Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double we potential

An observation concerning the effect of the Random Batch Method on phase transition

Pierre Le Bris

LJLL, Sorbonne Université - Paris

Summer School : Mean-field models, Rennes, 2023

Joint work with : Arnaud Guillin (LMBP, Clermont-Ferrand), Pierre Monmarché (LJLL, Paris)

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model II.2 ...with the Random Batch Method

III. Double well potential

I. Motivation

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double wel potential

Simulation of particle systems

Consider a N particle system

$$dX_t^i = \frac{1}{N-1} \sum_{j \neq i} F(X_t^i - X_t^j) dt + \sqrt{2\sigma} dB_t^i,$$
(IPS)

which is linked to

$$\begin{cases} d\bar{X}_t = F * \bar{\rho}_t(\bar{X}_t) dt + \sqrt{2\sigma} dB_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$
(NL)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

model

II.2 ...with the Random Batch Method

III. Double we potential

Simulation of particle systems

Consider a N particle system

$$dX_t^i = \frac{1}{N-1} \sum_{j \neq i} F(X_t^i - X_t^j) dt + \sqrt{2\sigma} dB_t^i,$$
(IPS)

which is linked to

$$\begin{cases} d\bar{X}_t = F * \bar{\rho}_t(\bar{X}_t) dt + \sqrt{2\sigma} dB_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$
(NL)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \implies (IPS) can be simulated.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weis:

model II.2 ...with the Random Rateb

Random Batch Method

III. Double we potential

Simulation of particle systems

Consider a N particle system

$$dX_t^i = \frac{1}{N-1} \sum_{j \neq i} F(X_t^i - X_t^j) dt + \sqrt{2\sigma} dB_t^i,$$
(IPS)

which is linked to

$$\begin{cases} d\bar{X}_t = F * \bar{\rho}_t(\bar{X}_t) dt + \sqrt{2\sigma} dB_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$
(NL)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \implies (IPS) can be simulated.

$$\begin{cases} X_{k+1}^{i,\delta} = X_k^{i,\delta} + \frac{\delta}{N-1} \sum_{j \neq i} F(X_k^{i,\delta} - X_k^{j,\delta}) + \sqrt{2\sigma\delta} G_k^i, \\ G_k^i \text{ i.i.d } \sim \mathcal{N}(0,1), \quad t \in \mathbb{N}. \end{cases}$$
(D-IPS)

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double we potential

Simulation of particle systems

Consider a N particle system

$$dX_t^i = \frac{1}{N-1} \sum_{j \neq i} F(X_t^i - X_t^j) dt + \sqrt{2\sigma} dB_t^i,$$
(IPS)

which is linked to

$$\begin{cases} d\bar{X}_t = F * \bar{\rho}_t(\bar{X}_t) dt + \sqrt{2\sigma} dB_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$
(NL)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \implies (IPS) can be simulated.

$$\begin{cases} X_{k+1}^{i,\delta} = X_k^{i,\delta} + \frac{\delta}{N-1} \sum_{j \neq i} F(X_k^{i,\delta} - X_k^{j,\delta}) + \sqrt{2\sigma\delta} G_k^i, \\ G_k^i \text{ i.i.d } \sim \mathcal{N}(0,1), \quad t \in \mathbb{N}. \end{cases}$$
(D-IPS)

Problem : $O(N^2)$ complexity per time step.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double we potential

Simulation of particle systems

Consider a N particle system

$$dX_t^i = \frac{1}{N-1} \sum_{j \neq i} F(X_t^i - X_t^j) dt + \sqrt{2\sigma} dB_t^i,$$
(IPS)

which is linked to

$$\begin{cases} d\bar{X}_t = F * \bar{\rho}_t(\bar{X}_t) dt + \sqrt{2\sigma} dB_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$
(NL)

 \implies (IPS) can be simulated.

$$\begin{cases} X_{k+1}^{i,\delta} = X_k^{i,\delta} + \frac{\delta}{N-1} \sum_{j \neq i} F(X_k^{i,\delta} - X_k^{j,\delta}) + \sqrt{2\sigma\delta} G_k^i, \\ G_k^i \text{ i.i.d } \sim \mathcal{N}(0,1), \quad t \in \mathbb{N}. \end{cases}$$
(D-IPS)

Problem : $O(N^2)$ complexity per time step.

Solution : Random Batch Method

Références :

Shi Jin, Lei Li, and Jian-Guo Liu. Random batch methods (RBM) for interacting particles ystems. J. Comput. Phys. (2020).

