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Part 1. McKean-Vlasov equations

▶ Solving McKean-Vlasov equation with various interaction
coefficients via relative entropy.

▶ Smoothness of density in the case of an interaction kernel.
▶ Uniform in time propagation of chaos with a sharp rate
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McKean-Vlasov SDEs with non-Lipschitz interaction
Intensive research in recent years on solving McKean-Vlasov type
equations given b : [0,∞)× Rd → Rd,

dXt = ⟨µt, b(t,Xt, ·)⟩dt+ dWt, µt = Law(Xt) (1)

given W a d-dimensional Brownian motion or stable Lévy process.
▶ When b is Lipschitz continuous in its last variable, one may

solve directly via a Gronwall argument.

▶ When b is merely bounded measurable, one may write the
drift as B(t,Xt, µt) with B continuous in µ in total variation
distance in the sense that for any t > 0, x ∈ Rd,

|B(t, x, µ)−B(t, x, ν)| ≤ C∥µ− ν∥TV , (2)

Let Φ(µ) be solution to (1) for each µ ∈ P([0, T ];Rd), then

H(Φ(µ) | Φ(ν) = 1

2
EPµ [

∫ t

0
|B(s,Xs, µ)−B(s,Xs, ν)|2ds]

(3)
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Solution-continued
▶ The right hand side becomes

≤ C2

2

∫ t

0
∥µs − νs∥2TV ds ≤ C

∫ T

0
H(µs | νs)ds. (4)

The first inequality follows from Lipschitz continuity of B in
the measure component, and the second follows from
Pinsker’s inequality. Then the existence and uniqueness of a
solution follows from a fixed point argument.

▶ This method has appeared in several different papers in the
2010s. See for example [Lacker,2018].

▶ We can solve McKean-Vlasov equation in a much wider
generality, where the assumption

|B(t, x, µ)−B(t, x, ν)| ≤ C∥µ− ν∥TV , (5)

is no longer valid.
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Examples of new results
▶ Linear growth, path dependent coefficients:

|b(t, x, y)| ≤ K(1 + ∥x∥t + ∥y∥t), t ∈ [0, T ] (6)

we can solve (extending Lacker 2021)

dXt = ⟨µ, b(t,X, ·)⟩dt+ dWt, µ = Law(X) (7)

▶ Singular and linear growth coefficients: given d
p1

+ 2
q1

< 1,

|b1(t, x, y)| ≤ ht(x− y) for some h ∈ Lq1
t

(
[0, T ], Lp1

x (Rd)
)
,

sup
t,y

|b2(t, x, y)| ≤ K(1 + |x|β) for K > 0, β ∈ [0, 1), (8)

we can solve (extending Röckner-Zhang 2019)

dXt = ⟨µt, b1 + b2(t,Xt, ·)⟩dt+ dWt, µt = Law(Xt) (9)

b1 must be state dependent, but b2 can be path dependent.
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Examples for fractional Brownian driving noise
(Extending Galeati, Harang, Mayorcas 2021 and other works)
▶ Assume H ∈ (0, 12) and α > 1− 1

2H , and

∥B(t, ·, µ)−B(t, ·, ν)∥Bα
∞,∞ ≲ ∥µ−ν∥TV , µ, ν ∈ P(Rd), (10)

we can solve, via Girsanov transform for FBMs,

dXt = B(t,Xt, µt)dt+ dBH
t , Law(Xt) = µt, (11)

and when the interaction has linear growth and path
dependent, i.e. |b(t, x, y)| ≤ K(1 + ∥x∥t + ∥y∥t), solve

dXt = ⟨µ, b(t,X, ·)⟩dt+ dBH
t , µ = Law(X). (12)

▶ When H ∈ (12 , 1), and β > H − 1
2 > 0, assume

|b(t, x, x′)− b(s, y, y′)| ≲
(
|x− y|α + |x′ − y′|α + |t− s|β

)
,

we can then solve the state dependent version of (12).
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Examples for SPDEs
▶ Stochastic heat equation on [0, 1], f bounded measurable,

dY (t, σ) = dW (t) + κ
∂2

∂σ2
Y (t, σ)dt

+

∫
LY (t)(dZ)

∫ 1

0
f(Y (t, σ), Z(σ′))dσ′dt.

