21)

» In [Jabin-Wang 18] they showed this convergence rate for the
vorticity formulation of 2D Navier-Stokes equation on the
torus, with sufficiently smooth initial condition.
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Propagation of chaos with a sharp rate

Let Pt”’k be the k-marginal density of a weakly interacting
diffusion process with n components,

1
n—1

X = > b XM )dt + dW (20)
J#i

Let also y be the law of the (limiting) McKean-Vlasov equation.
Then

P It is classically understood that

1B — 1@2¥ |y = O(Vk/n). (21)

» In [Jabin-Wang 18] they showed this convergence rate for the
vorticity formulation of 2D Navier-Stokes equation on the
torus, with sufficiently smooth initial condition.
» If b is Lipschitz continuous or bounded measurable, then
[Lacker, 2021] showed that we indeed have a O(k/n) rate for
k << n, which is sharp in several cases.
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Sharp rate for singular coefficients

» Question. Can we show this O(k/n) rate for singular
interacting kernels?
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Sharp rate for singular coefficients

» Question. Can we show this O(k/n) rate for singular
interacting kernels?

» Further, can the rate be uniform in time?

» By [Guillin,Le Bris,Monmarché 21}, the O(\/k/n)
convergence in the work of [Jabin-Wangl18] on 2D N-S
equations can be uniform in time. By [Lacker, Le Flem22], the
O(k/n) rate can be uniform in time for Lipschitz coefficients
under convexity assumptions.

» An unsuccessful approach to get the sharp O(k/n) rate for
singular interactions.

» May use modulated free energy instead of relative entropy. In
the very recent work [De Courcel, Rosengweig, Serfaty. Arxiv:
2304.05315], they prove uniform-in-time mean-field
convergence for singular periodic Riesz flows (s<d on T¢) in
the gradient case with a sharp rate in the modulated energy
pseudo distance.
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What makes the O(k/n) rate so special?

» Consider the conditional probablllty P(k+1|k) which is the law
of XFt! given (X}, XF) =
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variation or O(k?/n?) rate in relative entropy, need (a) either,
the interaction b is bounded or Lipschitz, (b) or, we have a

precise control of Pt(_lfrl'k) for any possible z.
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» Consider the conditional probability Pt(.’jl'k), which is the law
of XFt! given (X}, XF) ==
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precise control of Pt(_lfrl'k) for any possible z.

» Control E[(b(X; — ), Pt(i'l) — 1t)] for each ¢, z.

» Conditioning breaks the martingale structure of the process,

so we know nothing about Pt(.’fjl'k) unless there is no

interaction at all.
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» Conditioning breaks the martingale structure of the process,
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What makes the O(k/n) rate so special?

Pt(.’jl'k), which is the law

» Consider the conditional probability
of XFt! given (X}, XF) ==

» In all the existing proofs that give O(k/n) rate in total
variation or O(k?/n?) rate in relative entropy, need (a) either,
the interaction b is bounded or Lipschitz, (b) or, we have a

precise control of Pt(_lfrl'k) for any possible z.
» Control E[(b(X; — ), Pt(i'l) — 1t)] for each ¢, z.
» Conditioning breaks the martingale structure of the process,
Pt(k+1|k)
X

so we know nothing about unless there is no

interaction at all.
» Have to assume bounded or Lipschitz interactions.

» Could be relaxed if the flow has more structure (Riesz flow?)
and we use modulated free energy instead.
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Part 2 Stochastic PDEs via generalized coupling

Now | will discuss how some ideas used intensively in
McKean-Vlasov equations can be applied to stochastic PDEs.

» Various coupling methods have been used in the contexts of
McKean-Vlasov equations to deduce:
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Part 2 Stochastic PDEs via generalized coupling

Now | will discuss how some ideas used intensively in
McKean-Vlasov equations can be applied to stochastic PDEs.
» Various coupling methods have been used in the contexts of
McKean-Vlasov equations to deduce:

» Uniform in time propagation of chaos in the case of
(non)-convex potentials.

» Ergodic behaviors of McKean-Vlasov equations.