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model II.2 ...with the

Random Batch Method

III. Double well potential

The Random Batch Method

Let $p \in \mathbb{N} \setminus \{0, 1\}$ (s.t *N* is a multiple of *p*). At time step *k* :

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double we potential

The Random Batch Method

Let $p \in \mathbb{N} \setminus \{0, 1\}$ (s.t *N* is a multiple of *p*). At time step *k* :

Consider \$\mathcal{P}_k = (\mathcal{P}_k^1, ..., \mathcal{P}_k^{N/p})\$ a partition of \$\{1, ..., N\}\$ into batches of size \$p\$ and define

 $C_k^i = \{j \in \{1, ..., N\} : \exists l \in \{1, ..., N/p\}, i, j \in \mathcal{P}_k^l\}.$

(ロ)、(型)、(E)、(E)、 E) のQ(C) 4/24

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double we potential

The Random Batch Method

Let $p \in \mathbb{N} \setminus \{0, 1\}$ (s.t *N* is a multiple of *p*). At time step *k* :

Consider \$\mathcal{P}_k = (\mathcal{P}_k^1, ..., \mathcal{P}_k^{N/p})\$ a partition of \$\{1, ..., N\}\$ into batches of size \$p\$ and define

 $C_k^i = \{j \in \{1, ..., N\} : \exists l \in \{1, ..., N/p\}, i, j \in \mathcal{P}_k^l\}.$

(ロ)、(型)、(E)、(E)、 E) のQ(C) 4/24

 \mathcal{P}_k is chosen at random and uniformly among all such partitions.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double we potential

The Random Batch Method

Let $p \in \mathbb{N} \setminus \{0, 1\}$ (s.t *N* is a multiple of *p*). At time step *k* :

Consider \$\mathcal{P}_k = (\mathcal{P}_k^1, ..., \mathcal{P}_k^{N/p})\$ a partition of \$\{1, ..., N\}\$ into batches of size \$p\$ and define

 $C_k^i = \{j \in \{1, ..., N\} : \exists l \in \{1, ..., N/p\}, i, j \in \mathcal{P}_k^l\}.$

 \mathcal{P}_k is chosen at random and uniformly among all such partitions.

Compute the numerical step

$$\begin{cases} Y_{k+1}^{i,\delta,p} = Y_k^{i,\delta,p} + \frac{\delta}{p-1} \sum_{j \in \mathcal{C}_k^i \setminus \{i\}} F(Y_k^{i,\delta,p} - Y_k^{j,\delta,p}) + \sqrt{2\sigma\delta} G_k^i, \\ G_k^i \text{ i.i.d } \sim \mathcal{N}(0,1), \quad i \in \{1,...,N\}. \end{cases}$$
(D-RB-IPS)

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C) 4/24

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double we potential

The Random Batch Method

Let $p \in \mathbb{N} \setminus \{0, 1\}$ (s.t *N* is a multiple of *p*). At time step *k* :

Consider \$\mathcal{P}_k = (\mathcal{P}_k^1, ..., \mathcal{P}_k^{N/p})\$ a partition of \$\{1, ..., N\}\$ into batches of size \$p\$ and define

 $C_k^i = \{j \in \{1, ..., N\} : \exists l \in \{1, ..., N/p\}, i, j \in \mathcal{P}_k^l\}.$

 \mathcal{P}_k is chosen at random and uniformly among all such partitions.

Compute the numerical step

$$\begin{cases} Y_{k+1}^{i,\delta,p} = Y_k^{i,\delta,p} + \frac{\delta}{p-1} \sum_{j \in \mathcal{C}_k^i \setminus \{i\}} F(Y_k^{i,\delta,p} - Y_k^{j,\delta,p}) + \sqrt{2\sigma\delta} G_k^i, \\ G_k^i \text{ i.i.d } \sim \mathcal{N}(0,1), \quad i \in \{1,...,N\}. \end{cases}$$
(D-RB-IPS)

Pro : O(Np) time complexity per time step.

Pierre Le Bris

I. Motivation

- II. Understanding the problem on a toy model
- model
- II.2 ...with the Random Batch Method
- III. Double well potential

The Random Batch Method

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 5/24

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

The Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model II.2 ...with the

Random Batch Method

III. Double well potential

The Random Batch Method

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 5/24

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model II.2 ...with the Bandom Batch

Method

potential

The Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model II.2 ...with the Bandom Batch

III. Double wel

Method

Addition of randomness

$$\left\{ \begin{array}{l} Y_{k+1}^{i,\delta,p} = Y_k^{i,\delta,p} + \frac{\delta}{p-1} \sum_{j \in C_k^i \setminus \{i\}} F(Y_k^{i,\delta,p} - Y_k^{j,\delta,p}) + \sqrt{2\sigma\delta} G_k^i, \\ G_k^i \text{ i.i.d } \sim \mathcal{N}(0,1), \quad i \in \{1,...,N\}. \end{array} \right.$$