(13)

and its more abstract version, assuming G is Lipschitz in µt in
total variation,

∂

∂t
Y (t) =

∂2

∂σ2
Y (t)dt+G(t, Y (t), µt)dt+ dW (t), (14)

▶ Stochastic wave equation
∂2

∂t2
Y (t) =

∂2

∂σ2
Y (t)dt+G(t, Y (t),

∂

∂t
Y (t), µt)dt+ dW (t),

(15)
▶ For (13), we can recover the O(k2/n2) rate of propagation of

chaos in relative entropy (Lacker 2021).
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Questions

What if the diffusion coefficient also depends on the measure µ?

dXt = B(t,Xt, µt)dt+ σ(Xt, µt)dWt, Law(Xt) = µt (16)

where B is Lipschitz continuous in µ in total variation distance?
▶ A refined relative entropy estimate for diffusion processes with

different diffusion coefficient solves this question.

▶ Huang, Ren and Wang, arXiv:2304.07562.
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Smoothness of density for McKean-Vlasov SDEs
Given b : Rd → Rd bounded measurable, the SDE

dXt = b(Xt)dt+ dWt (17)

has a density but is quite irregular, while the McKean-Vlasov SDE

dXt = ⟨µt, b(Xt − ·)⟩dt+ dWt, Law(Xt) = µt (18)

has a much smoother density. Possible ways to see this:
▶ Malliavin calculus: when b is at least C1, we can fix µ and

show µt has some Besov regularity via Malliavin calculus.
Then bootstrap to prove µt has a smooth density.

▶ Stochastic taylor expansion (Debussche and Fournier 2013,
Debussche and Romito 2014, etc.) when b is less regular,
deduce µt has some Besov regularity and bootstrap.

▶ A more direct approach, better use of Besov space norms with
exponent p, get smoothness of density for short time and very
irregular b (Hao, Röckner and Zhang, arxiv 2302.04392).
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Related smoothing phenomenon

This phenomenon has appeared in other situations such as
▶ 2D Navier-Stokes equation with (degenerate) additive white

noise forcing, [Mattingly and Pardoux 2005].
▶ The mean field convolution structure is critical for solving

dXt = ⟨µt, b(Xt − ·)⟩dt+ dWt, Law(Xt) = µt (19)

for distributional b in the regularity class b ∈ C−1+ϵ
b , ϵ > 0.

(de Raynal, Jabir, Menozzi arXiv:2205.11866).
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Propagation of chaos with a sharp rate
Let Pn,k

t be the k-marginal density of a weakly interacting
diffusion process with n components,

dXn,i
t =

1

n− 1

∑
j ̸=i

b(Xn,i
t , Xn,j

t )dt+ dW i
t . (20)

Let also µt be the law of the (limiting) McKean-Vlasov equation.
Then
▶ It is classically understood that

∥P (n,k)
t − µ⊗k

t ∥TV = O(
√
k/n). (21)

▶ In [Jabin-Wang 18] they showed this convergence rate for the
vorticity formulation of 2D Navier-Stokes equation on the
torus, with sufficiently smooth initial condition.

▶ If b is Lipschitz continuous or bounded measurable, then
[Lacker, 2021] showed that we indeed have a O(k/n) rate for
k << n, which is sharp in several cases.
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Sharp rate for singular coefficients
▶ Question. Can we show this O(k/n) rate for singular

interacting kernels?

▶ Further, can the rate be uniform in time?
▶ By [Guillin,Le Bris,Monmarché 21], the O(

√
k/n)

convergence in the work of [Jabin-Wang18] on 2D N-S
equations can be uniform in time. By [Lacker, Le Flem22], the
O(k/n) rate can be uniform in time for Lipschitz coefficients
under convexity assumptions.

▶ An unsuccessful approach to get the sharp O(k/n) rate for
singular interactions.

▶ May use modulated free energy instead of relative entropy. In
the very recent work [De Courcel, Rosengweig, Serfaty. Arxiv:
2304.05315], they prove uniform-in-time mean-field
convergence for singular periodic Riesz flows (s<d on Td) in
the gradient case with a sharp rate in the modulated energy
pseudo distance.
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What makes the O(k/n) rate so special?

▶ Consider the conditional probability P
(k+1|k)
t.x , which is the law

of Xk+1
t given (X1

t , · · · , Xk
t ) = x.

▶ In all the existing proofs that give O(k/n) rate in total
variation or O(k2/n2) rate in relative entropy, need (a) either,
the interaction b is bounded or Lipschitz, (b) or, we have a
precise control of P (k+1|k)

t.x for any possible x.
▶ Control E[⟨b(Xt − ·), P (2|1)

t,x − µt⟩] for each t, x.
▶ Conditioning breaks the martingale structure of the process,

so we know nothing about P (k+1|k)
t.x unless there is no

interaction at all.
▶ Have to assume bounded or Lipschitz interactions.
▶ Could be relaxed if the flow has more structure (Riesz flow?)

and we use modulated free energy instead.
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Part 2 Stochastic PDEs via generalized coupling

Now I will discuss how some ideas used intensively in
McKean-Vlasov equations can be applied to stochastic PDEs.
▶ Various coupling methods have been used in the contexts of

McKean-Vlasov equations to deduce:

▶ Uniform in time propagation of chaos in the case of
(non)-convex potentials.