» Conditioned McKean-Vlasov equations, etc.

» We explore interesting applications of the coupling method to
solution theory of SPDEs.
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Restoring uniqueness by Gaussian noise

» It is well known that an ODE with non-Lipschitz coefficients
may not have a unique solution.
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Restoring uniqueness by Gaussian noise
» It is well known that an ODE with non-Lipschitz coefficients
may not have a unique solution.

» We can restore uniqueness via adding Brownian noise:
consider the (finite dimensional) SDE: given b bounded
measurable, W an n-dimensional Brownian motion,

dX; = b(X,)dt + dW,. (22)

» Unique weak solution via Girsanov theorem.

» Unique strong solution via Zvonkin's transform or other
methods.

» Girsanov transform is also applicable in infinite dimensions:
parabolic SPDEs, etc.

» Strong solutions can be proved when the solution is real
valued. "On quasi-linear stochastic partial differential
equations”, Gyéngy and Pardoux,1993.

15/29



Irregular Noise coefficient

» For multiplicative noise, what can the noise coefficient be?
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For multiplicative noise, what can the noise coefficient be?

v

Consider
dXt = J(Xt)th. (23)

» Assume o continuous (but not Lipschitz) and non-degenerate:
0< Al <lo(x) <Ay, zeR™

» Weak uniqueness: X; is a time changed Brownian motion.

» Strong uniqueness: imposing Sobolev regularity conditions on
o and use PDE theory.
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Irregular Noise coefficient

v

For multiplicative noise, what can the noise coefficient be?

v

Consider
dXt = J(Xt)th. (23)

» Assume o continuous (but not Lipschitz) and non-degenerate:
0< Al <lo(x) <Ay, zeR™

» Weak uniqueness: X; is a time changed Brownian motion.

» Strong uniqueness: imposing Sobolev regularity conditions on
o and use PDE theory.

» None of them works in infinite dimensions.
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Notion of solutions to stochastic PDEs

» Random field solutions/ martingale measures approach: JB.
Walsh Regard s and y on an equal footing.

jh (dyds).
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Notion of solutions to stochastic PDEs

» Random field solutions/ martingale measures approach: JB.
Walsh Regard s and y on an equal footing.
fA (dyds).
> Evolutlon equations on Hilbert spaces: Da Prato-Zabczyk.
Consider orthogonal basis (e, (7))nen,

W (dzdt) Z

n=1

o
Ny =3 [ [ 8= s - y)gls.penty)dyanl?
R4
» Da Prato-Debussche technique, rough path theory, regularity
structure, paracontrolled calculus.
P =AD+CP— P34 ¢

Only for additive noise or sufficiently regular noise coefficient.
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Known results for the stochastic heat equation

» Additive noise case dyu = Au + f(u) + gig:.
» Hilbert space valued SPDEs: strong solution for Holder
continuous f(u). Strong solution for a.e. initial value for
bounded measurable f. "Strong uniqueness for SDEs in

Hilbert spaces with nonregular drift.”
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Known results for the stochastic heat equation

» Additive noise case dyu = Au + f(u) + aaigz/'

» Hilbert space valued SPDEs: strong solution for Holder
continuous f(u). Strong solution for a.e. initial value for
bounded measurable f. "Strong uniqueness for SDEs in
Hilbert spaces with nonregular drift.”

» Random field SPDEs: strong solutions for distributional f(u).
"Well-posedness of stochastic heat equation with distributional
drift and skew stochastic heat equation.”

» Multiplicative, Holder continuous noise coefficient: o being
3 + e-Hélder continuous in X (¢, z), the random field case:

gX(t,x) _ %AX(t,a:)dt ot o, X (4 2))dW (1, 2)
t

"Pathwise Uniqueness for Stochastic Heat Equations with
Hélder Continuous Coefficients: the White Noise Case”, 77

”

p".
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Assumptions

> A sufficiently general and easy to implement construction of
SPDEs on Hilbert space, with non-Lipschitz noise coefficient.
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Assumptions
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A sufficiently general and easy to implement construction of
SPDEs on Hilbert space, with non-Lipschitz noise coefficient.