Convergence as $N \rightarrow \infty$ with *p* fixed (Jin-Li '22)

$$\left\{ \begin{array}{l} \bar{Y}_{k+1}^{\delta,p} = \bar{Y}_{k}^{\delta,p} + \frac{\delta}{p-1} \sum_{j=1}^{p-1} F(\bar{Y}_{k}^{\delta,p} - Y^{j}) + \sqrt{2\sigma\delta}G_{k}, \\ G_{k} \text{ i.i.d } \sim \mathcal{N}(0,1), \quad (Y^{j})_{j} \text{ i.i.d } \sim \text{Law}(\bar{Y}_{k}^{\delta,p}). \end{array} \right.$$
(D-RB-NL)

Pierre Le Bris

I. Motivation

II. Understandin the problem on a toy model II.1 The Curie-Weis model II.2 ...with the Random Batch Method

III. Double wel potential

Addition of randomness

$$\left\{ \begin{array}{l} Y_{k+1}^{i,\delta,p} = Y_k^{i,\delta,p} + \frac{\delta}{p-1} \sum_{j \in \mathcal{C}_k^i \setminus \{i\}} F(Y_k^{i,\delta,p} - Y_k^{j,\delta,p}) + \sqrt{2\sigma\delta} G_k^i, \\ G_k^i \text{ i.i.d } \sim \mathcal{N}(0,1), \quad i \in \{1,...,N\}. \end{array} \right.$$

Convergence as $N \rightarrow \infty$ with *p* fixed (Jin-Li '22)

$$\left\{ \begin{array}{l} \bar{Y}_{k+1}^{\delta,p} = \bar{Y}_{k}^{\delta,p} + \frac{\delta}{p-1} \sum_{j=1}^{p-1} F(\bar{Y}_{k}^{\delta,p} - Y^{j}) + \sqrt{2\sigma\delta} G_{k}, \\ G_{k} \text{ i.i.d } \sim \mathcal{N}(0,1), \quad (Y^{j})_{j} \text{ i.i.d } \sim \text{Law}(\bar{Y}_{k}^{\delta,p}). \end{array} \right.$$
 (D-RB-NL)

Writing

$$\begin{split} \xi_{k} &= \frac{1}{p-1}\sum_{j=1}^{p-1}F\left(\bar{Y}_{k}^{\delta,p} - Y^{j}\right) \implies \mathbb{E}\left(\xi_{l} \left| \bar{Y}_{k}^{\delta,p} \right) = F * \bar{\rho}_{k}^{\delta,p}(\bar{Y}_{k}^{\delta,p}), \\ \text{and} \quad \text{Var}\left(\xi_{l} \left| \bar{Y}_{l}^{\delta,p} \right) = \frac{1}{p-1}\left(F^{2} * \bar{\rho}_{k}^{\delta,p}(\bar{Y}_{k}^{\delta,p}) - \left(F * \bar{\rho}_{k}^{\delta,p}(\bar{Y}_{k}^{\delta,p})\right)^{2}\right). \end{split}$$

Hence,

$$\bar{Y}_{k}^{\delta,\rho} = \bar{Y}_{0}^{\delta,\rho} + \delta \sum_{l=0}^{k-1} F * \bar{\rho}_{l}^{\delta,\rho} (\bar{Y}_{l}^{\delta,\rho}) - \delta M_{k} + \sqrt{2\sigma\delta} \sum_{l=0}^{k-1} G_{l},$$

where $k \mapsto M_k := \sum_{l=0}^{k-1} \left(\xi_l - F * \bar{\rho}_l^{\delta,\rho}(\bar{Y}_l^{\delta,\rho}) \right)$ is a martingale.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weis model II.2 ...with the

III. Double we

Effective dynamics

By martingale CLT, (D-RB-IPS) is close to the effective dynamics:

$$d\bar{X}_{t}^{e,\delta,p} = F * \bar{\rho}_{t}^{e,\delta,p} (\bar{X}_{t}^{e,\delta,p}) dt + \left(2\sigma + \frac{\delta}{p-1} \Sigma (\bar{X}_{t}^{e,\delta,p}, \bar{\rho}_{t}^{e,\delta,p})\right)^{1/2} dB_{t},$$

$$\bar{\rho}_{t}^{e,\delta,p} = \mathsf{Law}(\bar{X}_{t}^{e,\delta,p}),$$
(Eff)

where we denote $\Sigma(x, \rho) = F^2 * \rho(x) - (F * \rho(x))^2$.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weis: model II.2 ...with the Bandem Batth

III. Double wel

Effective dynamics

By martingale CLT, (D-RB-IPS) is close to the *effective dynamics*:

$$d\bar{X}_{t}^{e,\delta,p} = F * \bar{\rho}_{t}^{e,\delta,p} (\bar{X}_{t}^{e,\delta,p}) dt + \left(2\sigma + \frac{\delta}{p-1} \Sigma (\bar{X}_{t}^{e,\delta,p}, \bar{\rho}_{t}^{e,\delta,p})\right)^{1/2} dB_{t},$$

$$\bar{\rho}_{t}^{e,\delta,p} = \mathsf{Law}(\bar{X}_{t}^{e,\delta,p}),$$

(Eff)

where we denote $\Sigma(x, \rho) = F^2 * \rho(x) - (F * \rho(x))^2$.