▶ Ergodic behaviors of McKean-Vlasov equations.
▶ Conditioned McKean-Vlasov equations, etc.

▶ We explore interesting applications of the coupling method to
solution theory of SPDEs.
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Restoring uniqueness by Gaussian noise
▶ It is well known that an ODE with non-Lipschitz coefficients

may not have a unique solution.

▶ We can restore uniqueness via adding Brownian noise:
consider the (finite dimensional) SDE: given b bounded
measurable, W an n-dimensional Brownian motion,

dXt = b(Xt)dt+ dWt. (22)

▶ Unique weak solution via Girsanov theorem.
▶ Unique strong solution via Zvonkin’s transform or other

methods.
▶ Girsanov transform is also applicable in infinite dimensions:

parabolic SPDEs, etc.
▶ Strong solutions can be proved when the solution is real

valued. ”On quasi-linear stochastic partial differential
equations”, Gyöngy and Pardoux,1993.
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Irregular Noise coefficient

▶ For multiplicative noise, what can the noise coefficient be?

▶ Consider
dXt = σ(Xt)dWt. (23)

▶ Assume σ continuous (but not Lipschitz) and non-degenerate:

0 < Λ1 < |σ(x)| < Λ2, x ∈ Rn.

▶ Weak uniqueness: Xt is a time changed Brownian motion.
▶ Strong uniqueness: imposing Sobolev regularity conditions on

σ and use PDE theory.
▶ None of them works in infinite dimensions.
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Notion of solutions to stochastic PDEs
▶ Random field solutions/ martingale measures approach: JB.

Walsh. Regard s and y on an equal footing.
W (A) =

∫
AW (dyds).

▶ Evolution equations on Hilbert spaces: Da Prato-Zabczyk.
Consider orthogonal basis (en(x))n∈N,

W (dxdt) =
∞∑
n=1

en(x)dB
(n)
t dx.

N(t, x) =
∞∑
n=1

∫ t

0

∫
Rd

S(t− s, x− y)g(s, y)en(y)dydB
(n)
s .

▶ Da Prato-Debussche technique, rough path theory, regularity
structure, paracontrolled calculus.

∂tΦ = ∆Φ+ CΦ− Φ3 + ξ

Only for additive noise or sufficiently regular noise coefficient.
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Known results for the stochastic heat equation
▶ Additive noise case ∂tu = ∆u+ f(u) + ∂2W

∂t∂x
.

▶ Hilbert space valued SPDEs: strong solution for Hölder
continuous f(u). Strong solution for a.e. initial value for
bounded measurable f . ”Strong uniqueness for SDEs in
Hilbert spaces with nonregular drift.”

▶ Random field SPDEs: strong solutions for distributional f(u).
”Well-posedness of stochastic heat equation with distributional
drift and skew stochastic heat equation.”

▶ Multiplicative, Hölder continuous noise coefficient: σ being
3
4 + ϵ-Hölder continuous in X(t, x), the random field case:

∂

∂t
X(t, x) =

1

2
∆X(t, x)dt+ σ(t, x,X(t, x))dW (t, x)

”Pathwise Uniqueness for Stochastic Heat Equations with
Hölder Continuous Coefficients: the White Noise Case”, 77
p”.

18/29



Known results for the stochastic heat equation
▶ Additive noise case ∂tu = ∆u+ f(u) + ∂2W

∂t∂x
.

▶ Hilbert space valued SPDEs: strong solution for Hölder
continuous f(u). Strong solution for a.e. initial value for
bounded measurable f . ”Strong uniqueness for SDEs in
Hilbert spaces with nonregular drift.”

▶ Random field SPDEs: strong solutions for distributional f(u).
”Well-posedness of stochastic heat equation with distributional
drift and skew stochastic heat equation.”

▶ Multiplicative, Hölder continuous noise coefficient: σ being
3
4 + ϵ-Hölder continuous in X(t, x), the random field case:

∂

∂t
X(t, x) =

1

2
∆X(t, x)dt+ σ(t, x,X(t, x))dW (t, x)

”Pathwise Uniqueness for Stochastic Heat Equations with
Hölder Continuous Coefficients: the White Noise Case”, 77
p”.

18/29



Known results for the stochastic heat equation
▶ Additive noise case ∂tu = ∆u+ f(u) + ∂2W

∂t∂x
.

