An observation concerning the effect of the Random Batch Method on phase transition

Pierre Le Bris
LJLL, Sorbonne Université - Paris

Summer School : Mean-field models, Rennes, 2023

Joint work with : Arnaud Guillin (LMBP, Clermont-Ferrand), Pierre Monmarché (LJLL, Paris)
An observation
on Random Batch Method
Pierre Le Bris
I. Motivation
II. Understanding the problem on a toy model
II. 1 The Curie-Weiss model
II. 2 ...with the Random Batch Method

I. Motivation

Simulation of particle systems

Consider a N particle system

$$
\begin{equation*}
d X_{t}^{i}=\frac{1}{N-1} \sum_{j \neq i} F\left(X_{t}^{i}-X_{t}^{j}\right) d t+\sqrt{2 \sigma} d B_{t}^{i}, \tag{IPS}
\end{equation*}
$$

which is linked to

$$
\left\{\begin{array}{c}
d \bar{X}_{t}=F * \bar{\rho}_{t}\left(\bar{X}_{t}\right) d t+\sqrt{2 \sigma} d B_{t}, \tag{NL}
\end{array}\right.
$$

Simulation of particle systems

Consider a N particle system

$$
\begin{equation*}
d X_{t}^{i}=\frac{1}{N-1} \sum_{j \neq i} F\left(X_{t}^{i}-X_{t}^{j}\right) d t+\sqrt{2 \sigma} d B_{t}^{i}, \tag{IPS}
\end{equation*}
$$

which is linked to

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=F * \overline{\bar{\rho}}_{t}\left(\bar{X}_{t}\right) d t+\sqrt{2 \sigma} d B_{t}, \tag{NL}
\end{array}\right.
$$

\Longrightarrow (IPS) can be simulated.

Simulation of particle systems

Consider a N particle system

$$
\begin{equation*}
d X_{t}^{i}=\frac{1}{N-1} \sum_{j \neq i} F\left(X_{t}^{i}-X_{t}^{j}\right) d t+\sqrt{2 \sigma} d B_{t}^{i}, \tag{IPS}
\end{equation*}
$$

which is linked to

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=F * \bar{\rho}_{t}\left(\bar{X}_{t}\right) d t+\sqrt{2 \sigma} d B_{t}, \tag{NL}\\
\bar{\rho}_{t}=\operatorname{Law}\left(\bar{X} \bar{X}_{t}\right) .
\end{array}\right.
$$

\Longrightarrow (IPS) can be simulated.

$$
\left\{\begin{array}{l}
X_{k}^{i, \delta}=X_{k}^{i, \delta}+\frac{\delta}{N-1} \sum_{j \neq 1} F\left(X_{k}^{i, \delta}-X_{k}^{j, \delta}\right)+\sqrt{2 \sigma \delta} G_{k}^{i}, \tag{D-IPS}\\
G_{k}^{+} \text {i.i.d } \sim \mathcal{N}(0,1), \quad t \in \mathbb{N} .
\end{array}\right.
$$

Simulation of particle systems

Consider a N particle system

$$
\begin{equation*}
d X_{t}^{i}=\frac{1}{N-1} \sum_{j \neq i} F\left(X_{t}^{i}-X_{t}^{j}\right) d t+\sqrt{2 \sigma} d B_{t}^{i}, \tag{IPS}
\end{equation*}
$$

which is linked to

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=F * \bar{\rho}_{t}\left(\bar{X}_{t}\right) d t+\sqrt{2 \sigma} d B_{t}, \tag{NL}\\
\bar{\rho}_{t}=\operatorname{Law}\left(\bar{X}_{t}\right) .
\end{array}\right.
$$

\Longrightarrow (IPS) can be simulated.

$$
\left\{\begin{array}{l}
X_{k+1}^{i, \delta}=X_{k}^{i, \delta}+\frac{\delta}{N-1} \sum_{j \neq i} F\left(X_{k}^{i, \delta}-X_{k}^{j, \delta}\right)+\sqrt{2 \sigma \delta} G_{k}^{i}, \tag{D-IPS}\\
G_{k}^{i} \text { i.i.d } \sim \mathcal{N}(0,1), \quad t \in \mathbb{N} .
\end{array}\right.
$$

Problem : $O\left(N^{2}\right)$ complexity per time step.

Simulation of particle systems

Consider a N particle system

$$
\begin{equation*}
d X_{t}^{i}=\frac{1}{N-1} \sum_{j \neq i} F\left(X_{t}^{i}-X_{t}^{j}\right) d t+\sqrt{2 \sigma} d B_{t}^{i}, \tag{IPS}
\end{equation*}
$$

which is linked to

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=F * \bar{\rho}_{t}\left(\bar{X}_{t}\right) d t+\sqrt{2 \sigma} d B_{t}, \tag{NL}\\
\bar{\rho}_{t}=\operatorname{Law}\left(\bar{X}_{t}\right) .
\end{array}\right.
$$

\Longrightarrow (IPS) can be simulated.

$$
\left\{\begin{array}{l}
X_{k}^{i, \delta}=X_{k}^{i, \delta}+\frac{\delta}{N-1} \sum_{j \neq i} F\left(X_{k}^{i, \delta}-X_{k}^{j, \delta}\right)+\sqrt{2 \sigma \delta} G_{k}^{i}, \tag{D-IPS}\\
G_{k}^{i} \text { i.i.d } \sim \mathcal{N}(0,1), \quad t \in \mathbb{N} .
\end{array}\right.
$$

Problem : $O\left(N^{2}\right)$ complexity per time step.

