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{ d)_(t = F * ﬁt()_(t)dt + v 20’dB(7 (NL)
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k Lid ~N(0,1), teN.

(IPS)

(NL)

(D-IPS)



An observation
on Random
Batch Method

Pierre Le Bris

I. Motivation

1.1 The Curie-Weiss
m;

Simulation of particle systems

Consider a N particle system
. 1 ; : .
Xl = 1 Z F(X{ — X!)dt + V2cdB;,
J#i
which is linked to

{ dX; = F + pi(X:)dt + v20dB:,
pr = Law(Xp).

= (IPS) can be simulated.

Xty = X+ w755 X FOGC = X°) + V206G,
k Lid ~N(0,1), teN.

Problem : O(N?) complexity per time step.

(IPS)

(NL)

(D-IPS)



An observation
on Random
Batch Method

Pierre Le Bris

I. Motivation

Simulation of particle systems
Consider a N particle system
ax; = ﬁ ; F(X{ — X))dt + V20dB;, (IPS)
which is linked to

{ d)_(t =F *_ﬁ;()_(t)dt —+ vV 20’0’5{, (NL)
ﬁt = LaW(X,)

= (IPS) can be simulated.

Xty = X+ 525 S0 FOGC = X0°) + V206G, (D-IPS)
k Lid ~N(0,1), teN.

Problem : O(N?) complexity per time step.

Solution : Random Batch Method

Références :
Shi Jin, Lei Li, and Jian-Guo Liu. Random batch methods (RBM) for interacting particles

ystems. J. Comput. Phys. (2020).



An observation
on Random
Batch Method

Pierre Le Bris

|. Motivation

1. Understanding
the problem on a
toy model

111 The Curie-Weiss
model

112 ...with the
Random Batch
Method

Ill. Double well
potential

The Random Batch Method

Let p e N\ {0,1} (s.t N is a multiple of p).
At time step k :
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of size p and define
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model
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Pk is chosen at random and uniformly among all such partitions.
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The Random Batch Method

Let p e N\ {0, 1} (s.t Nis a multiple of p).
At time step k :

® Consider Px = (P,l, ceey P,'(V/p) a partition of {1, ..., N} into batches
of size p and define

Co={e{1,..,Ny:3le{1,...,N/p},i,j € Pi}.
Pk is chosen at random and uniformly among all such partitions.
e Compute the numerical step
{ Vil = Ve 5 Sieey g FOWP = Y0°P) + V205G,

G, iid ~N(0,1), ie{1,.., N}
(D-RB-IPS)
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The Random Batch Method

Let p e N\ {0, 1} (s.t Nis a multiple of p).
At time step k :

® Consider Px = (P,l, ceey P,'(V/p) a partition of {1, ..., N} into batches
of size p and define
Ch={je{1,..N}:3le{1,...N/p},ijec P}
Pk is chosen at random and uniformly among all such partitions.

e Compute the numerical step

Yl = Y0P 4 55 e FOG™P = YiP) + V206G,
G, iid ~N(0,1), ie{1,.. N}
(D-RB-IPS)

Pro : O(Np) time complexity per time step.
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Ve = Ve e e gy FOW™P = Vi) + V036,
Gl iid ~N(0,1), i€ {1,..,N}.

1.1 The Curie-Weiss

model Convergence as N — oo with p fixed (Jin-Li '22)
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k+1

3 r v (D-RB-NL)
Gy ii.d ~ N(0,1), (Y)); iid ~ Law(Y,P).