Recall (NL):

$$\begin{cases} d\bar{X}_t = F * \bar{\rho}_t(\bar{X}_t) dt + \sqrt{2\sigma} dB_t, \\ \bar{\rho}_t = \mathsf{Law}(\bar{X}_t). \end{cases}$$

Recall (D-RB-IPS):

$$\begin{cases} Y_{k+1}^{i,\delta,p} = Y_k^{i,\delta,p} + \frac{\delta}{p-1} \sum_{j \in \mathcal{C}_k^i \setminus \{i\}} F(Y_k^{i,\delta,p} - Y_k^{j,\delta,p}) + \sqrt{2\sigma\delta} G_k^i, \\ G_k^i \text{ i.i.d } \sim \mathcal{N}(0,1), \quad i \in \{1,...,N\}. \end{cases}$$

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 • つ Q ○ 7/24</p>

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model II.2 ...with the

Random Batch Method

III. Double well potential

Question

If (NL) admits a phase transition, what about (Eff) ? And does the critical parameter σ_c decreases as we would expect ?

Pierre Le Bris

Question

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model II.2 ...with the Random Batch

III. Double wel potential

If (NL) admits a phase transition, what about (Eff) ? And does the critical parameter σ_c decreases as we would expect ?

How does this added randomness affects the nonlinear limit, and more precisely its phase transition ?

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

II. Understanding the problem on a toy model

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double we potential

II.1 The Curie-Weiss model

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E ⑦ Q ○ 10/24

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�(や 11/24

Let *N* spins
$$\sigma = (\sigma_1, ..., \sigma_N) \in \Omega_N = \{-1, 1\}^N$$
 and consider

$$\forall \sigma \in \Omega_N, \quad H_N(\sigma) = -\frac{1}{2N} \sum_{i,j} \sigma_i \sigma_j.$$

Consider $\sigma(k)$ the Markov chain on Ω_N such that at time step k:

An observation on Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�(や 11/24

Let *N* spins
$$\sigma = (\sigma_1, ..., \sigma_N) \in \Omega_N = \{-1, 1\}^N$$
 and consider
 $\forall \sigma \in \Omega_N, \quad H_N(\sigma) = -\frac{1}{1+1} \sum \sigma_i \sigma_i.$

$$\forall \sigma \in \Omega_N, \quad \mathbf{H}_N(\sigma) = -\frac{1}{2N} \sum_{i,j} \sigma_i \sigma_j$$

Consider $\sigma(k)$ the Markov chain on Ω_N such that at time step k:

• Choose $i \in \{1, ..., N\}$ uniformly,

An observation on Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @ 11/24

Let *N* spins
$$\sigma = (\sigma_1, ..., \sigma_N) \in \Omega_N = \{-1, 1\}^N$$
 and consider

$$\forall \sigma \in \Omega_N, \quad H_N(\sigma) = -\frac{1}{2N} \sum_{i,j} \sigma_i \sigma_j.$$

Consider $\sigma(k)$ the Markov chain on Ω_N such that at time step k :

- Choose *i* ∈ {1, ..., *N*} uniformly,
- Consider $\sigma' = (\sigma'_1, ..., \sigma'_N)$ such that $\forall j \neq i, \sigma'_j = \sigma(k)_j$ and $\sigma'_i = -\sigma(k)_i$.

An observation on Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

Let *N* spins
$$\sigma = (\sigma_1, ..., \sigma_N) \in \Omega_N = \{-1, 1\}^N$$
 and consider

$$\forall \sigma \in \Omega_N, \quad H_N(\sigma) = -\frac{1}{2N} \sum_{i,j} \sigma_i \sigma_j.$$

Consider $\sigma(k)$ the Markov chain on Ω_N such that at time step k :

- Choose *i* ∈ {1, ..., *N*} uniformly,
- Consider $\sigma' = (\sigma'_1, ..., \sigma'_N)$ such that $\forall j \neq i, \sigma'_j = \sigma(k)_j$ and $\sigma'_i = -\sigma(k)_i$.
- Accept σ(k + 1) = σ' with probability e^{-β(H_N(σ')-H_N(σ(k)))+} where β is the inverse temperature.

