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Simulation of particle systems
Consider a N particle system

dX i
t =

1
N − 1

∑
j 6=i

F (X i
t − X j

t )dt +
√

2σdB i
t , (IPS)

which is linked to {
dX̄t = F ∗ ρ̄t (X̄t )dt +

√
2σdBt ,

ρ̄t = Law(X̄t ).
(NL)

=⇒ (IPS) can be simulated.{
X i,δ

k+1 = X i,δ
k + δ

N−1

∑
j 6=i F (X i,δ

k − X j,δ
k ) +

√
2σδGi

k ,

Gi
k i.i.d ∼ N (0, 1), t ∈ N.

(D-IPS)

Problem : O(N2) complexity per time step.

Solution : Random Batch Method

Références :

Shi Jin, Lei Li, and Jian-Guo Liu. Random batch methods (RBM) for interacting particles

ystems. J. Comput. Phys. (2020).



An observation
on Random

Batch Method

Pierre Le Bris

I. Motivation

II. Understanding
the problem on a
toy model
II.1 The Curie-Weiss
model

II.2 ...with the
Random Batch
Method

III. Double well
potential

3/24

Simulation of particle systems
Consider a N particle system

dX i
t =

1
N − 1

∑
j 6=i

F (X i
t − X j

t )dt +
√

2σdB i
t , (IPS)

which is linked to {
dX̄t = F ∗ ρ̄t (X̄t )dt +

√
2σdBt ,

ρ̄t = Law(X̄t ).
(NL)

=⇒ (IPS) can be simulated.

{
X i,δ

k+1 = X i,δ
k + δ

N−1

∑
j 6=i F (X i,δ

k − X j,δ
k ) +

√
2σδGi

k ,

Gi
k i.i.d ∼ N (0, 1), t ∈ N.

(D-IPS)

Problem : O(N2) complexity per time step.

Solution : Random Batch Method

Références :

Shi Jin, Lei Li, and Jian-Guo Liu. Random batch methods (RBM) for interacting particles

ystems. J. Comput. Phys. (2020).



An observation
on Random

Batch Method

Pierre Le Bris

I. Motivation

II. Understanding
the problem on a
toy model
II.1 The Curie-Weiss
model

II.2 ...with the
Random Batch
Method

III. Double well
potential

3/24

Simulation of particle systems
Consider a N particle system

dX i
t =

1
N − 1

∑
j 6=i

F (X i
t − X j

t )dt +
√

2σdB i
t , (IPS)

which is linked to {
dX̄t = F ∗ ρ̄t (X̄t )dt +

√
2σdBt ,

ρ̄t = Law(X̄t ).
(NL)

=⇒ (IPS) can be simulated.{
X i,δ

k+1 = X i,δ
k + δ

N−1

∑
j 6=i F (X i,δ

k − X j,δ
k ) +

√
2σδGi

k ,

Gi
k i.i.d ∼ N (0, 1), t ∈ N.

(D-IPS)

Problem : O(N2) complexity per time step.

Solution : Random Batch Method

Références :

Shi Jin, Lei Li, and Jian-Guo Liu. Random batch methods (RBM) for interacting particles

ystems. J. Comput. Phys. (2020).



An observation
on Random

Batch Method

Pierre Le Bris

I. Motivation

II. Understanding
the problem on a
toy model
II.1 The Curie-Weiss
model

II.2 ...with the
Random Batch
Method

III. Double well
potential

3/24

Simulation of particle systems
Consider a N particle system

dX i
t =

1
N − 1

∑
j 6=i

F (X i
t − X j

t )dt +
√

2σdB i
t , (IPS)

which is linked to {
dX̄t = F ∗ ρ̄t (X̄t )dt +

√
2σdBt ,

ρ̄t = Law(X̄t ).
(NL)

=⇒ (IPS) can be simulated.{
X i,δ

k+1 = X i,δ
k + δ

N−1

∑
j 6=i F (X i,δ

k − X j,δ
k ) +

√
2σδGi

k ,

Gi
k i.i.d ∼ N (0, 1), t ∈ N.

(D-IPS)

Problem : O(N2) complexity per time step.

Solution : Random Batch Method

Références :

Shi Jin, Lei Li, and Jian-Guo Liu. Random batch methods (RBM) for interacting particles

ystems. J. Comput. Phys. (2020).