Solution : Random Batch Method

Références:

Shi Jin, Lei Li, and Jian-Guo Liu. Random batch methods (RBM) for interacting particles ystems. J. Comput. Phys. (2020).

An observation
II. Understanding the problem on a toy model
II. 1 The Curie-Weiss model
II. 2 ...with the Random Batch Method

The Random Batch Method

Let $p \in \mathbb{N} \backslash\{0,1\}$ (s.t N is a multiple of p). At time step k :

The Random Batch Method

Let $p \in \mathbb{N} \backslash\{0,1\}$ (s.t N is a multiple of p). At time step k :

- Consider $\mathcal{P}_{k}=\left(\mathcal{P}_{k}^{1}, \ldots, \mathcal{P}_{k}^{N / p}\right)$ a partition of $\{1, \ldots, N\}$ into batches of size p and define

$$
\mathcal{C}_{k}^{i}=\left\{j \in\{1, \ldots, N\}: \exists / \in\{1, \ldots, N / p\}, i, j \in \mathcal{P}_{k}^{\prime}\right\} .
$$

The Random Batch Method

Let $p \in \mathbb{N} \backslash\{0,1\}$ (s.t N is a multiple of p).
At time step k :

- Consider $\mathcal{P}_{k}=\left(\mathcal{P}_{k}^{1}, \ldots, \mathcal{P}_{k}^{N / p}\right)$ a partition of $\{1, \ldots, N\}$ into batches of size p and define

$$
\mathcal{C}_{k}^{i}=\left\{j \in\{1, \ldots, N\}: \exists / \in\{1, \ldots, N / p\}, i, j \in \mathcal{P}_{k}^{\prime}\right\} .
$$

\mathcal{P}_{k} is chosen at random and uniformly among all such partitions.

The Random Batch Method

Let $p \in \mathbb{N} \backslash\{0,1\}$ (s.t N is a multiple of p).
At time step k :

- Consider $\mathcal{P}_{k}=\left(\mathcal{P}_{k}^{1}, \ldots, \mathcal{P}_{k}^{N / p}\right)$ a partition of $\{1, \ldots, N\}$ into batches of size p and define

$$
\mathcal{C}_{k}^{i}=\left\{j \in\{1, \ldots, N\}: \exists I \in\{1, \ldots, N / p\}, i, j \in \mathcal{P}_{k}^{\prime}\right\} .
$$

\mathcal{P}_{k} is chosen at random and uniformly among all such partitions.

- Compute the numerical step

$$
\left\{\begin{array}{l}
Y_{k+1}^{i, \delta, p}=Y_{k}^{i, \delta, p}+\frac{\delta}{p-1} \sum_{j \in \mathcal{C}_{k}^{i} \backslash\{i\}} F\left(Y_{k}^{i, \delta, p}-Y_{k}^{j, \delta, p}\right)+\sqrt{2 \sigma \delta} G_{k}^{i} \\
G_{k}^{i} \text { i.i.d } \sim \mathcal{N}(0,1), \quad i \in\{1, \ldots, N\}
\end{array}\right.
$$

(D-RB-IPS)

The Random Batch Method

Let $p \in \mathbb{N} \backslash\{0,1\}$ (s.t N is a multiple of p).
At time step k :

- Consider $\mathcal{P}_{k}=\left(\mathcal{P}_{k}^{1}, \ldots, \mathcal{P}_{k}^{N / p}\right)$ a partition of $\{1, \ldots, N\}$ into batches of size p and define

$$
\mathcal{C}_{k}^{i}=\left\{j \in\{1, \ldots, N\}: \exists l \in\{1, \ldots, N / p\}, i, j \in \mathcal{P}_{k}^{\prime}\right\}
$$

\mathcal{P}_{k} is chosen at random and uniformly among all such partitions.

- Compute the numerical step

$$
\left\{\begin{array}{l}
Y_{k+1}^{i, \delta, p}=Y_{k}^{i, \delta, p}+\frac{\delta}{p-1} \sum_{j \in \mathcal{C}_{k}^{i} \backslash\{i\}} F\left(Y_{k}^{i, \delta, p}-Y_{k}^{j, \delta, p}\right)+\sqrt{2 \sigma \delta} G_{k}^{i} \\
G_{k}^{i} \text { i.i.d } \sim \mathcal{N}(0,1), \quad i \in\{1, \ldots, N\}
\end{array}\right.
$$

(D-RB-IPS)

Pro: $O(N p)$ time complexity per time step.