An observation on Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

Mean magnetization

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @ 12/24

The system is entirely defined by its mean magnetization $m_N(\sigma) := \frac{1}{N} \sum_{i=1}^N \sigma_i$ as $H_N(\sigma) = -\frac{N}{2} m_N(\sigma)^2$.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

The system is entirely defined by its mean magnetization $m_N(\sigma) := \frac{1}{N} \sum_{i=1}^N \sigma_i$ as $H_N(\sigma) = -\frac{N}{2} m_N(\sigma)^2$.

 $m_N(k) = m_N(\sigma(k))$ is a Markov chain on $I_N = \{-1, -1 + \frac{2}{N}, ..., 1 - \frac{2}{N}, 1\}$ given by the transition probabilities

Mean magnetization

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ 12/24

$$r(m,m') = \begin{cases} \frac{1-m}{2} \exp\left(-\frac{\beta N}{2}(m^2 - m'^2)_+\right) & \text{if } m' = m + \frac{2}{N} \\ \frac{1+m}{2} \exp\left(-\frac{\beta N}{2}(m^2 - m'^2)_+\right) & \text{if } m' = m - \frac{2}{N} \\ 1 - r\left(m, m + \frac{2}{N}\right) - r\left(m, m - \frac{2}{N}\right) & \text{if } m' = m \\ 0 & \text{otherwise.} \end{cases}$$

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

Phase transition

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E ⑦ Q ○ 13/24

The process $t \mapsto m_N(\lfloor Nt \rfloor)$ weakly converges to the solution m(t) of the ODE

$$\frac{d}{dt}m(t) = \left(e^{-2\beta(-m(t))_+} - e^{-2\beta(m(t))_+}\right) - m\left(e^{-2\beta(-m(t))_+} + e^{-2\beta(m(t))_+}\right).$$

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

Phase transition

The process $t \mapsto m_N(\lfloor Nt \rfloor)$ weakly converges to the solution m(t) of the ODE

$$\frac{d}{dt}m(t) = \left(e^{-2\beta(-m(t))_{+}} - e^{-2\beta(m(t))_{+}}\right) - m\left(e^{-2\beta(-m(t))_{+}} + e^{-2\beta(m(t))_{+}}\right).$$

- For β > β_c = 1, the limit ODE has 3 equilibria, 0 is one of them and is unstable.
- For $\beta \leq \beta_c = 1$, 0 is the unique equilibrium and is stable.

Figure: $\beta = 0.5, \beta = 1, \beta = 2$

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

Phase transition

The process $t \mapsto m_N(\lfloor Nt \rfloor)$ weakly converges to the solution m(t) of the ODE

$$\frac{d}{dt}m(t) = \left(e^{-2\beta(-m(t))_{+}} - e^{-2\beta(m(t))_{+}}\right) - m\left(e^{-2\beta(-m(t))_{+}} + e^{-2\beta(m(t))_{+}}\right).$$

- For β > β_c = 1, the limit ODE has 3 equilibria, 0 is one of them and is unstable.
- For $\beta \leq \beta_c = 1$, 0 is the unique equilibrium and is stable.

Figure: $\beta = 0.5, \beta = 1, \beta = 2$

Proof : consider the generator of $t \mapsto m_N(\lfloor Nt \rfloor)$ and show its convergence to the generator associated to the ODE.

Pierre Le Bris

Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double we potential

II.2 ...with the Random Batch Method

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E ⑦ Q ○ 14/24

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double wel potential

Markov chain

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E ⑦ Q ○ 15/24

Consider $\sigma_{\rho}(k)$ the Markov chain on Ω_N such that at time step k:

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double wel potential

Markov chain

▲□▶▲舂▶▲壹▶▲壹▶ 壹 のへで 15/24

Consider $\sigma_p(k)$ the Markov chain on Ω_N such that at time step k:

• Choose $i \in \{1, ..., N\}$ uniformly,

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double wel potential

Markov chain

Consider $\sigma_{\rho}(k)$ the Markov chain on Ω_N such that at time step k:

- Choose $i \in \{1, ..., N\}$ uniformly,
- Choose p − 1 other spin, thus creating C a cluster of size p,
- Consider σ' where $\sigma_{\rho}(k)_i$ is switched.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double wel potential

Markov chain

Consider $\sigma_{p}(k)$ the Markov chain on Ω_{N} such that at time step k:

- Choose $i \in \{1, ..., N\}$ uniformly,
- Choose p − 1 other spin, thus creating C a cluster of size p,
- Consider σ' where $\sigma_p(k)_i$ is switched.
- Accept σ(k + 1) = σ' with probability e^{-β(H_{p,N}(σ',C)-H_{p,N}(σ(k),C))+} where

$$H_{p,N}(\sigma, \mathcal{C}) = -\frac{1}{2p} \sum_{i,j \in \mathcal{C}} \sigma_i \sigma_j.$$

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double wel potential

Markov chain

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ 15/24

Consider $\sigma_{p}(k)$ the Markov chain on Ω_{N} such that at time step k:

