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A Mean Field Interaction vs Other Type of Interaction [joint work
with F. Flandoli (SNS), C. Ricci (Univerisity of Pisa)]
— a brief introduction
— our contribution
A First Order Approximation [joint work with F. Flandoli (SNS),
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— a brief introduction
— technical difficulties



Mean Field Interaction vs Other
Type of Interaction



An introduction to scaling limit
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p = density of particles
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P [ ) m ([ suppV = radius of a particle

K
dX;N = =Y vv(XP = x[Vydt +edB] i=1,....K;
j=1

where V : R? — R and B! are independent Brownian motion in RY,
0<e<<1.



An introduction to scaling limit

Training examples are related to biology, in particular to cellular

adhesion. We consider V' compactly supported and radial,
suppV = B(0,1), VV(x) = V/(Ix))7;

x|

Moreover we consider purely repulsive or attractive-repulsive

potential,
Purely Repulsive Repulsive-Attractive
r R
r z
a "
V(Ix) = (W - C) Lix<ry, a>0 V(Ix]) = (I;T —F T C) Lix<R} a>p



An introduction to scaling limit.
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e Scaling in space: in order to have Y;"" € T¢, Y = .

i,N
L iN X :
e Scaling in time: Y{"" = =2 in order to see the brownian

movement at the macro scale, we need to accelerate the time.



An introduction to scaling limit.

Note that W; = %Bct for each ¢ > 0 is still a Brownian motion.

By Ito formula, calling W/ = %B{:Nz and by some integration by
substitution, we obtain the dynamic for Yt"N:

Ks
dYt/,N:_NZV\/(N<Yt{7N_Y;,N))dt_t,_gthi i:l,...,Kf,
Jj=1

K_
) 1 p . i .
vt = — g D VA = YiN)dt peaW] i=1,.. K;
j=1
with Viy(x) = /VdV(NX)

then suppVy = B(0, N71).



An introduction to scaling limit

If we forget about the scaling and we assume V Vy(x) = VV/(x) we
relapse on the Mean Field case.

2
Oep = 5 Bp— div((VV % p)p)

e Intermediate Interaction V Vy(x) = N#4VV(NPx),
suppViy = B(0, N=#) [Oeschlager '90]

Volume fractiona~ N8

e Local Interaction V Vy(x) = NV V/(Nx), suppVy = B(0, N71)
[Varadhan '91, Uchiyama '00]

Oep = A(PV(P))
Volume fraction~ 1 g



Macroscopic limit of Brownian
particles with local interaction



Identity for the empirical measure

By It6 formula, if ¢ : TY — R is a smooth compact support test
function, then

dy (Yg”’") = (V) (Y[’N) % ;vv,\, (Yti’N - Yg""’) dt
P

+ (Vo) (Y[”") edW! + 622Ag0 <Y[’N) dt.

Ks 5

Therefore, for SN .= % Di1 0y,
t

d<s0,5t'\’> :—<V<p/TdVVN(-—y)5tN(dy),5tN> dt+
2
+ % <Ag0, st’V> dt + dMM#

with MM = e L S5 8 (7) (Y[’N> dW,



Mean field case

If VVy is independent of N, and it is continous and bounded, if
sV p

Jim <w/dvvo—y)5t” (dy),5£“> -

= lim_ <w(vv>k5"’) 5"’> = (Ve(VV %), p)

Then, passing to the limit in

d(p, 5ty = - <W VY E=n)s (dy),stN> dt+

l\)\‘“,\,

<A¢, 5’V> dt + dMN-

we get the weak formulation of

2

Oep = %Ap +div((VV * p)p)



Manipulation of the non linear term

K
(SN, V-V (Ve M) = 1 > Vo (YEN) - v (VY - Vi)
ij=1

By a symmetry argument, since VVy(—x) = =V Vy(x)