The Random Batch Method

I. Motivation

II. Understanding
the problem on a
toy model
II. 1 The Curie-Weiss
model
II. 2 ... with the Random Batch Method

An observation

The Random Batch Method

An observation on Random Batch Method

Pierre Le Bris

The Random Batch Method

An observation on Random Batch Method

Pierre Le Bris

The Random Batch Method

X_{1}^{6}

An observation

Addition of randomness

I. Motivation

II. Understanding the problem on a
toy model

$$
\left\{\begin{array}{l}
Y_{k+1}^{i, \delta, p}=Y_{k}^{i, \delta, p}+\frac{\delta}{p-1} \sum_{j \in \mathcal{C}_{k}^{i} \backslash\{i\}} F\left(Y_{k}^{i, \delta, p}-Y_{k}^{j, \delta, p}\right)+\sqrt{2 \sigma \delta} G_{k}^{i}, \\
G_{k}^{i} \text { i.i.d } \sim \mathcal{N}(0,1), \quad i \in\{1, \ldots, N\} .
\end{array}\right.
$$

Convergence as $N \rightarrow \infty$ with p fixed (Jin-Li '22)

$$
\left\{\begin{array}{l}
\bar{Y}_{k+1}^{\delta, p}=\bar{Y}_{k}^{\delta, p}+\frac{\delta}{p-1} \sum_{j=1}^{p-1} F\left(\bar{Y}_{k}^{\delta, p}-Y^{j}\right)+\sqrt{2 \sigma \delta} G_{k}, \tag{D-RB-NL}\\
G_{k} \text { i.i.d } \sim \mathcal{N}(0,1),\left(Y^{j}\right)_{j} \text { ji.i.d } \sim \operatorname{Law}\left(\bar{Y}_{k}^{\delta, p}\right) .
\end{array}\right.
$$

Addition of randomness

I. Motivation

$$
\left\{\begin{array}{l}
Y_{k+1}^{i, \delta, p}=Y_{k}^{i, \delta, p}+\frac{\delta}{p-1} \sum_{j \in \mathcal{C}_{k}^{i} \backslash\{i\}} F\left(Y_{k}^{i, \delta, p}-Y_{k}^{j, \delta, p}\right)+\sqrt{2 \sigma \delta} G_{k}^{i}, \\
G_{k}^{i} \text { i.i.d } \sim \mathcal{N}(0,1), \quad i \in\{1, \ldots, N\} .
\end{array}\right.
$$

Convergence as $N \rightarrow \infty$ with p fixed (Jin-Li '22)

$$
\left\{\begin{array}{l}
\bar{Y}_{k+1}^{\delta, p}=\bar{Y}_{k}^{\delta, p}+\frac{\delta}{p-1} \sum_{j=1}^{p-1} F\left(\bar{Y}_{k}^{\delta, p}-Y^{j}\right)+\sqrt{2 \sigma \delta} G_{k}, \tag{D-RB-NL}\\
G_{k} \text { i.i.d } \sim \mathcal{N}(0,1), \quad\left(Y^{j}\right)_{j} \text { ji.i.d } \sim \operatorname{Law}\left(\bar{Y}_{k}^{\delta, p}\right) .
\end{array}\right.
$$

Writing

$$
\begin{aligned}
& \xi_{k}=\frac{1}{p-1} \sum_{j=1}^{p-1} F\left(\bar{Y}_{k}^{\delta, p}-Y^{j}\right) \Longrightarrow \mathbb{E}\left(\xi_{t} \mid \bar{Y}_{k}^{\delta, p}\right)=F * \bar{\rho}_{k}^{\delta, p}\left(\bar{Y}_{k}^{\delta, p}\right), \\
& \text { and } \operatorname{Var}\left(\xi_{t} \mid \bar{Y}_{t}^{\delta, p}\right)=\frac{1}{p-1}\left(F^{2} * \bar{\rho}_{k}^{\delta, p}\left(\bar{Y}_{k}^{\delta, p}\right)-\left(F * \bar{\rho}_{k}^{\delta, p}\left(\bar{Y}_{k}^{\delta, p}\right)\right)^{2}\right) .
\end{aligned}
$$

Hence,

$$
\bar{Y}_{k}^{\delta, p}=\bar{Y}_{0}^{\delta, p}+\delta \sum_{l=0}^{k-1} F * \bar{\rho}_{l}^{\delta, p}\left(\bar{Y}_{l}^{\delta, p}\right)-\delta M_{k}+\sqrt{2 \sigma \delta} \sum_{l=0}^{k-1} G_{l}
$$

where $k \mapsto M_{k}:=\sum_{l=0}^{k-1}\left(\xi_{l}-F * \bar{\rho}_{l}^{\delta, p}\left(\bar{Y}_{l}^{\delta, p}\right)\right)$ is a martingale.