An observation
on Random

Batch Method

Pierre Le Bris

I. Motivation

II. Understanding
the problem on a
toy model
II.1 The Curie-Weiss
model

II.2 ...with the
Random Batch
Method

III. Double well
potential

3/24

Simulation of particle systems
Consider a N particle system

dX i
t =

1
N − 1

∑
j 6=i

F (X i
t − X j

t )dt +
√

2σdB i
t , (IPS)

which is linked to {
dX̄t = F ∗ ρ̄t (X̄t )dt +

√
2σdBt ,

ρ̄t = Law(X̄t ).
(NL)

=⇒ (IPS) can be simulated.{
X i,δ

k+1 = X i,δ
k + δ

N−1

∑
j 6=i F (X i,δ

k − X j,δ
k ) +

√
2σδGi

k ,

Gi
k i.i.d ∼ N (0, 1), t ∈ N.

(D-IPS)

Problem : O(N2) complexity per time step.

Solution : Random Batch Method

Références :

Shi Jin, Lei Li, and Jian-Guo Liu. Random batch methods (RBM) for interacting particles

ystems. J. Comput. Phys. (2020).



An observation
on Random

Batch Method

Pierre Le Bris

I. Motivation

II. Understanding
the problem on a
toy model
II.1 The Curie-Weiss
model

II.2 ...with the
Random Batch
Method

III. Double well
potential

4/24

The Random Batch Method

Let p ∈ N \ {0, 1} (s.t N is a multiple of p).
At time step k :

• Consider Pk =
(
P1

k , ...,P
N/p
k

)
a partition of {1, ...,N} into batches

of size p and define

C i
k = {j ∈ {1, ...,N} : ∃l ∈ {1, ...,N/p}, i, j ∈ P l

k}.

Pk is chosen at random and uniformly among all such partitions.
• Compute the numerical step{

Y i,δ,p
k+1 = Y i,δ,p

k + δ
p−1

∑
j∈Ci

k\{i}
F (Y i,δ,p

k − Y j,δ,p
k ) +

√
2σδGi

k ,

Gi
k i.i.d ∼ N (0, 1), i ∈ {1, ...,N}.

(D-RB-IPS)

Pro : O(Np) time complexity per time step.
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The Random Batch Method

•X 1
0

•
X 2

0 •X 3
0

•
X 4

0

•X 5
0

• X 6
0
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Addition of randomness
{

Y i,δ,p
k+1 = Y i,δ,p

k + δ
p−1

∑
j∈Ci

k\{i} F (Y i,δ,p
k − Y j,δ,p

k ) +
√

2σδGi
k ,

Gi
k i.i.d ∼ N (0, 1), i ∈ {1, ...,N}.

Convergence as N →∞ with p fixed (Jin-Li ’22){
Ȳδ,pk+1 = Ȳδ,pk + δ

p−1
∑p−1

j=1 F (Ȳδ,pk − Y j ) +
√

2σδGk ,

Gk i.i.d ∼ N (0, 1), (Y j )j i.i.d ∼ Law(Ȳδ,pk ).
(D-RB-NL)

Writing

ξk =
1

p − 1

p−1∑
j=1

F
(

Ȳδ,pk − Y j
)

=⇒ E
(
ξt

∣∣∣Ȳδ,pk

)
= F ∗ ρ̄δ,pk (Ȳδ,pk ),

and Var
(
ξt

∣∣∣Ȳδ,pt

)
=

1
p − 1

(
F 2 ∗ ρ̄δ,pk (Ȳδ,pk )− (F ∗ ρ̄δ,pk (Ȳδ,pk ))2

)
.

Hence,

Ȳδ,pk = Ȳδ,p0 + δ

k−1∑
l=0

F ∗ ρ̄δ,pl (Ȳδ,pl )− δMk +
√

2σδ
k−1∑
l=0

Gl ,

where k 7→ Mk :=
∑k−1

l=0

(
ξl − F ∗ ρ̄δ,pl (Ȳδ,pl )

)
is a martingale.
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Ȳδ,pk+1 = Ȳδ,pk + δ

p−1
∑p−1
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∣∣∣Ȳδ,pk

)
= F ∗ ρ̄δ,pk (Ȳδ,pk ),
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Effective dynamics

By martingale CLT, (D-RB-IPS) is close to the effective dynamics: dX̄ e,δ,p
t = F ∗ ρ̄e,δ,p

t (X̄ e,δ,p
t )dt +

(
2σ + δ

p−1 Σ(X̄ e,δ,p
t , ρ̄e,δ,p

t )
)1/2

dBt ,

ρ̄e,δ,p
t = Law(X̄ e,δ,p

t ),

(Eff)
where we denote Σ(x , ρ) = F 2 ∗ ρ(x)− (F ∗ ρ(x))2.