▶ Hilbert space valued SPDEs: strong solution for Hölder
continuous f(u). Strong solution for a.e. initial value for
bounded measurable f . ”Strong uniqueness for SDEs in
Hilbert spaces with nonregular drift.”

▶ Random field SPDEs: strong solutions for distributional f(u).
”Well-posedness of stochastic heat equation with distributional
drift and skew stochastic heat equation.”

▶ Multiplicative, Hölder continuous noise coefficient: σ being
3
4 + ϵ-Hölder continuous in X(t, x), the random field case:

∂

∂t
X(t, x) =

1

2
∆X(t, x)dt+ σ(t, x,X(t, x))dW (t, x)

”Pathwise Uniqueness for Stochastic Heat Equations with
Hölder Continuous Coefficients: the White Noise Case”, 77
p”.

18/29



Assumptions
▶ A sufficiently general and easy to implement construction of

SPDEs on Hilbert space, with non-Lipschitz noise coefficient.

▶ Some attempts to this question in the 2000s. Mostly too
restrictive that require trace class perturbations of identity
operator, or require close to diagonal coefficients.

▶ Our assumptions: for W the cylindrical noise on H,

dXt = AXtdt+B(Xt)dt+ σ(Xt)dWt, (24)

▶ Eigenvalues αk of A scale as αk ∼ k
1

1−η0 [η0 = 1
2 for 1-d

Laplacians]
▶ σ has a bounded right inverse and β > 1− η0

2 -Hölder
continuous (34 + ϵ for 1-d Laplacian)

▶ B has linear growth.
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Well-Posedness
Theorem (Well-posedness of Stochastic Heat equation)
Under the assumptions in the previous slide, there exists a unique
(probabilistic weak) mild solution to

dXt = AXtdt+B(Xt)dt+ σ(Xt)dWt, X0 ∈ H. (25)

Given 1
2 + ϵ-Hölder F : H → H, unique weak-mild solution to

dXt = AXtdt+ (−A)1/2F (Xt)dt+B(Xt)dt+ σ(Xt)dWt, (26)

▶ Examples: Burgers type equations, ξ ∈ (0, 2π)

du(t, ξ) =
∂2

∂ξ2
u(t, ξ)dt+

∂

∂ξ
h(u(t, ξ))dt+ σ(u(t, ξ))dWt(ξ).

▶ Cahn-Hilliard equations in dimensions 1,2,3:
du(t, ξ) = −∆2

ξu(t, ξ)dt+∆ξh(u(t, ξ))dt+ σ(u(t, ξ))dWt(ξ)
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Long-time behaviour

Theorem (Exponential ergodicity)
Assume the drift B : H → H is Hölder continuous, and the
Lyapunov condition hold: for some V : H → R+ and some
λ ∈ (0, 1) infinity at infinity,

E[V (Xt)] ≤ λV (X0) +M (27)

for some given t > 0 and M > 0. Then there exists a unique
invariant measure, and the solution converges to the invariant
measure exponentially fast with respect to (some specific)
Wasserstein distance on P(H).
▶ No applicable Itô formula for cylindrical noise

▶ Lyapunov assumption satisfied when B, F , σ are bounded,
and A is a negative operator.
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Methods
▶ A generalized coupling approach, inspired by

▶ Hairer et al.”, Asymptotic coupling and a general form of
Harris’theorem with applications to stochastic delay
equations,” 2011; Kulik et al.,”Well-posedness, stability and
sensitivities for stochastic delay equations: a generalized
coupling approach,” 2020.

▶ In order to compare Xt to a process

dXn
t = AXn

t dt+Bn(Xn
t )dt+ σn(Xn

t )dWt,

consider auxiliary process with λ > 0 and stopping time τ

dX̃n
t = AX̃n

t dt+Bn(X̃n
t )dt+ λ1t≤τdt+ σn(X̃n

t )dWt,

▶ Probabilistic estimate: compare Xn|[0,T ] and X̃n|[0,T ] via
Girsanov transform and Pinsker’s inequality.

▶ Use pathwise estimate to compare X|[0,T ] with X̃n|[0,T ].
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t )dWt,

consider auxiliary process with λ > 0 and stopping time τ

dX̃n
t = AX̃n

t dt+Bn(X̃n
t )dt+ λ1t≤τdt+ σn(X̃n

t )dWt,

▶ Probabilistic estimate: compare Xn|[0,T ] and X̃n|[0,T ] via
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Methods

Some technical challenges in infinite dimensions:
▶ Derive maximal inequality for the process, when λ is large:

dXt = ∆Xtdt− λXtdt+Φ(t)dWt, X0 = 0,

▶ When ∆ is the 1-D Laplacian, has the form

E sup
0≤s≤T

∥Xs∥ ≤ λ− 1
4
+ϵE sup

0≤s≤T
∥Φ(s)∥.