Effective dynamics

By martingale CLT, (D-RB-IPS) is close to the effective dynamics:

$$
\left\{\begin{array}{l}
d \bar{X}_{t}^{e, \delta, p}=F * \bar{\rho}_{t}^{e, \delta, p}\left(\bar{X}_{t}^{e, \delta, p}\right) d t+\left(2 \sigma+\frac{\delta}{p-1} \Sigma\left(\bar{X}_{t}^{e, \delta, p}, \bar{\rho}_{t}^{e, \delta, p}\right)\right)^{1 / 2} d B_{t} \tag{Eff}\\
\bar{\rho}_{t}^{e, \delta, p}=\operatorname{Law}\left(\bar{X}_{t}^{e, \delta, p}\right)
\end{array}\right.
$$

where we denote $\Sigma(x, \rho)=F^{2} * \rho(x)-(F * \rho(x))^{2}$.

Effective dynamics

By martingale CLT, (D-RB-IPS) is close to the effective dynamics:

$$
\left\{\begin{array}{l}
d \bar{X}_{t}^{e, \delta, p}=F * \bar{\rho}_{t}^{e, \delta, p}\left(\bar{X}_{t}^{e, \delta, p}\right) d t+\left(2 \sigma+\frac{\delta}{p-1} \Sigma\left(\bar{X}_{t}^{e, \delta, p}, \bar{\rho}_{t}^{e, \delta, p}\right)\right)^{1 / 2} d B_{t} \tag{Eff}\\
\bar{\rho}_{t}^{e, \delta, p}=\operatorname{Law}\left(\bar{X}_{t}^{e, \delta, p}\right)
\end{array}\right.
$$

where we denote $\Sigma(x, \rho)=F^{2} * \rho(x)-(F * \rho(x))^{2}$.
Recall (NL):

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=F * \bar{\rho}_{t}\left(\bar{X}_{t}\right) d t+\sqrt{2 \sigma} d B_{t} \\
\bar{\rho}_{t}=\operatorname{Law}\left(\bar{X}_{t}\right)
\end{array}\right.
$$

Recall (D-RB-IPS):

$$
\left\{\begin{array}{l}
Y_{k+1}^{i, \delta, p}=Y_{k}^{i, \delta, p}+\frac{\delta}{p-1} \sum_{j \in \mathcal{C}_{k}^{i} \backslash\{i\}} F\left(Y_{k}^{i, \delta, p}-Y_{k}^{j, \delta, p}\right)+\sqrt{2 \sigma \delta} G_{k}^{i}, \\
G_{k}^{i} \text { i.i.d } \sim \mathcal{N}(0,1), \quad i \in\{1, \ldots, N\} .
\end{array}\right.
$$

Question

If (NL) admits a phase transition, what about (Eff) ? And does the critical parameter σ_{c} decreases as we would expect ?

Question

If (NL) admits a phase transition, what about (Eff) ? And does the critical parameter σ_{c} decreases as we would expect ?

How does this added randomness affects the nonlinear limit, and more precisely its phase transition?

An observation on Random Batch Method
 I. Motivation
 II. Understanding the problem on a toy model
 II. 1 The Curie-Weiss model
 II. 2 ...with the Random Batch Method

 II. Understanding the problem on a toy

 II. Understanding the problem on a toy model

 model}An observation on Random Batch Method
Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model
II. 1 The Curie-Weiss model
II. 2 ...with the Random Batch Method

II. 1 The Curie-Weiss model

Markov chain

Let N spins $\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \Omega_{N}=\{-1,1\}^{N}$ and consider

$$
\forall \sigma \in \Omega_{N}, \quad H_{N}(\sigma)=-\frac{1}{2 N} \sum_{i, j} \sigma_{i} \sigma_{j} .
$$

Consider $\sigma(k)$ the Markov chain on Ω_{N} such that at time step k :

Markov chain

I. Motivation

Let N spins $\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \Omega_{N}=\{-1,1\}^{N}$ and consider

$$
\forall \sigma \in \Omega_{N}, \quad H_{N}(\sigma)=-\frac{1}{2 N} \sum_{i, j} \sigma_{i} \sigma_{j}
$$

Consider $\sigma(k)$ the Markov chain on Ω_{N} such that at time step k :

- Choose $i \in\{1, \ldots, N\}$ uniformly,

Markov chain

Let N spins $\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \Omega_{N}=\{-1,1\}^{N}$ and consider

$$
\forall \sigma \in \Omega_{N}, \quad H_{N}(\sigma)=-\frac{1}{2 N} \sum_{i, j} \sigma_{i} \sigma_{j} .
$$

Consider $\sigma(k)$ the Markov chain on Ω_{N} such that at time step k :

- Choose $i \in\{1, \ldots, N\}$ uniformly,
- Consider $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \ldots, \sigma_{N}^{\prime}\right)$ such that $\forall j \neq i, \sigma_{j}^{\prime}=\sigma(k)_{j}$ and $\sigma_{i}^{\prime}=-\sigma(k)_{i}$.

