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Neurons

• Neurons : generate and propagate action potentials the long of
their axons.

• They communicate by transmitting spikes : this is a fast
transmembrane current of K+/Na+−ions, stimulated by ion pumps,
and vehiculated by neurotransmitters (chemical substances).



Emission of spikes depends on integration of synaptic potentials
and precise interplay with intrinsic properties of the cell. And on
external stimuli and conditions. Picture shows the membrane
potential of one single neuron in a potassium bath, under
increasing concentration of potassium.

Figure: Cortical slice of an active network of O(104) neurons, Picture by
R. Höpfner and H. Luhmann, Mainz



Closer look to spikes
Superposition of all these spikes shows : The shape and the time
duration of spikes is almost deterministic - and always “the same”
(for a fixed neuron, under the same experimental conditions)

Figure: Picture by R. Höpfner, Mainz

The duration of each spike is very short (about 1 ms) - followed by
a refractory period during which the neuron can not spike again
(about 1 ms). So a description by means of point processes is
reasonable.



Examples of spike trains
Use spike sorting (difficult and not evident) to obtain the raster
plot, one way of representing spike trains:

Here, each neuron is represented by its successive spiking times.



So in the sequel we will represent systems of neurons by systems of
interacting point processes where each point process represents the
spiking times of a given neuron.



Where are we ?

Introduction

Models based on stochastic intensity

Representation by means of Poisson random measures

Mean field limits in the Hawkes frame

Emergence of oscillations in the limit

Spatially structured models

Models with reset

Longtime behavior of the limit system



Interacting neurons described by Hawkes processes

I N neurons that interact.
I Counting process associated to neuron i ∈ I = {1, 2, . . . ,N} :

ZN,i (t) = number of spikes of neuron i during [0, t].

Definition
Let Ft = σ(ZN,i

s , s ≤ t, i ≤ N). Any Ft−predictable positive
process λN,i (t) such that for all 0 ≤ s ≤ t,

E(ZN,i
t − ZN,i

s |Fs) = E[

∫ t

s
λN,i (u)du|Fs ]

is called (stochastic) intensity of ZN,i .

− In other words,

P(ZN,i has a jump during ]t, t + dt]|Ft) = λN,i (t)dt.

− λN,i (t) is the instantaneous jump rate of neuron i at time t.



The formula

P(ZN,i has a jump during ]t, t + dt]|Ft) = λN,i (t)dt

suggests a time discrete simulation scheme as follows:
I We bin time into small intervals of length δ.
I Within time [nδ, (n + 1)δ[, we accept a spike of neuron i with

probability
λN,i (nδ)δ.

There is no spike with probability

1− λN,i (nδ)δ.

I As δ → 0, the waiting time up to the next time is described by
a generalized exponentially distributed random variable, with
stochastic and time dependent parameter λN,i (t).



Hawkes intensity

I Intensity of i−th neuron given by

λN,i (t) = fi

 N∑
j=1

∫
[0,t[

hj→i (t − s)dZN,j(s)


= fi

∑
j

∑
n:T j

n<t

hj→i (t − T j
n)

 ,

where T j
n all past spike times of neuron j .

I fi : R→ R+ non-decreasing, Lipschitz.
I hj→i ∈ L1

loc describes the influence of neuron j on neuron i .

I It also measures how this influence vanishes as time goes
by : hj→i (t − s) describes how a spike of neuron j lying back
t − s time units in the past influences the present spiking
probability of neuron i .



The membrane potential

I The process

UN,i (t) :=
N∑
j=1

∫
[0,t]

hj→i (t − s)dZN,j(s)

can be interpreted as membrane potential of neuron i at time
t. It collects all the past spike events of its presynaptic neurons.

I It is a deterministic function of all past spiking times (which
are random).

I The collection (UN,i (t))i∈I is not a Markov process (at least
for general hj→i−kernels).

I Integrate-and-fire model : The neuron fires at a rate
fi (U

N,i (t−)) depending on the height of its actual membrane
potential (just before the jump).