Recall (NL): {
dX̄t = F ∗ ρ̄t (X̄t )dt +

√
2σdBt ,

ρ̄t = Law(X̄t ).

Recall (D-RB-IPS):{
Y i,δ,p

k+1 = Y i,δ,p
k + δ

p−1

∑
j∈Ci

k\{i}
F (Y i,δ,p

k − Y j,δ,p
k ) +

√
2σδGi

k ,

Gi
k i.i.d ∼ N (0, 1), i ∈ {1, ...,N}.
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Question

If (NL) admits a phase transition, what about (Eff) ? And does the critical
parameter σc decreases as we would expect ?

How does this added randomness affects the nonlinear limit, and more
precisely its phase transition ?
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II. Understanding the problem on a toy
model
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II.1 The Curie-Weiss model
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Markov chain

Let N spins σ = (σ1, ..., σN) ∈ ΩN = {−1, 1}N and consider

∀σ ∈ ΩN , HN(σ) = − 1
2N

∑
i,j

σiσj .

Consider σ(k) the Markov chain on ΩN such that at time step k :

• Choose i ∈ {1, ...,N} uniformly,
• Consider σ′ = (σ′1, ..., σ

′
N) such that ∀j 6= i, σ′j = σ(k)j and

σ′i = −σ(k)i .

• Accept σ(k + 1) = σ′ with probability e−β(HN (σ′)−HN (σ(k)))+ where β
is the inverse temperature.
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Mean magnetization

The system is entirely defined by its mean magnetization
mN(σ) := 1

N

∑N
i=1 σi as HN(σ) = −N

2 mN(σ)2.

mN(k) = mN(σ(k)) is a Markov chain on IN = {−1,−1 + 2
N , ..., 1−

2
N , 1}

given by the transition probabilities

r(m,m′) =


1−m

2 exp
(
−βN

2 (m2 −m′2)+

)
if m′ = m + 2

N

1+m
2 exp

(
−βN

2 (m2 −m′2)+

)
if m′ = m − 2

N

1− r
(
m,m + 2

N

)
− r

(
m,m − 2

N

)
if m′ = m

0 otherwise.
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Phase transition
The process t 7→ mN(bNtc) weakly converges to the solution m(t) of the
ODE

d
dt

m(t) =
(

e−2β(−m(t))+ − e−2β(m(t))+

)
−m

(
e−2β(−m(t))+ + e−2β(m(t))+

)
.

• For β > βc = 1, the limit ODE
has 3 equilibria, 0 is one of
them and is unstable.

• For β ≤ βc = 1, 0 is the unique
equilibrium and is stable.

Figure: β = 0.5, β = 1, β = 2

Proof : consider the generator of t 7→ mN(bNtc) and show its
convergence to the generator associated to the ODE.
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II.2 ...with the Random Batch Method



An observation
on Random

Batch Method

Pierre Le Bris

I. Motivation

II. Understanding
the problem on a
toy model
II.1 The Curie-Weiss
model

II.2 ...with the
Random Batch
Method

III. Double well
potential

15/24

Markov chain

Consider σp(k) the Markov chain on ΩN such that at time step k :

• Choose i ∈ {1, ...,N} uniformly,
• Choose p − 1 other spin, thus creating C a cluster of size p,
• Consider σ′ where σp(k)i is switched.

• Accept σ(k + 1) = σ′ with probability e−β(Hp,N (σ′,C)−Hp,N (σ(k),C))+

where

Hp,N(σ, C) = − 1
2p

∑
i,j∈C

σiσj .

Consider again the sequence mp,N(k) = 1
N

∑
i σ(k)i .
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Transition probabilities
Lemma
In a system of size N, the transition probabilities for the magnetization
with random batches of size p are given by

rp(m,m′) =



1−m
2

(N−1
p−1

)−1∑p−1
k=0

(( 1−m
2 )N−1

k

)(( 1+m
2 )N

p−1−k

)
e
−2β

(
2k+1−p

p

)
+

if m′ = m + 2
N

1+m
2

(N−1
p−1

)−1∑p−1
k=0

(( 1−m
2 )N
k

)(( 1+m
2 )N−1

p−1−k

)
e
−2β

(
p−1−2k

p

)
+

if m′ = m − 2
N

1− rp
(
m,m + 2

N

)
− rp

(
m,m − 2

N

)
if m′ = m

0 otherwise.