- Choose $i \in \{1, ..., N\}$ uniformly,
- Choose p − 1 other spin, thus creating C a cluster of size p,
- Consider σ' where $\sigma_p(k)_i$ is switched.
- Accept σ(k + 1) = σ' with probability e^{-β(H_{p,N}(σ',C)-H_{p,N}(σ(k),C))+} where

$$H_{p,N}(\sigma, \mathcal{C}) = -\frac{1}{2p} \sum_{i,j \in \mathcal{C}} \sigma_i \sigma_j.$$

Consider again the sequence $m_{\rho,N}(k) = \frac{1}{N} \sum_{i} \sigma(k)_{i}$.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double wel potential

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$r_{\rho}(m,m') = \begin{cases} & \frac{1-m}{2} \binom{N-1}{p-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N-1}{k} \binom{\binom{1+m}{2}N}{p-1-k} e^{-2\beta \binom{\frac{2k+1-p}{p}}{p}} \\ & \text{if } m' = m + \frac{2}{N} \\ & \frac{1+m}{2} \binom{N-1}{p-1}^{-1} \sum_{k=0}^{p-1} \binom{\binom{1-m}{2}N}{k} \binom{\binom{1+m}{2}N-1}{p-1-k} e^{-2\beta \binom{p-1-2k}{p}} \\ & \text{if } m' = m - \frac{2}{N} \\ & 1 - r_{\rho} \left(m, m + \frac{2}{N}\right) - r_{\rho} \left(m, m - \frac{2}{N}\right) \\ & \text{if } m' = m \\ & 0 & \text{otherwise.} \end{cases}$$

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double well potential

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$r_{\rho}(m,m') = \begin{cases} & \frac{1-m}{2} \binom{N-1}{\rho-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N-1}{k} \binom{\binom{1+m}{2}-1}{\rho-1-k} e^{-2\beta \binom{2k+1-p}{\rho}+1} \\ & \text{if } m' = m + \frac{2}{N} \\ & \frac{1+m}{2} \binom{N-1}{\rho-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N}{k} \binom{\binom{1+m}{2}N-1}{\rho-1-k} e^{-2\beta \binom{\rho-1-2k}{\rho}+1} \\ & \text{if } m' = m - \frac{2}{N} \\ & 1 - r_{\rho} \left(m, m + \frac{2}{N}\right) - r_{\rho} \left(m, m - \frac{2}{N}\right) \\ & \text{if } m' = m \\ & 0 \qquad \text{otherwise.} \end{cases}$$

For instance

$$r_{p}\left(m,m+\frac{2}{N}\right) = \frac{1-m}{2} \frac{1}{\binom{N-1}{p-1}} \sum_{k=0}^{p-1} \left(\binom{\left(\frac{1-m}{2}\right)N-1}{k} \binom{\left(\frac{1+m}{2}\right)N}{p-1-k} e^{-2\beta \left(\frac{2k+1-p}{p}\right)_{+}} \right)$$

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double well potential

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$r_{\rho}(m,m') = \begin{cases} & \frac{1-m}{2} \binom{N-1}{\rho-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N-1}{k} \binom{\binom{1+m}{2}-1}{\rho-1-k} e^{-2\beta \binom{2k+1-p}{\rho}+1} \\ & \text{if } m' = m + \frac{2}{N} \\ & \frac{1+m}{2} \binom{N-1}{\rho-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N}{k} \binom{\binom{1+m}{2}N-1}{\rho-1-k} e^{-2\beta \binom{\rho-1-2k}{\rho}+1} \\ & \text{if } m' = m - \frac{2}{N} \\ & 1 - r_{\rho} \left(m, m + \frac{2}{N}\right) - r_{\rho} \left(m, m - \frac{2}{N}\right) \\ & \text{if } m' = m \\ & 0 \qquad \text{otherwise.} \end{cases}$$

For instance

$$r_{p}\left(m,m+\frac{2}{N}\right) = \underbrace{\frac{1-m}{2}}_{R} \frac{1}{\binom{N-1}{p-1}} \sum_{k=0}^{p-1} \left(\frac{\binom{1-m}{2}}{k}N-1\right) \binom{\binom{1+m}{2}N}{p-1-k} e^{-2\beta \left(\frac{2k+1-p}{p}\right)} + \frac{1}{2} \left(\frac{1-m}{2}\right) \left(\frac$$