e { Voh = VPP + 55 S0 F(VYP — Vi) + V205G,



An observation
on Random

Addition of randomness

Pierre Le Bris

|. Motivation
s, 8 ) 8, /5 s i
YIL+1p Yl P + p p—1 Z,ec’\{;} F(YI P YIJ< p) + 20'5(3;(7
Gl iid ~N(0,1), i€ {1,..,N}.
Il.1 The Curie-Weiss
model Convergence as N — oo with p fixed (Jin-Li '22)
Random Batc
Method 5, s, —1 v, j
VOR = VP4 5 SR - ) + V206G, (D-RBANL)
Gy iid ~/\/(0,1), (V) iid ~ Law(¥2P).
Writing
p—1
_ 5 P i _ 5,p(v/0,p
= 1/21:/:( —Y) = E(&|WP) = FaP(%P),
- 1 -
and Var (&]¥7) = = (F*+ 20°(V0%) = (F = 5P(V09))°) -
Hence,

k—1 k—1
VP =VoP+68>  Fap)P(V)P) — oM+ V205 Y G,
1=0 1=0

where k — My := 5! (5, Fx gl P (V) p)) is a martingale.
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dXPOP = Fx gpoP(XE Pyt + (20 + 2 T(XP™, -e“’)) dB;,
FOP = Law(X? ),

(Eff)
where we denote X(x, p) = F2 % p(x) — (F * p(x))?.
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Effective dynamics

By martingale CLT, (D-RB-IPS) is close to the effective dynamics:

dXPOP = Fx gpoP(XE Pyt + (20 + 2 T(XP™, -e“’)) dB,
PP = Law(XP"?),
(Eff)
where we denote X(x, p) = F2 % p(x) — (F * p(x))?.

Recall (NL):
{ dX: = F « py(X,)dt + V20dB,
pt = Law()_(,)
Recall (D-RB-IPS):

Vet = Vi 4 55 Cieein iy FOW = Vi) + V204G,
G, iid ~N(0,1), i€ {1,..,N}
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If (NL) admits a phase transition, what about (Eff) ? And does the critical
parameter o, decreases as we would expect ?
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If (NL) admits a phase transition, what about (Eff) ? And does the critical
parameter o, decreases as we would expect ?

How does this added randomness affects the nonlinear limit, and more
precisely its phase transition ?
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Markov chain

Let N spins o = (a4, ...,on) € Qnv = {1, 1}" and consider

Vo € Qn, Hn(o) = 2NZO'/J]

Consider o (k) the Markov chain on Q such that at time step k :
® Choose i € {1, ..., N} uniformly,
® Consider ¢’ = (01, ...,0y) such that Vj # i, o; = o(k); and
oj = —o(k)i.

e Accept o(k + 1) = o’ with probability e #(fn(e")=Fn(=(D)+ where B
is the inverse temperature.
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Mean magnetization

The system is entirely defined by its mean magnetization
mn(o) = 4 SN, o7 as H(o) = —Ymn(o)?.

mn(k) = mn(o(k)) is a Markov chainon Iy = {—1,-1+ £,..,1— 2 1}
given by the transition probabilities

151 exp (f%’\’(m2 - m’2)+) itm=m+2
r(mm’) = 5 exp (_%(mz - m’2)+) itm' =m-—%
1—r(mm+23)—r(mm-232) ifm=m

0 otherwise.
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Phase transition

The process t — my(|Nt|) weakly converges to the solution m(t) of the
ODE

%m(t) = (9*2,5(*m(1))4r _ 972ﬂ(m(t))+) - m (972,@(7m(t))+ + efzg(m(t)”) 4

Magnetisation

® For 8 > 3. =1, the limit ODE 8
has 3 equilibria, 0 is one of
them and is unstable.

® For 8 < B =1, 0is the unique
equilibrium and is stable.

Magnetsaton

Figure: p=05,8=1,8=2
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The process t — my(| Nt|) weakly converges to the solution m(t) of the
ODE

1 oGt % m(t) = (e—ZB(fm(I)H _ e—2ﬂ(m(t))+) - m (e—Zﬂ(fm(t))Jr n 672B(m(f))+) 4

Method

e For 3 > Bc = 1, the limit ODE i
has 3 equilibria, 0 is one of

them and is unstable. 2o
® For 8 < B =1, 0is the unique ﬁ:i
equilibrium and is stable.