Example

hj→i (t − s) = Wj→ie
−αi (t−s).

− Wj→i = synaptic weight of neuron j on neuron i . If Wj→i > 0,
then the synapse is excitatory, if Wj→i < 0, then it is inhibitory.
− Neurons which have a direct influence on i are those in

Vi := {j : Wj→i 6= 0} ⇒ Interaction graph.
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I Like continuous processes adapted to the Brownian filtration
which can be represented as stochastic integrals with respect
to Brownian motion, point processes defined by means of their
stochastic intensity can also be represented by means of some
underlying discrete noise, which is a Poisson random measure.

I Poisson random measures are interesting objects per se - but
we only use them for representation issues.



Let Xn, n ≥ 1, all distinct, be random variables taking values in
R+ × R+. We put

π :=
∑
n≥1

δXn .

This is a random counting measure : π(C ) =
∑∞

n=1 1C (Xn).

Definition
π is a Poisson random measure (PRM) on R+ × R+ with intensity
dtdx (Lebesgue measure) if
1) for all C ∈ B(R2

+),

π(C ) ∼ Poiss(|C |),

where |C | denotes the Lebesgue measure of the set C ,
2) for all C1, . . . ,Cn ∈ B(R+ × R+) which are mutually disjoint,
π(C1), . . . , π(Cn) is an independent family of random variables.



Proposition (Which shows how to construct/simulate from π|K
where K ⊂ R+ × R+ is some compact set.)
Choose N ∼ Poiss(|K |) and, conditionally on N = n, choose n i.i.d.
random variables X1, . . . ,Xn which are uniformly distributed on K
and independent of N (that is, P(X1 ∈ C ) = |C∩K |

|K | ). If we put

π̃ :=
N∑

k=1

δXk
,

then π̃ L= π|K .



Basic facts on PRM’s

I Let Fπt := σ(π(A) : A ⊂ [0, t]× R+,A ∈ B(R2
+)) and

introduce the centered random measure π̃(ds, dz) := π(ds, dz)
−dsdz .

I Then
Mt :=

∫
[0,t]

∫
R+

ϕ(s, z)π̃(ds, dz)

is a martingale for all predictable processes ϕ 1 s.t.

E

∫ t

0

∫ ∞
0
|ϕ(s, z)|dsdz <∞

for all t > 0. If moreover ϕ ∈ L2, then

VarMt =

∫ t

0

∫ ∞
0

ϕ2(s, z)dsdz .

1that is, ((s, ω), z) 7→ ϕ(s, z , ω) is P ⊗ B(R+)−measurable



Thinning

I Apply the above result with the particular choice

ϕ(s, z) = 1{z≤λ(s)}.

I Then
Zt =

∫
[0,t]

∫
R+

1{z≤λ(s)}π(ds, dx)

is a counting process having stochastic intensity λ.
I We say that Z is obtained from π by thinning. Kerstan 1964,

Lewis+Shedler 1976, Ogata 1981.



Thinning/Poisson embedding

Theorem (Jacod 1979, Brémaud-Massoulié 1996)
Any (non-explosive simple) point process having stochastic intensity
can be represented by means of the thinning of a PRM!



Coupling

Thinning helps for coupling:
I Suppose Z has intensity λ, and Z̃ intensity λ̃.
I Construct them according to the synchronous coupling, that is,

using the same underlying PRM π (that makes them jump
together as often as possible).

I Then uncommon jumps are caused by atoms (s, z) such that
λ(s) < z ≤ λ̃(s) or λ̃(s) < z ≤ λ(s).

I So the total variation distance on [0, t] is given by

E
∫

[0,t]
|d(Zs − Z̃s)| = E

∫ t

0
| λ(s)− λ̃(s)|ds.
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Mean field models

I We consider N similarly behaving neurons, that is, fi ≡ f
Lipschitz and hi→j = 1

N h, h ∈ L1
loc fixed kernel function.