Markov chain

Let N spins $\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \Omega_{N}=\{-1,1\}^{N}$ and consider

$$
\forall \sigma \in \Omega_{N}, \quad H_{N}(\sigma)=-\frac{1}{2 N} \sum_{i, j} \sigma_{i} \sigma_{j}
$$

Consider $\sigma(k)$ the Markov chain on Ω_{N} such that at time step k :

- Choose $i \in\{1, \ldots, N\}$ uniformly,
- Consider $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \ldots, \sigma_{N}^{\prime}\right)$ such that $\forall j \neq i, \sigma_{j}^{\prime}=\sigma(k)_{j}$ and $\sigma_{i}^{\prime}=-\sigma(k)_{i}$.
- Accept $\sigma(k+1)=\sigma^{\prime}$ with probability $e^{-\beta\left(H_{N}\left(\sigma^{\prime}\right)-H_{N}(\sigma(k))\right)+}$ where β is the inverse temperature.

An observation

Mean magnetization

The system is entirely defined by its mean magnetization $m_{N}(\sigma):=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}$ as $H_{N}(\sigma)=-\frac{N}{2} m_{N}(\sigma)^{2}$.

Mean magnetization

The system is entirely defined by its mean magnetization $m_{N}(\sigma):=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}$ as $H_{N}(\sigma)=-\frac{N}{2} m_{N}(\sigma)^{2}$.
$m_{N}(k)=m_{N}(\sigma(k))$ is a Markov chain on $I_{N}=\left\{-1,-1+\frac{2}{N}, \ldots, 1-\frac{2}{N}, 1\right\}$ given by the transition probabilities

$$
r\left(m, m^{\prime}\right)= \begin{cases}\frac{1-m}{2} \exp \left(-\frac{\beta N}{2}\left(m^{2}-m^{\prime 2}\right)_{+}\right) & \text {if } m^{\prime}=m+\frac{2}{N} \\ \frac{1+m}{2} \exp \left(-\frac{\beta N}{2}\left(m^{2}-m^{\prime 2}\right)_{+}\right) & \text {if } m^{\prime}=m-\frac{2}{N} \\ 1-r\left(m, m+\frac{2}{N}\right)-r\left(m, m-\frac{2}{N}\right) & \text { if } m^{\prime}=m \\ 0 & \text { otherwise }\end{cases}
$$

Phase transition

The process $t \mapsto m_{N}(\lfloor N t\rfloor)$ weakly converges to the solution $m(t)$ of the ODE

$$
\frac{d}{d t} m(t)=\left(e^{-2 \beta(-m(t))_{+}}-e^{-2 \beta(m(t))_{+}}\right)-m\left(e^{-2 \beta(-m(t))_{+}}+e^{-2 \beta(m(t))_{+}}\right) .
$$

Phase transition

The process $t \mapsto m_{N}(\lfloor N t\rfloor)$ weakly converges to the solution $m(t)$ of the ODE

$$
\frac{d}{d t} m(t)=\left(e^{-2 \beta(-m(t))_{+}}-e^{-2 \beta(m(t))_{+}}\right)-m\left(e^{-2 \beta(-m(t))_{+}}+e^{-2 \beta(m(t))_{+}}\right) .
$$

- For $\beta>\beta_{c}=1$, the limit ODE has 3 equilibria, 0 is one of them and is unstable.
- For $\beta \leq \beta_{c}=1,0$ is the unique equilibrium and is stable.

Figure: $\beta=0.5, \beta=1, \beta=2$

Phase transition

The process $t \mapsto m_{N}(\lfloor N t\rfloor)$ weakly converges to the solution $m(t)$ of the ODE

$$
\frac{d}{d t} m(t)=\left(e^{-2 \beta(-m(t))_{+}}-e^{-2 \beta(m(t))_{+}}\right)-m\left(e^{-2 \beta(-m(t))_{+}}+e^{-2 \beta(m(t))_{+}}\right)
$$

- For $\beta>\beta_{c}=1$, the limit ODE has 3 equilibria, 0 is one of them and is unstable.
- For $\beta \leq \beta_{c}=1,0$ is the unique equilibrium and is stable.

Figure: $\beta=0.5, \beta=1, \beta=2$
Proof : consider the generator of $t \mapsto m_{N}(\lfloor N t\rfloor)$ and show its convergence to the generator associated to the ODE.

```
An observation on Random Batch Method
Pierre Le Bris
```


I. Motivation

```
II. Understanding the problem on a toy model
```

II. 1 The Curie-Weiss

``` model
II. 2 ... with the Random Batch Method
```


II. 2 ...with the Random Batch Method

An observation

Markov chain

Consider $\sigma_{p}(k)$ the Markov chain on Ω_{N} such that at time step k :

An observation

Markov chain

Consider $\sigma_{p}(k)$ the Markov chain on Ω_{N} such that at time step k :

- Choose $i \in\{1, \ldots, N\}$ uniformly,

Markov chain

Consider $\sigma_{p}(k)$ the Markov chain on Ω_{N} such that at time step k :

- Choose $i \in\{1, \ldots, N\}$ uniformly,
- Choose $p-1$ other spin, thus creating \mathcal{C} a cluster of size p,
- Consider σ^{\prime} where $\sigma_{P}(k)_{i}$ is switched.