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E ⑦ Q ○ 16/24

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double well potential

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$r_{\rho}(m,m') = \begin{cases} \frac{1-m}{2} \binom{N-1}{p-1}^{-1} \sum_{k=0}^{p-1} \binom{\binom{1-m}{2}N-1}{k} \binom{\binom{1+m}{2}-1}{p-1-k} e^{-2\beta \binom{2k+1-p}{p}} \\ if m' = m + \frac{2}{N} \\ \frac{1+m}{2} \binom{N-1}{p-1}^{-1} \sum_{k=0}^{p-1} \binom{\binom{1-m}{2}N}{k} \binom{\binom{1+m}{2}N-1}{p-1-k} e^{-2\beta \binom{p-1-2k}{p}} \\ if m' = m - \frac{2}{N} \\ 1 - r_{\rho} (m, m + \frac{2}{N}) - r_{\rho} (m, m - \frac{2}{N}) \\ if m' = m \\ 0 & otherwise. \end{cases}$$

For instance

$$r_{p}\left(m,m+\frac{2}{N}\right) = \underbrace{\overbrace{1-m}^{\text{Proportion of -1}}}_{\# \text{ of clusters}} \underbrace{\frac{1}{\binom{N-1}{p-1}}}_{\# \text{ of clusters}} \sum_{k=0}^{p-1} \left(\binom{\binom{1-m}{2}}{k}N-1\right) \binom{\binom{1+m}{2}N}{p-1-k} e^{-2\beta \left(\frac{2k+1-p}{p}\right)_{+}}$$

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double wel potential

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$r_{\rho}(m,m') = \begin{cases} & \frac{1-m}{2} \binom{N-1}{\rho-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N-1}{k} \binom{\binom{1+m}{2}-1}{\rho-1-k} e^{-2\beta \binom{2k+1-p}{\rho}+1} \\ & \text{if } m' = m + \frac{2}{N} \\ & \frac{1+m}{2} \binom{N-1}{\rho-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N}{k} \binom{\binom{1+m}{2}N-1}{\rho-1-k} e^{-2\beta \binom{\rho-1-2k}{\rho}+1} \\ & \text{if } m' = m - \frac{2}{N} \\ & 1 - r_{\rho} \left(m, m + \frac{2}{N}\right) - r_{\rho} \left(m, m - \frac{2}{N}\right) \\ & \text{if } m' = m \\ & 0 \qquad \text{otherwise.} \end{cases}$$

For instance

Pierre Le Bris

Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

II.2 ...with the Random Batch Method

III. Double we potential

Transition probabilities

Lemma

In a system of size N, the transition probabilities for the magnetization with random batches of size p are given by

$$r_{\rho}(m,m') = \begin{cases} & \frac{1-m}{2} \binom{N-1}{\rho-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N-1}{k} \binom{\binom{1+m}{2}-1}{\rho-1-k} e^{-2\beta \binom{2k+1-p}{\rho}} \\ & \text{if } m' = m + \frac{2}{N} \\ & \frac{1+m}{2} \binom{N-1}{\rho-1}^{-1} \sum_{k=0}^{\rho-1} \binom{\binom{1-m}{2}N}{k} \binom{\binom{1+m}{2}N-1}{\rho-1-k} e^{-2\beta \binom{p-1-2k}{\rho}} \\ & \text{if } m' = m - \frac{2}{N} \\ & 1 - r_{\rho} \left(m, m + \frac{2}{N}\right) - r_{\rho} \left(m, m - \frac{2}{N}\right) \\ & \text{if } m' = m \\ & 0 & \text{otherwise.} \end{cases}$$

For instance

Limit ODE

The process $M_t^{(N,p)} = m_{N,p}(\lfloor Nt \rfloor)$ weakly converges as $N \to \infty$ to the solution of

$$\frac{d}{dt}m(t)=f_{\rho}(\beta,m(t)).$$

with $f_{p}(\beta, m) = \left(S_{1}^{p,\beta}(m) - S_{2}^{p,\beta}(m)\right) - m\left(S_{1}^{p,\beta}(m) + S_{2}^{p,\beta}(m)\right)$ where

$$S_{1}^{\rho,\beta}(m) = \mathbb{E}\left(e^{-2\beta\left(\frac{2X_{m,p}+1-\rho}{\rho}\right)_{+}}\right), \quad S_{2}^{\rho,\beta}(m) = \mathbb{E}\left(e^{-2\beta\left(\frac{\rho-1-2X_{m,p}}{\rho}\right)_{+}}\right)$$

and $X_{m,p} \sim \mathcal{B}\left(p-1,\frac{1-m}{2}\right).$

Understanding e problem on a

II.1 The Curie-Weiss model

An observation on Random Batch Method

Pierre Le Bris

II.2 ...with the Random Batch Method

Limit ODE

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 17/24

The process $M_t^{(N,p)} = m_{N,p}(\lfloor Nt \rfloor)$ weakly converges as $N \to \infty$ to the solution of

$$\frac{d}{dt}m(t)=f_p(\beta,m(t)).$$

with $f_{p}(\beta, m) = \left(S_{1}^{p,\beta}(m) - S_{2}^{p,\beta}(m)\right) - m\left(S_{1}^{p,\beta}(m) + S_{2}^{p,\beta}(m)\right)$ where