I For any fixed N, we have a unique strong solution of the finite
system, driven by N i.i.d. PRM’s πi , 1 ≤ i ≤ N.

I Each neuron jumps at rate f (UN,i (t−)), where UN,i (t) =

N∑
j=1

∫
[0,t]

hj→i (t − s)dZN,j(s) =

∫
[0,t]

h(t − s)dZ̄N(s) =: UN(t),

Z̄N(t) =
1
N

N∑
i=1

ZN,i (t)

the empirical spike counting process.
I ZN,i (t) =

∫
[0,t] ×R+

1{z≤f (UN(s−))}π
i (ds, dz) : common

intensity but independent driving noises.



Heuristics : MF Limit

I UN(t) =
∫

[0,t] h(t − s)dZ̄N(s).

I As N →∞, we expect Z̄N(t)→ E(Z̄ (t)), where Z̄ (t) is the
spike counting process of a typical neuron in an infinite limit
population.

I Ū(t) =
∫

[0,t] h(t − s)dEZ̄ (s).

I And so the limit intensity is deterministic : λ̄(t) = f (Ū(t)).

I So : Z̄ i (t) =
∫

[0,t] ×R+
1{z≤f (Ū(s−))}π

i (ds, dz) is a time
inhomogeneous Poisson process.

I Thus EZ̄ i (t) =
∫ t
0 λ̄(s)ds =

∫ t
0 f (Ū(s))ds.

I Thus
Ū(t) =

∫
[0,t]

h(t − s)f (Ū(s))ds. (1)
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0 f (Ū(s))ds.

I Thus
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I Ū(t) =
∫

[0,t] h(t − s)dEZ̄ (s).

I And so the limit intensity is deterministic : λ̄(t) = f (Ū(t)).
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Theorem (Delattre, Fournier, Hoffmann 2016, Hawkes on large
networks)
1) Under the condition h ∈ L1

loc and f Lipschitz, there exists a
unique solution of (1) such that t 7→

∫ t
0 f (Ū(s))ds is locally

bounded.
2) Consider the Sznitman coupling of (ZN,i ) and (Z̄ i ) : for all
1 ≤ i ≤ N,

Z̄ i (t) =

∫
[0,t] ×R+

1{z≤f (Ū(s−))}π
i (ds, dz),

where πi is the PRM used to construct ZN,i .

Then we have the strong error bound

E

(
sup
t≤T
|ZN,i (t)− Z̄ i (t)|

)
≤ CTN

−1/2.
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− In particular, for any l ≥ 1 fixed, we have convergence in law

(ZN,1, . . . ,ZN,l)
L→ P⊗l ,

where P = L(Z̄ ) is the law of the McKean-Vlasov type non-linear
limit process

Z̄ (t) =

∫
[0,t] ×R+

1{z≤dEZ̄(s)}π(ds, dz)

(we endow D(R+,R) with the uniform convergence on compact
time intervals).
− This means that we have propagation of chaos.



Elements of the proof.
Step 1.

f Lipschitz and h only locally integrable imply that the convolution
equation

Ū(t) =

∫
[0,t]

h(t − s)f (Ū(s))ds

possesses a unique solution in C 1.

Corollary
Let Ū(t) be the unique solution of (1) and let πi , i ≥ 1, be i.i.d.
PRM’s on R+ × R+, having Lebesgue intensity. Then

Z̄ i (t) :=

∫
[0,t] ×R+

1{z≤f (Ū(s))}π
i (ds, dx)

is an i.i.d. family of time-inhomogeneous Poisson processes with
intensity f (Ū(t)), and

EZ̄ i (t) =

∫ t

0
f (Ū(s))ds.



Sznitman coupling

I ∆N,i
t :=

∫
[0,t] |d(ZN,i (s)− Z̄ i (s))|, δNt = E∆N,i

t (does not
depend on i by exchangeability).

I sups≤t |ZN,i (s)− Z̄ i (s)| ≤ ∆N,i
t .