Markov chain

Consider $\sigma_{p}(k)$ the Markov chain on Ω_{N} such that at time step k :

- Choose $i \in\{1, \ldots, N\}$ uniformly,
- Choose $p-1$ other spin, thus creating \mathcal{C} a cluster of size p,
- Consider σ^{\prime} where $\sigma_{p}(k)_{i}$ is switched.
- Accept $\sigma(k+1)=\sigma^{\prime}$ with probability $\mathrm{e}^{-\beta\left(H_{p, \mathcal{N}}\left(\sigma^{\prime}, \mathcal{C}\right)-H_{p, N}(\sigma(k), \mathcal{C})\right)+}$ where

$$
H_{p, N}(\sigma, \mathcal{C})=-\frac{1}{2 p} \sum_{i, j \in \mathcal{C}} \sigma_{i} \sigma_{j} .
$$

Markov chain

Consider $\sigma_{p}(k)$ the Markov chain on Ω_{N} such that at time step k :

- Choose $i \in\{1, \ldots, N\}$ uniformly,
- Choose $p-1$ other spin, thus creating \mathcal{C} a cluster of size p,
- Consider σ^{\prime} where $\sigma_{p}(k)_{i}$ is switched.
- Accept $\sigma(k+1)=\sigma^{\prime}$ with probability $e^{-\beta\left(H_{p, N}\left(\sigma^{\prime}, \mathcal{C}\right)-H_{p, N}(\sigma(k), \mathcal{C})\right)_{+}}$ where

$$
H_{p, N}(\sigma, \mathcal{C})=-\frac{1}{2 p} \sum_{i, j \in \mathcal{C}} \sigma_{i} \sigma_{j} .
$$

Consider again the sequence $m_{P, N}(k)=\frac{1}{N} \sum_{i} \sigma(k)_{i}$.

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$
\begin{aligned}
& \left(\frac{1-m}{2}\binom{N-1}{p-1}^{-1} \sum_{k=0}^{p-1}\binom{\left(\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)_{+}}\right. \\
& \text {if } m^{\prime}=m+\frac{2}{N}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } m^{\prime}=m-\frac{2}{N} \\
& 1-r_{p}\left(m, m+\frac{2}{N}\right)-r_{p}\left(m, m-\frac{2}{N}\right) \\
& \text { if } m^{\prime}=m \\
& \text { otherwise. }
\end{aligned}
$$

For instance

$$
r_{p}\left(m, m+\frac{2}{N}\right)=\frac{1-m}{2} \frac{1}{\binom{N-1}{p-1}} \sum_{k=0}^{p-1}\binom{\left(\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)_{+}}
$$

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$
r_{p}\left(m, m^{\prime}\right)=\left\{\begin{array}{c}
\frac{1-m}{2}\binom{N-1}{p-1}^{-1} \sum_{k=0}^{p-1}\binom{\left(\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)_{+}^{\prime}}=m+\frac{2}{N} \\
\text { if } m^{\prime} \\
\frac{1+m}{2}\binom{N-1}{p-1}^{-1} \sum_{\begin{array}{l}
p-1 \\
k=0
\end{array}\binom{\left(\frac{1-m}{2}\right) N}{k}\binom{\left(\frac{1+m}{2}\right) N-1}{p-1-k} e^{-2 \beta\left(\frac{p-1-2 k}{p}\right)_{+}}+}^{\text {if } m^{\prime}=m-\frac{2}{N}} \\
1-r_{p}\left(m, m+\frac{2}{N}\right)-r_{p}\left(m, m-\frac{2}{N}\right) \\
\text { if } m^{\prime}=m
\end{array}\right\} \begin{gathered}
\text { otherwise. }
\end{gathered}
$$

For instance

$$
r_{p}\left(m, m+\frac{2}{N}\right)=\overbrace{\frac{1-m}{2}}^{\text {Proportion of }-1} \frac{1}{\binom{N-1}{p-1}} \sum_{k=0}^{p-1}\binom{\left(\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)_{+}}
$$

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$
r_{p}\left(m, m^{\prime}\right)=\left\{\begin{array}{c}
\frac{1-m}{2}\binom{N-1}{p-1}^{-1} \sum_{k=0}^{p-1}\binom{\left(\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)_{+}^{\prime}}=m+\frac{2}{N} \\
\text { if } m^{\prime} \\
\frac{1+m}{2}\binom{N-1}{p-1}^{-1} \sum_{\begin{array}{l}
p-1 \\
k=0
\end{array}\binom{\left(\frac{1-m}{2}\right) N}{k}\binom{\left(\frac{1+m}{2}\right) N-1}{p-1-k} e^{-2 \beta\left(\frac{p-1-2 k}{p}\right)_{+}}+}^{\text {if } m^{\prime}=m-\frac{2}{N}} \\
1-r_{p}\left(m, m+\frac{2}{N}\right)-r_{p}\left(m, m-\frac{2}{N}\right) \\
\text { if } m^{\prime}=m
\end{array}\right\} \begin{gathered}
\text { otherwise. }
\end{gathered}
$$