Some attempts to this question in the 2000s. Mostly too
restrictive that require trace class perturbations of identity
operator, or require close to diagonal coefficients.

Our assumptions: for W the cylindrical noise on H,

dX; = AXydt + B(Xy)dt + o(Xy)dWy, (24)

for 1-d

1
Eigenvalues «y, of A scale as ay, ~ k™= [y = %

Laplacians]

o has a bounded right inverse and 3 > 1 — R-Hélder
continuous (2 + ¢ for 1-d Laplacian)

B has linear growth.
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Well-Posedness

Theorem (Well-posedness of Stochastic Heat equation)

Under the assumptions in the previous slide, there exists a unique
(probabilistic weak) mild solution to

dXt = AXtdt+B(Xt)dt+U(Xt)th, XO € H. (25)
Given % + e-Hélder F' : H — H, unique weak-mild solution to

dX,; = AXdt + (—A)YV2F(X,)dt + B(X,)dt + o(X,)dW,, (26)
» Examples: Burgers type equations, £ € (0, 27)
0? 0
du(t,§) =

Sz )t + Seh(u(t, €)dt + o (u(t. O)dWi(€).
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Theorem (Well-posedness of Stochastic Heat equation)

Under the assumptions in the previous slide, there exists a unique
(probabilistic weak) mild solution to

dXt = AXtdt—{—B(Xt)dt +J(Xt)th, XO € H. (25)
Given % + e-Hélder F' : H — H, unique weak-mild solution to

dX; = AXydt + (—A)V2F(X;)dt + B(X;)dt + o(X,)dW,, (26)

» Cahn-Hilliard equations in dimensions 1,2,3:

du(t, &) = —=AZu(t, &)dt + Ach(u(t, €))dt + o (u(t, ))dWi ()
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Long-time behaviour

Theorem (Exponential ergodicity)

Assume the drift B : H — H is Hélder continuous, and the
Lyapunov condition hold: for some V : H — R, and some
A € (0,1) infinity at infinity,

E[V(Xy)] < AV (Xo)+ M (27)

for some givent > 0 and M > 0. Then there exists a unique
invariant measure, and the solution converges to the invariant
measure exponentially fast with respect to (some specific)
Wasserstein distance on P(H).

» No applicable 1t6 formula for cylindrical noise
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Theorem (Exponential ergodicity)

Assume the drift B : H — H is Hélder continuous, and the
Lyapunov condition hold: for some V : H — R, and some
A € (0,1) infinity at infinity,

E[V(X)] < AV (Xo) + M (27)

for some givent > 0 and M > 0. Then there exists a unique
invariant measure, and the solution converges to the invariant
measure exponentially fast with respect to (some specific)
Wasserstein distance on P(H).

» No applicable 1t6 formula for cylindrical noise

» Lyapunov assumption satisfied when B, F', o are bounded,
and A is a negative operator.
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Harris' theorem with applications to stochastic delay
equations,” 2011; Kulik et al.,” Well-posedness, stability and
sensitivities for stochastic delay equations: a generalized
coupling approach,” 2020.

» In order to compare X; to a process
dX{ = AXJdt + B"(X")dt + o™ (X}")dWr,
consider auxiliary process with A > 0 and stopping time 7
dX! = AXPdt + BY(XP)dt + M y<rdt + o™(X])dW,

> Probabilistic estimate: compare X"|(g 7} and )?”|[07T] via
Girsanov transform and Pinsker’s inequality.
> Use pathwise estimate to compare X (o 7y with X[ 7.
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Methods

Some technical challenges in infinite dimensions:

» Derive maximal inequality for the process, when A is large:
dXt == AXtdt - )\Xtdt + q)(t)th, X() - 0,
» When A is the 1-D Laplacian, has the form

E sup ||X,[| <A"TTE JSup [2(s)]]-
0<s<T <s<T

» No applicable It6’s formula: always work with mild
formulations.