$$S_{1}^{\rho,\beta}(m) = \mathbb{E}\left(e^{-2\beta\left(\frac{2X_{m,p}+1-\rho}{\rho}\right)_{+}}\right), \quad S_{2}^{\rho,\beta}(m) = \mathbb{E}\left(e^{-2\beta\left(\frac{\rho-1-2X_{m,p}}{\rho}\right)_{+}}\right)$$

and $X_{m,\rho} \sim \mathcal{B}\left(\rho-1,\frac{1-m}{2}\right).$

Recall the limit with no random batches

$$\frac{d}{dt}m(t) = \left(e^{-2\beta(-m(t))_{+}} - e^{-2\beta(m(t))_{+}}\right) - m\left(e^{-2\beta(-m(t))_{+}} + e^{-2\beta(m(t))_{+}}\right)$$

An observation on Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss

model II.2 ...with the

Random Batch Method

III. Double wel potential

Decreased critical temperature

Theorem

Let $p \in \mathbb{N} \setminus \{0, 1\}$ and $\beta > 0$.

- For all β > 0, 0 is an equilibrium state for the solution of the timit ODE.
- For $p \in \{2,3\}$, 0 is the unique equilibrium state, and it is stable.
- For p ≥ 4, there exists β_{c,p} such that for all β > β_{c,p}, the equilibrium state 0 is unstable, and for all β ≤ β_{c,p} it is stable. Furthermore, we have the estimate

$$eta_{c,
ho} = 1 + \sqrt{rac{2}{
ho\pi}} + o\left(rac{1}{\sqrt{
ho}}
ight).$$

```
Pierre Le Bris
```

I. Motivation

II. Understanding the problem on a toy model II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

Decreased critical temperature

Figure: Numerical observation of the invariant distribution for the Curie-Weiss model

Pierre Le Bris

Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

III. Double well potential

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

Double well potential

Consider in dimension one

$$\begin{cases} d\bar{X}_t = -U'(\bar{X}_t)dt - W' * \bar{\rho}_t(\bar{X}_t)dt + \sqrt{2\sigma}dB_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t), \end{cases}$$
(DW-NL)

with the potentials

۷

$$U(x) = \frac{x^4}{4} - \frac{x^2}{2}, \quad W(x) = L_W \frac{x^2}{2} \quad \text{with } L_W > 0.$$

Theorem (Tugaut '14)

There exists $\sigma_c > 0$ such that

- For all σ ≥ σ_c, there exists a unique stationary distribution μ_{σ,0} for (DW-NL). Furthermore, μ_{σ,0} is symmetric.
- For all $\sigma < \sigma_c$, there exist three stationary distributions for (DW-NL). One is symmetric, also denoted $\mu_{\sigma,0}$, and the other two, denoted $\mu_{\sigma,+}$ and $\mu_{\sigma,-}$, satisfy $\pm \int x d\mu_{\sigma,\pm}(dx) > 0$.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

Double well potential - Effective

$$\int d\bar{X}_t = -U'(\bar{X}_t)dt - W' * \bar{\rho}_t(\bar{X}_t)dt + \left(2\sigma + \frac{\delta}{\rho-1}L_W^2 \operatorname{Var}(\bar{\rho}_t)\right)^{1/2} dB_t,$$

$$\bar{\rho}_t = \operatorname{Law}(\bar{X}_t),$$
(DW-Eff)

Theorem

For δ/p sufficiently small, denoting

$$\sigma_c^{eff} = \sigma_c \left(1 - \frac{\delta L_W}{2(p-1)}\right),$$

we have the following phase transition for the dynamics (DW-Eff)

- For all σ ≥ σ_c^{eff}, there exists a unique stationary distribution μ_{σ,0}^{δ,p} for (Eff). Furthermore, μ_{σ,0}^{δ,p} is symmetric.
- For all σ ∈ [σ₀, σ_c^{eff}], there exists exactly three stationary distributions for (Eff). One is symmetric, also denoted μ_{σ,0}^{δ,p}, and the other two, denoted μ_{σ,+}^{δ,p} and μ_{σ,−}^{δ,p}, satisfy ± ∫ xdμ_{σ,±}^{δ,p}(x) > 0.

Idea of proof

An observation on Random Batch Method

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

- Show that a stationary distribution for (DW-NL) is a stationary distribution for (DW-Eff), but for another diffusion coefficient.
- Study the variance around the critical parameter.

Pierre Le Bris

I. Motivation

II. Understanding the problem on a toy model

II.1 The Curie-Weiss model

II.2 ...with the Random Batch Method

III. Double well potential

Merci

< □ ▶ < 酉 ▶ < Ξ ▶ < Ξ ▶ Ξ · の Q @ 24/24