For instance
$r_{p}\left(m, m+\frac{2}{N}\right)=\overbrace{\frac{1-m}{2}}^{\overbrace{\# \text { of clusters }}^{\binom{N-1}{p-1}}} \sum_{k=0}^{p-1}\binom{\left.\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)}+$

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$
r_{p}\left(m, m^{\prime}\right)=\left\{\begin{array}{c}
\frac{1-m}{2}\binom{N-1}{p-1}^{-1} \sum_{k=0}^{p-1}\binom{\left(\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)_{+}^{\prime}}=m+\frac{2}{N} \\
\text { if } m^{\prime} \\
\frac{1+m}{2}\binom{N-1}{p-1}^{-1} \sum_{\begin{array}{l}
p-1 \\
k=0
\end{array}\binom{\left(\frac{1-m}{2}\right) N}{k}\binom{\left(\frac{1+m}{2}\right) N-1}{p-1-k} e^{-2 \beta\left(\frac{p-1-2 k}{p}\right)_{+}}+}^{\text {if } m^{\prime}=m-\frac{2}{N}} \\
1-r_{p}\left(m, m+\frac{2}{N}\right)-r_{p}\left(m, m-\frac{2}{N}\right) \\
\text { if } m^{\prime}=m
\end{array}\right\} \begin{gathered}
\text { otherwise. }
\end{gathered}
$$

For instance
$r_{p}\left(m, m+\frac{2}{N}\right)=\overbrace{\frac{1-m}{2}}^{\underbrace{\left.\frac{1}{(N-1} \begin{array}{l}p-1\end{array}\right)}_{\# \text { of clusters }}} \overbrace{\sum_{k=0}^{\text {Proportion of }-1}\binom{\left.\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k}}^{\text {Classifying the clusters based on the number of }-1} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)_{+}}$

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$
\begin{aligned}
& \int \frac{1-m}{2}\binom{N-1}{p-1}^{-1} \sum_{k=0}^{p-1}\binom{\left(\frac{1-m}{2}\right) N-1}{k}\binom{\left(\frac{1+m}{2}\right) N}{p-1-k} e^{-2 \beta\left(\frac{2 k+1-p}{p}\right)_{+}} \\
& \text {if } m^{\prime}=m+\frac{2}{N}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } m^{\prime}=m-\frac{2}{N} \\
& \begin{array}{c}
1-r_{p}\left(m, m+\frac{2}{N}\right)-r_{p}\left(m, m-\frac{2}{N}\right) \\
\text { if } m^{\prime}=m
\end{array} \\
& 0 \text { otherwise. }
\end{aligned}
$$

For instance

Limit ODE

I. Motivation

The process $M_{t}^{(N, p)}=m_{N, p}(\lfloor N t\rfloor)$ weakly converges as $N \rightarrow \infty$ to the solution of

$$
\begin{gathered}
\frac{d}{d t} m(t)=f_{p}(\beta, m(t)) . \\
\text { with } f_{p}(\beta, m)=\left(S_{1}^{p, \beta}(m)-S_{2}^{p, \beta}(m)\right)-m\left(S_{1}^{p, \beta}(m)+S_{2}^{p, \beta}(m)\right) \text { where } \\
S_{1}^{p, \beta}(m)=\mathbb{E}\left(e^{-2 \beta\left(\frac{2 x_{m, p+1-p}^{p}}{p}\right)_{+}}\right), \quad S_{2}^{p, \beta}(m)=\mathbb{E}\left(e^{-2 \beta\left(\frac{p-1-2 x_{m, p}}{\rho}\right)_{+}}\right) \\
\text {and } \quad X_{m, p} \sim \mathcal{B}\left(p-1, \frac{1-m}{2}\right) .
\end{gathered}
$$

Limit ODE

. Motivation

The process $M_{t}^{(N, p)}=m_{N, p}(\lfloor N t\rfloor)$ weakly converges as $N \rightarrow \infty$ to the solution of

$$
\begin{gathered}
\frac{d}{d t} m(t)=f_{p}(\beta, m(t)) . \\
\text { with } f_{p}(\beta, m)=\left(S_{1}^{p, \beta}(m)-S_{2}^{p, \beta}(m)\right)-m\left(S_{1}^{p, \beta}(m)+S_{2}^{p, \beta}(m)\right) \text { where } \\
S_{1}^{p, \beta}(m)=\mathbb{E}\left(e^{-2 \beta\left(\frac{2 X_{m, p+1-p}^{p}}{\rho}\right)_{+}}\right), \quad S_{2}^{p, \beta}(m)=\mathbb{E}\left(e^{-2 \beta\left(\frac{p-1-2 x_{m, p}}{\rho}\right)_{+}}\right) \\
\text {and } \quad X_{m, p} \sim \mathcal{B}\left(p-1, \frac{1-m}{2}\right) .
\end{gathered}
$$

Recall the limit with no random batches

$$
\frac{d}{d t} m(t)=\left(e^{-2 \beta(-m(t))+}-e^{-2 \beta(m(t))+}\right)-m\left(e^{-2 \beta(-m(t))+}+e^{-2 \beta(m(t))+}\right) .
$$

Decreased critical temperature

Theorem
Let $p \in \mathbb{N} \backslash\{0,1\}$ and $\beta>0$.