» Lipschitz approximation in infinite dimensions: compactness
of heat semigroup.
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Now | outline the procedure of proof:
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A bit more details

Now | outline the procedure of proof:

| 4

>

Compactness reduction: for any € > 0 find a compact subset
K C H s.t. X; staysin K fort € [0,T], w.p. at least 1 — ¢

Find approximations B™, ¢” uniformly converging to B, ¢ on
K, with supg HB" B, ||e™ — ol < ep.

choose A = ¢, ! for some 7 > 0, and choose the stopping
time 7 € [0, 7] the first time that | X; — X"| > ¢,.

Combine pathwise estimates between X; and X", and
probabilistic estimates between X" and X}*. This gives a
measurement of how close X; is to X/'.

Use also the estimate ||S(t)AY/2||,, < Cﬁ in the presence of
the (—A)'/2 term in the drift.

Proof of ergodic behavior follows similar lines but need an
extra argument constructing the Wasserstein distance on H.
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Stochastic wave equation: well-posedness

Our method works not only for the parabolic systems, but also for
hyperbolic systems.
Consider the (abstract) damped stochastic wave equation

0%, (t ou
e

+B(t, up(t)+G(t, up(t))dWs, (28)
and the stochastic wave equation without damping term

0u, (1)
ot?

= Auy () + B(t,uu(t)) + G(t,uu(8)dWy,  (29)

Theorem (Well-posedness of stochastic wave equation)

Under the same assumption on A, B and G as in the case of the
stochastic heat equation, there exists a unique weak-mild solution
to (28) and (29).
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Stochastic wave equation: small mass limit

Theorem
Assume moreover that B is Holder continuous in w,. Then as
tends to 0, the solution to the damped stochastic wave equation

0%uy(t)
ot?

~ Ouy(t)
ot

= Au,(t) + B(t,u,(t)) + G(t, uu(t))dWy

converges in distribution on path space to the solution of the
stochastic heat equation

du(t)
at

= Au(t) + B(t,u(t)) + G(t, u(t))dW;.

"On the Smoluchowski-Kramers approximation for a system with
an infinite number of degrees of freedom”, Freidlin and Cerrai,
2006.
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Further discussions

Some remaining questions to be addressed:

» \We only get weak well-posedness, not strong one. (Strong
uniqueness is usually much harder and is now mostly proved
for R-valued, random field solutions of SPDEs, not
multi-dimensional solutions when coefficients are irregular.)
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uniqueness is usually much harder and is now mostly proved
for R-valued, random field solutions of SPDEs, not
multi-dimensional solutions when coefficients are irregular.)

> Is the % + e-threshold sharp? Yes when the noise coefficient
can vanish somewhere [Mueller,Mytnik,Perkins 2014],
unknown in general.

> In the presence of (—A)'/2F term, we require F' to be
2+ e-Holder. Can we allow for e-Hdlder? [By Priola 2021, we
can have e-Hélder continuity in the case of additive noise.]

> Need a better understanding of infinite dimensional

Kolmogorov equation beyond the well studied case of additive
noise.
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A support theorem for random field solutions

We discussed the general setting of Hilbert space valued solutions,
but some better estimates hold for random field solutions.
» Consider the parabolic stochastic PDE

Opu(t, x) = O%ult, x) + g(t, z,u) + o(t, z, u)dW (t, )

where = € [0, 1], W is the space-time white noise on [0, 1] and
g is uniformly bounded.
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but some better estimates hold for random field solutions.
» Consider the parabolic stochastic PDE

Opu(t, x) = O%ult, x) + g(t, z,u) + o(t, z, u)dW (t, )

where = € [0, 1], W is the space-time white noise on [0, 1] and
g is uniformly bounded.

» The diffusion coefficient o is assumed to be uniformly
non-degenerate but only a- Hélder continuous in u for some
a > 0 (indeed, a uniformly continuous assumption is enough.)

» Has a martingale solution, but lacking proof of uniqueness.

» Then for any suitably regular space-time function h,

T
Coep(- LY <P sup  Ju(t,x) — ht,z)] < o).
€ 0<t<T,x€[0,1]

» We use in an essential way estimates in [Athreya et al.,2021].
» Any clue of weak uniqueness from this estimate?
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