B ledi (W (YJ’N) - Ve (Y{*’V)) VVi (Y' N ytf%N)

i<j

597 3 (o (32) =0 (4£%)) 2w (0 - 2

I<J a=1

By Taylor expansion, 14 s := 9, V(x) - (x)s and ¢ := 01 V(x) - (x)1

kS e (9 (4 ) v (5.

i<j o,f=1

== S Gl (YEN) W (MO = ¥EM))

i<j a,f=1



Local Equilibrium

Local equilibrium property: namely for each ¢, € C.(T9). Let
p:[0,T]xT? =R and p= [ p(y)dy and K = [pN?|

,\}dgjap(vf” Zw (vt = vity) =
= e (V) T w (M- i)

J Y =Yi|<g

=, o(y)VWv(p(y))dy

10



Local Equilibrium

Given ¥ € C(RY) (it is on of ¥a5(x) = x50, V(x)) p > 0
Ks

Yy (p) —I|mIEMG Nd Z@D x! —XJ) ,  (Virial Formula)
i,j=1

where ji6, is the invariant measure of the SDEs system ,

ue(dx) = —exp —fz V(xi — xj) | dx
i#j
with x = (xi, ..., xk) € (T%)*?. Interpretation:
Kp KE
1 P 1 _ P
mzw(x —XJ):WZF(X,‘), with F (x;) = Z ¢(X—X1)
ij=1 i=1 |xi—x|<r

Wy is a sort of spatial average of local observables.
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:2% z": 5uds (Ytj,m) S e (/v (ygw_yg,w)).

a,f=1i=1 B Y=<
1
= 5 [ 0udae ()W i)
Summing up, passing to the limit in the weak formulation

d{p,S') = —<V</>/TdVVN(~—y)5tN(dy),5tN> dt+

+ &
2

N

(Dp, SYY dt + dM#

we get the weak formulation of 9;p = %Ap + Ziﬂ:l A\U@’B(p).
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Manipulation of the non linear term

By an isotropy argument
€2
Oep = EAP — AVy(p),

whre Wy (p) = WS%(p) = WE(p). We reformulate the PDE as
v v

€2

0cp = APv(p),  Pv(p) = —p—Vv(p).

e [Varadhan, '91], for d = 1 and purely repulsive potential,

e [Uchyiama, '00], for repulsive potential and repulsive- attractive
potential.

e [Flandoli, Leocata, Ricci, '20] investigations on the explicit form
of Wy (p).
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Investigation on V¥,

Our aim is to obtain some insights on Wy,

K_
] 1 < - o .
W\/(p):h/\r;nENG Ndidz_:lal\/(x —XJ) (X *Xl)l

Two different tools:

- heuristic arguments based on intuitions on the Gibbs measure;

- numerics. By ergodicity property, we can produce realizations of
such measure ;i by simulations on large times of a SDE whose

invariant measure is ,qu:

Ks
dX' ==Y " VU(X — X])dt + edB] (1)
j#i
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Heuristical investigation on V¥, Repulsive case, d =1

V(Ix]) = (ﬁ = C) Lix<rys

Let us imagine realizations of points according to such measure. We

look for an equilibrium configuration (?"’N);:LM,N for a system of
deterministic ODEs satisfying
Ks
D SR

Jj=Lj#i

(2)

Then we approximate,
Ks

1 .
He ~ 3 257-, with X' =
i=1

i=1 K.

5 goeeey

il =



Heuristical investigation on V¥, Repulsive case,d =1

In the case of low density, p < 1/r

Ks K;
B % S v ( <N XJyND <N }LN’ _
i=1 j=1
w175
d -— -—
N i=1 j=1 P P
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Heuristical investigation on V,,, Strong Repulsive case, d = 1