Figure: p=05,8=1,8=2

Proof : consider the generator of t — my(|Nt|) and show its
convergence to the generator associated to the ODE.
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® Choose i € {1,..., N} uniformly,
® Choose p — 1 other spin, thus creating C a cluster of size p,
® Consider o’ where op(k); is switched.
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® Choose i € {1,..., N} uniformly,
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Markov chain

Consider o, (k) the Markov chain on Qu such that at time step k :
® Choose i € {1,..., N} uniformly,
® Choose p — 1 other spin, thus creating C a cluster of size p,
® Consider o’ where op(k); is switched.

* Accept o(k + 1) = o' with probability e~ #(Fe.n(e"-C)=Hp.n((K).C))+

where

Consider again the sequence mp (k) = % >, o(k)i.
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Lemma
In a system of size N, the transition probabilities for the magnetization

with random batches of size p are given by

s () T sy (I (e (5,

i ifm/_m+N
mmy— 1 TS I CER e = .
7 /fm’:m_%
1—r(mm+2)—r(mm-2)
/fm’:m

0 otherwise.
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Lemma
In a system of size N, the transition probabilities for the magnetization
with random batches of size p are given by

m (=) T sy (N (e (55,
ifm’:m+N

g (V1) T oy (M) () e (55,
lfm_m—%

1—1p(mm+2) —rp(m,m— %)
ifm =m

0 otherwise.

rp(m7 ml) =

For instance

o(mms ) - 5y S (TR

p—1/ k=0




An observation
on Random
Batch Method

Pierre Le Bris

1.1 The Curie-Weiss

model

112 ...with the
Random Batch
Method

Transition probabilities

Lemma
In a system of size N, the transition probabilities for the magnetization
with random batches of size p are given by

m (=) T sy (N (e (55,
ifm’:m+N

g (V1) T oy (M) () e (55,
lfm_m—%

1—1p(mm+2) —rp(m,m— %)
ifm =m

0 otherwise.

rp(m7 ml) =

For instance

Proportion of -1

rp<m,m+%>: 1-m N1_1 i((fT)N—»((”Tm)N)esz(%)

2 p71) k=0 k p—1-k

+
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Lemma
In a system of size N, the transition probabilities for the magnetization

with random batches of size p are given by

tm (W)~ 5o s "IN )(( Me 28(#45=2),
/fmfm+,\,

s () ey (O3 (G e (.
lfm:m—%

1—rp(mm+2)—r(mm-2)
ifm =m

0 otherwise.

ro(m,m') =

For instance
Proportion of -1
z) Tom 1 B ()N (BB N es(BH=p)
nimm+—)= —o — e D +
"( N 2 (',\7'711)/;(2:0( k )(p—1—k)

# of clusters
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Transition probabilities

Lemma
In a system of size N, the transition probabilities for the magnetization

with random batches of size p are given by

207 o (FP e ),
/fm fm+ N
t4m o1 (52)My (E2 -1y =28 (55
r(m,m) = 2 ( 10 Zlfm(_m_)E p—i—k )e
1_rp(m7m+%)—fp(m,ll;”7—%)
ifm =m
0 otherwise.

For instance

Classifying the clusters based on the number of -1

Proportion of -1

2y Tom 1 B (RNt () Ny (e
o(mme2)= 58 s SEE)ER) .

p—1

# of clusters
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Lemma

In a system of size N, the transition probabilities for the magnetization
with random batches of size p are given by

22 i () R e )
Ifm = m+ N
m 1+m _op(P=1=2k 1 2k
sy = O NG 5,
/fm =m- g
1—ro(mm+2)—r(mm-2)
ifm =m
0 otherwise.

For instance

. Classifying the clusters based on the number of -1
Proportion of -1

2 1—m 1 P (50N =1y (BE) Ny —es(2ti=p
s(mmi i) = 57 oy ST SO,
(p71) k=0 Proba of changing

——
# of clusters
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Limit ODE

The process M,(N"’) = mn,p(| Nt]) weakly converges as N — oo to the
solution of

%m(t) = (8, m(t)).

with £,(5,m) = (S7(m) — $5°(m)) — m (SF(m) + 82 (m)) where
SPF(m) =E <e_2ﬁ<%"ﬂp>+> , SPP(m)=E <e—25(p1pzxm’”>+>

and XmaPNB(p—L“Tm).
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B Limit ODE
The process M,(N"’) = mn,p(| Nt]) weakly converges as N — oo to the
solution of

L crees d

B, gim(0) = (8, m(1)).