- For all $\beta>0,0$ is an equilibrium state for the solution of the timit ODE.
- For $p \in\{2,3\}, 0$ is the unique equilibrium state, and it is stable.
- For $p \geq 4$, there exists $\beta_{c, p}$ such that for all $\beta>\beta_{c, p}$, the equilibrium state 0 is unstable, and for all $\beta \leq \beta_{c, p}$ it is stable. Furthermore, we have the estimate

$$
\beta_{c, p}=1+\sqrt{\frac{2}{p \pi}}+o\left(\frac{1}{\sqrt{p}}\right)
$$

An observation on Random Batch Method

Decreased critical temperature

Figure: Numerical observation of the invariant distribution for the Curie-Weiss model
\square

An observation on Random Batch Method
 Pierre Le Bris
 I. Motivation
 II. Understanding the problem on a toy model
 11. 1 The Curie-Weiss model
 II. 2 ...with the Random Batch Method
 III. Double well potential
 III. Double well potential

Double well potential

Consider in dimension one

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=-U^{\prime}\left(\bar{X}_{t}\right) d t-W^{\prime} * \bar{\rho}_{t}\left(\bar{X}_{t}\right) d t+\sqrt{2 \sigma} d B_{t}, \tag{DW-NL}\\
\bar{\rho}_{t}=\operatorname{Law}\left(\bar{X}_{t}\right),
\end{array}\right.
$$

with the potentials

$$
U(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}, \quad W(x)=L_{w} \frac{x^{2}}{2} \quad \text { with } L_{w}>0 .
$$

Theorem (Tugaut '14)
There exists $\sigma_{c}>0$ such that

- For all $\sigma \geq \sigma_{c}$, there exists a unique stationary distribution $\mu_{\sigma, 0}$ for (DW-NL). Furthermore, $\mu_{\sigma, 0}$ is symmetric.
- For all $\sigma<\sigma_{c}$, there exist three stationary distributions for (DW-NL). One is symmetric, also denoted $\mu_{\sigma, 0}$, and the other two, denoted $\mu_{\sigma,+}$ and $\mu_{\sigma,-}$, satisfy $\pm \int x d \mu_{\sigma, \pm}(d x)>0$.

Double well potential - Effective

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=-U^{\prime}\left(\bar{X}_{t}\right) d t-W^{\prime} * \bar{\rho}_{t}\left(\bar{X}_{t}\right) d t+\left(2 \sigma+\frac{\delta}{p-1} L_{W}^{2} \operatorname{Var}\left(\bar{\rho}_{t}\right)\right)^{1 / 2} d B_{t} \tag{DW-Eff}\\
\bar{\rho}_{t}=\operatorname{Law}\left(\bar{X}_{t}\right)
\end{array}\right.
$$

Theorem
For δ / p sufficiently small, denoting

$$
\sigma_{c}^{e f f}=\sigma_{c}\left(1-\frac{\delta L_{w}}{2(p-1)}\right)
$$

we have the following phase transition for the dynamics (DW-Eff)

- For all $\sigma \geq \sigma_{c}^{\text {eff }}$, there exists a unique stationary distribution $\mu_{\sigma, 0}^{\delta, p}$ for (Eff). Furthermore, $\mu_{\sigma, 0}^{\delta, p}$ is symmetric.
- For all $\sigma \in\left[\sigma_{0}, \sigma_{c}^{\text {eff }}[\right.$, there exists exactly three stationary distributions for (Eff). One is symmetric, also denoted $\mu_{\sigma, 0}^{\delta, p}$, and the other two, denoted $\mu_{\sigma,+}^{\delta, p}$ and $\mu_{\sigma,-}^{\delta, p}$, satisfy $\pm \int x d \mu_{\sigma, \pm}^{\delta, p}(x)>0$.

Idea of proof

1. Motivation

- Show that a stationary distribution for (DW-NL) is a stationary distribution for (DW-Eff), but for another diffusion coefficient.
- Study the variance around the critical parameter.

$$
\begin{array}{l|l}
\text { An observation } \\
\text { on Random } \\
\text { Batch Method } \\
\text { Pierre Le Bris } & \\
\text { I. Motivation } & \\
\text { II. Understanding } & \\
\text { the problem on a } \\
\text { toy model } & \\
\text { II.1 The Curie-Weiss } & \\
\text { model } \\
\text { II.2 with the } & \\
\text { Random Batch } & \text { Method } \\
\text { III. Double well } & \text { potential }
\end{array}
$$