In the case of high density, p > 1/r

purely repulsive case, p = 1.5

C2
Since Z, 1 ,a ~ CL+ FaZT, We conclude

[AR:] 1
ﬁl+a Zl Ia — Cl —Oz+1 C(yﬂ

_ 0 ifp<r
_\UV(P) = {Clﬁ(x+1 4 C2ﬁ2 fﬁ > r

Summing up
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Numerical investigation on V,,, Strong Repulsive case, d =1,

o=2

LogLog plot

If f(x) = x?®, then log(f(x)) = alog(x). By a change of variable

y = log(x), log(f(x)) = ay. Then « will play the role of the

angular coefficient in the loglog plot. =



Numerical investigation on V¥, ,Integrable potential, d =1

P loglog P
30 T T (e} T 35 9 ‘7; le) T
—e—Numerical —e—Numerical
—e—PrhoTheoretical —e—PrhoTheoretical
y,
0.5 1 15 2
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Repulsive-Attractive case

By a similar argument, we approximate Wy, (p) in the case of
attractive-repulsive potential, V(x) = <& G C) Liy<rs

alx[T T B|x|P

0 p<r,

Vy(p) =
Cap't® = Cop*P — Cogp® p2r
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First-order Approximation




Let's go back to the Mean Field case, where particles interact through a
interaction kernel, K.

Motivating Example

Consider u — 0, then the MF approximation does not hold. What
is the equation to consider in this case?

By the Mean Field Limit:

p = pe +

el

By the Central Limit Theorem:

1 1
N
=prt+—=net+o|—=).
He =Pt Rt (m)
Our aim is to derive an equation furnishing a more detailed description of

ulN with respect to p;.
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Up to our knowledge (Suggestions are welcome)
e Diffusion Approximation in Ethier-Kurtz,

e Derivation of the first-order approximation in [Chevallier,
Ost'20] for Hawkes Process.

Does pV := p, + \%Nnt satisfy an equation (at least at a formal level)?
1

dpM(t) = Ap(t) + div ((K * p(t))p(t)) + —=An(t)+

p"(t) = Dp(t) ((K % p(t)p(t)) TR n(t)

i (K n(E))p(1) + —=elv (K = p(6)(0) + VLo

= A(t) + div (F(p(1))) + div (DF[p] (\%n(ﬂ)) T Wil

where W, is a gaussian process on some negative sobolev Space
(W07(4+2D’D)(]Rd), [Meleard '96]) with covariance

B (W)l = | " eV Vids
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By Taylor expansion in infinite dimension,

F (p(t) + \%n(ﬂ) = F(p(t)) + DFp] <\%77(t)> -

(1), —=n(2))

1 2
+ 3Dl (),

Then,
dp(£) = Ap(8) + div (F(o(1))) + div <DF[p] (\%n(ﬂ)) T Wil
= Ap(0) + div (F((6) + dWalod — Scdiv (K n(6)n(e)

in other terms, pév is almost a solution of a SPDE. "Almost"
i 1
because there is an error term of order o (\W)
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Our pourpose is to study the SPDE,
du(t) = AuM(t)dt + div <F( (t ))) dt + dW,[pl]

and to prove that v/ is in some sense close to u"V. Indeed, u”
1 1
N _ N LN A4
pe = up +(pe + ﬁNWt “t)"‘O(N)
1 1 1
= U; +(Pt+w77t—uiv)+0<,v> —“iVJFO(N)

ul is close to ul at least as v}V, but differently from v}V, it

satisfies an equation.

24



Difficulties:

e Is the Gaussian Process a Stochastic Integral in infinite dimension,
. T
W, = div (Zk fo \/ vtNekdﬁf)?
e If the previous is true, the process W; will depend on \/ul. So
ulN >0 and in particular it must be a function.

e Well-posedness of W;:

2
t
E /V'e(t*S)AZ\/vtNekdﬁf <
0 k 12
£ . 2
<[ — \/vlher|| dt=o0
/0 (t—s)zk:‘ S P

= v} should be a regular function.

¢ 2
Bl < [ Bl s )] o

e The natural space for vV seems to be the space of fluctuations. But
this space is not compatible with all the requirements above. 25



Thanks for the attention!
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