Method

with £,(3, m) = (Sf’ﬁ(m) - sgw@(m)) -m (sf’ff(m) + SS’B(m)) where

_op( Hmpti=p _op( P=1=mp
Sf’ﬂ(m):E<e 2s(% >> sgvﬂ(m):E<e ("5 >>

and Xm,pNB(pf‘],-I_Tm)

Recall the limit with no random batches

% m(t) = (e—zm—m(rm _ e—ZB(m(f))+) —m (e—2ﬁ(—m(l))+ n e—ZB(m(f))+) .
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) M@ Theorem

ganz,  Letp€N\{01}andf>0.

Method ® Forall g > 0, 0 is an equilibrium state for the solution of the timit
ODE.

® forp € {2,3}, 0 is the unique equilibrium state, and it is stable.

e Forp > 4, there exists 3., such that for all 8 > Bc,p, the equilibrium
state 0 is unstable, and for all 8 < B¢,p it is stable. Furthermore, we

have the estimate
2 1
p=1+4/—+0 (—) :
Bor \/ o NG
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toy model 00200
111 The Curie-Weiss — =05, 21514 steps — =09 and p=50, 15548 steps
o 00175 —— B=1,43727 steps ] —
model — B=11,38177 steps. —
112 ..with the 00150 I e —
Random Batch 00125 —— P15, 16164 steps. —— P=15 and p=50, 20214 steps.
Method g
2z
3 00100
lll. Double well =
potential £ 0.0075
0.0050 1
00025 1
0.0000 1
0.0200
— =0.9:and p=25, 13074 steps. 0, 10359 steps
00175 — B=1andp=25, 17963 steps. ]
: — 1and p=25, 29159 steps.
— B-12and p-25, 75137 steps
00150 St 4a 25, 36594 steps. b
— =15 and p=25, 27433 steps 0, 115196 steps
0.0125
z
3 00100
H
3
£ 00075
0.0050 1
0.0025 1
0.0000 1

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100 -100 —0.75 -0.50 -0.25 000 025 050 075 100
Magnetisation Magnetisation

Figure: Numerical observation of the invariant distribution for the Curie-Weiss model
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Consider in dimension one

{ dX; = —U'(Xo)dt — W' = pi(Xi)dt + v20dB:, (DW-NL)
pr = Law(Xy),

with the potentials
III. Double well

otential
P 2

x
2

4 2
U(x) = XZ - XE W(x) = Lw

with Ly > 0.

Theorem (Tugaut '14)
There exists oc > 0 such that
® Forall o > oc, there exists a unique stationary distribution p o for
(DW-NL). Furthermore, u.,0 is symmetric.

® forall o < o, there exist three stationary distributions for (DW-NL).
One is symmetric, also denoted .0, and the other two, denoted
Mo+ and po,—, satisfy + [ xduq,+(dx) > 0.
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pr = Law(Xy),

(DW-Eff)

e vl Theorem
For 6/ p sufficiently small, denoting

ngf =0 (1 _ &7W>
2(p-1))"’

we have the following phase transition for the dynamics (DW-Eff)
* Forallo > of", there exists a unique stationary distribution ;1% for
(Eff). Furthermore, 11" is symmetric.

e Forallo €[00, 08", there exists exactly three stationary
distributions for (Eff). One is symmetric, also denoted u‘;ﬁ, and the

other two, denoted ¥, and pJ*_, satisfy + [ xdul®, (x) > 0.
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ldea of proof

® Show that a stationary distribution for (DW-NL) is a stationary
distribution for (DW-Eff), but for another diffusion coefficient.

e Study the variance around the critical parameter.
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