▶ No applicable Itô’s formula: always work with mild
formulations.

▶ Lipschitz approximation in infinite dimensions: compactness
of heat semigroup.
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A bit more details
Now I outline the procedure of proof:
▶ Compactness reduction: for any ϵ > 0 find a compact subset

K ⊂ H s.t. Xt stays in K for t ∈ [0, T ], w.p. at least 1− ϵ

▶ Find approximations Bn, σn uniformly converging to B, σ on
K, with supK ∥Bn −B∥, ∥σn − σ∥ ≤ cn.

▶ choose λ = cγ−1
n for some γ > 0, and choose the stopping

time τ ∈ [0, T ] the first time that |Xt − X̃n
t | ≥ cn.

▶ Combine pathwise estimates between Xt and X̃n
t , and

probabilistic estimates between Xn
t and X̃n

t . This gives a
measurement of how close Xt is to Xn

t .
▶ Use also the estimate ∥S(t)A1/2∥op ≤ C 1√

t
in the presence of

the (−A)1/2 term in the drift.
▶ Proof of ergodic behavior follows similar lines but need an

extra argument constructing the Wasserstein distance on H.
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Stochastic wave equation: well-posedness
Our method works not only for the parabolic systems, but also for
hyperbolic systems.
Consider the (abstract) damped stochastic wave equation

µ
∂2uµ(t)

∂t2
= Auµ(t)−

∂uµ(t)

∂t
+B(t, uµ(t))+G(t, uµ(t))dWt, (28)

and the stochastic wave equation without damping term

µ
∂2uµ(t)

∂t2
= Auµ(t) +B(t, uµ(t)) +G(t, uµ(t))dWt, (29)

Theorem (Well-posedness of stochastic wave equation)
Under the same assumption on A, B and G as in the case of the
stochastic heat equation, there exists a unique weak-mild solution
to (28) and (29).
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Stochastic wave equation: small mass limit

Theorem
Assume moreover that B is Hölder continuous in uµ. Then as µ
tends to 0, the solution to the damped stochastic wave equation

µ
∂2uµ(t)

∂t2
= Auµ(t)−

∂uµ(t)

∂t
+B(t, uµ(t)) +G(t, uµ(t))dWt

converges in distribution on path space to the solution of the
stochastic heat equation

∂u(t)

∂t
= Au(t) +B(t, u(t)) +G(t, u(t))dWt.

”On the Smoluchowski-Kramers approximation for a system with
an infinite number of degrees of freedom”, Freidlin and Cerrai,
2006.
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Further discussions
Some remaining questions to be addressed:
▶ We only get weak well-posedness, not strong one. (Strong

uniqueness is usually much harder and is now mostly proved
for R-valued, random field solutions of SPDEs, not
multi-dimensional solutions when coefficients are irregular.)

▶ Is the 3
4 + ϵ-threshold sharp? Yes when the noise coefficient

can vanish somewhere [Mueller,Mytnik,Perkins 2014],
unknown in general.

▶ In the presence of (−A)1/2F term, we require F to be
1
2 + ϵ-Hölder. Can we allow for ϵ-Hölder? [By Priola 2021, we
can have ϵ-Hölder continuity in the case of additive noise.]

▶ Need a better understanding of infinite dimensional
Kolmogorov equation beyond the well studied case of additive
noise.
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A support theorem for random field solutions
We discussed the general setting of Hilbert space valued solutions,
but some better estimates hold for random field solutions.
▶ Consider the parabolic stochastic PDE

∂tu(t, x) = ∂2
xu(t, x) + g(t, x, u) + σ(t, x, u)dW (t, x)

where x ∈ [0, 1], W is the space-time white noise on [0, 1] and
g is uniformly bounded.

▶ The diffusion coefficient σ is assumed to be uniformly
non-degenerate but only α- Hölder continuous in u for some
α > 0 (indeed, a uniformly continuous assumption is enough.)

▶ Has a martingale solution, but lacking proof of uniqueness.
▶ Then for any suitably regular space-time function h,

C0 exp(−C1T

ϵ10
) ≤ P ( sup

0≤t≤T,x∈[0,1]
|u(t, x)− h(t, x)| ≤ ϵ).

▶ We use in an essential way estimates in [Athreya et al.,2021].
▶ Any clue of weak uniqueness from this estimate?
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Thanks
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