For instance

rp

(
m,m +

2
N

)
=

Proportion of -1︷ ︸︸ ︷
1− m

2
1(N−1

p−1

)︸ ︷︷ ︸
# of clusters

Classifying the clusters based on the number of -1︷ ︸︸ ︷
p−1∑
k=0

(( 1−m
2

)
N − 1

k

)( ( 1+m
2

)
N

p − 1− k

)
e
−2β

( 2k+1−p
p

)
+︸ ︷︷ ︸

Proba of changing
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Limit ODE

The process M(N,p)
t = mN,p(bNtc) weakly converges as N →∞ to the

solution of

d
dt

m(t) = fp(β,m(t)).

with fp(β,m) =
(

Sp,β
1 (m)− Sp,β

2 (m)
)
−m

(
Sp,β

1 (m) + Sp,β
2 (m)

)
where

Sp,β
1 (m) = E

(
e
−2β

(
2Xm,p+1−p

p

)
+

)
, Sp,β

2 (m) = E

(
e
−2β

(
p−1−2Xm,p

p

)
+

)

and Xm,p ∼ B
(

p − 1,
1−m

2

)
.

Recall the limit with no random batches

d
dt

m(t) =
(

e−2β(−m(t))+ − e−2β(m(t))+

)
−m

(
e−2β(−m(t))+ + e−2β(m(t))+

)
.
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2 (m) = E

(
e
−2β

(
p−1−2Xm,p

p

)
+

)

and Xm,p ∼ B
(

p − 1,
1−m

2

)
.

Recall the limit with no random batches

d
dt

m(t) =
(

e−2β(−m(t))+ − e−2β(m(t))+

)
−m

(
e−2β(−m(t))+ + e−2β(m(t))+

)
.
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Decreased critical temperature

Theorem
Let p ∈ N \ {0, 1} and β > 0.
• For all β > 0, 0 is an equilibrium state for the solution of the timit

ODE.
• For p ∈ {2, 3}, 0 is the unique equilibrium state, and it is stable.
• For p ≥ 4, there exists βc,p such that for all β > βc,p, the equilibrium

state 0 is unstable, and for all β ≤ βc,p it is stable. Furthermore, we
have the estimate

βc,p = 1 +

√
2

pπ
+ o

(
1√
p

)
.
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Decreased critical temperature

Figure: Numerical observation of the invariant distribution for the Curie-Weiss model
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III. Double well potential
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Double well potential

Consider in dimension one{
dX̄t = −U ′(X̄t )dt −W ′ ∗ ρ̄t (X̄t )dt +

√
2σdBt ,

ρ̄t = Law(X̄t ),
(DW-NL)

with the potentials

U(x) =
x4

4
− x2

2
, W (x) = LW

x2

2
with LW > 0.

Theorem (Tugaut ’14)
There exists σc > 0 such that
• For all σ ≥ σc , there exists a unique stationary distribution µσ,0 for

(DW-NL). Furthermore, µσ,0 is symmetric.
• For all σ < σc , there exist three stationary distributions for (DW-NL).

One is symmetric, also denoted µσ,0, and the other two, denoted
µσ,+ and µσ,−, satisfy ±

∫
xdµσ,±(dx) > 0.
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Double well potential - Effective

{
dX̄t = −U ′(X̄t )dt −W ′ ∗ ρ̄t (X̄t )dt +

(
2σ + δ

p−1 L2
W Var(ρ̄t )

)1/2
dBt ,

ρ̄t = Law(X̄t ),
(DW-Eff)

Theorem
For δ/p sufficiently small, denoting

σeff
c = σc

(
1− δLW

2(p − 1)

)
,

we have the following phase transition for the dynamics (DW-Eff)
• For all σ ≥ σeff

c , there exists a unique stationary distribution µδ,pσ,0 for
(Eff). Furthermore, µδ,pσ,0 is symmetric.

• For all σ ∈ [σ0, σ
eff
c [, there exists exactly three stationary

distributions for (Eff). One is symmetric, also denoted µδ,pσ,0, and the
other two, denoted µδ,pσ,+ and µδ,pσ,−, satisfy ±

∫
xdµδ,pσ,±(x) > 0.
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Idea of proof

• Show that a stationary distribution for (DW-NL) is a stationary
distribution for (DW-Eff), but for another diffusion coefficient.

• Study the variance around the critical parameter.
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Merci


	I. Motivation
	II. Understanding the problem on a toy model
	II.1 The Curie-Weiss model
	II.2 ...with the Random Batch Method

	III. Double well potential