I Then (supposing that f non-decreasing)

∆N,i
t =

∫
[0,t]×R+

1{f (UN(s−)∧Ū(s))<x≤f (UN(s−)∨Ū(s))}π
i (ds, dx).

I Such that

δNt ≤ E
∫ t

0
|f (Ū(s))− f (UN(s))|ds

≤ ‖f ‖Lip
∫ t

0
E

∣∣∣∣∣∣ 1N
N∑
j=1

∫
[0,s[

h(s − u)(dEZ̄ (u)− dZN,j(u))

∣∣∣∣∣∣ ds.
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I To control∫ t

0
E

∣∣∣∣∣∣ 1N
N∑
j=1

∫
[0,s[

h(s − u)(dEZ̄ (u)− dZN,j(u))

∣∣∣∣∣∣ ds
we add and subtract the limit process dZ̄ j(u) to obtain a
decomposition A+B where A is a variance and B a biais term.

I

A =

∫ t

0
E

∣∣∣∣∣∣ 1N
N∑
j=1

∫
[0,s[

h(s − u)(dEZ̄ j(u)− dZ̄ j(u))

∣∣∣∣∣∣ ds
I

B =

∫ t

0
E

∣∣∣∣∣∣ 1N
N∑
j=1

∫
[0,s[

h(s − u)(dZ̄ j(u)− dZN,j(u))

∣∣∣∣∣∣ ds.



Control of biais term by stochastic Fubini theorem

I Let N(t) be any non-explosive simple counting process and
ϕ ≥ 0, then∫ t

0

∫
[0,s[

ϕ(s − u)dN(u)ds =

∫ t

0
ϕ(s − u)N(u)du.

I Applying this to N(u) 7→ ∆N,j(u) and to |h|, and then taking
expectation, we obtain

B ≤
∫ t

0
|h(t − u)|δN(u)du.



Control of the variance term

I Put XN,j(t) =
∫

[0,t[ h(t − u)dZ̄ j(u), 1 ≤ j ≤ N,

i.i.d. having

mean
∫ t
0 h(t − u)dE(Z̄ j(u)).

I We rewrite

A =

∫ t

0
E

∣∣∣∣∣∣ 1N
N∑
j=1

∫
[0,s[

h(s − u)(dEZ̄ j(u)− dZ̄ j(u))

∣∣∣∣∣∣ ds
=

∫ t

0
E

∣∣∣∣∣∣ 1N
N∑
j=1

XN,j(s)− E(XN,j(s))

∣∣∣∣∣∣ ds
≤ N−1/2

∫ t

0

√
Var(XN,1(s))ds.
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I

XN,1(s)−EXN,1(s) =

∫
[0,s[

∫
R+

h(s−u)1{x≤f (Ū(u))}π̃
1(du, dx),

where π̃1(du, dx) = π1(du, dx)− dudx is the compensated
PRM.

I So
Var(XN,1(s)) =

∫ s

0
h2(s − u)f (Ū(u))du.

I Since h ∈ L2
loc and f (Ū(u)) a priori bounded on finite time

intervals, this is upper bounded by CT , for all s ≤ t ≤ T .

I Putting things together we obtain for all t ≤ T ,

δNt ≤ CTN
−1/2 + C

∫ t

0
|h(t − s)|δNs ds.
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Convolutional Gronwall
QUESTION : how to solve

δNt ≤ CTN
−1/2 + C

∫ t

0
|h(t − s)|δNs ds. (2)

Since h ∈ L1
loc , there exists a sufficiently large A such that∫ t

0
|h(t − u)|1{|h(t−u)≥A}du ≤

1
2C

.

So, since δNs ≤ δNt ,∫ t

0
|h(t − s)|δNs ds ≤

∫ t

0
AδNs ds +

1
2C

δNt .

Inserting in (2) and subtracting 1
2δ

N
t on both sides implies, for all

t ≤ T ,
1
2
δNt ≤ CTN

−1/2 + CA

∫ t

0
δNs ds.
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Erlang memory kernels

We now discuss how oscillations might arise in the limit model.
I Recall

Ū(t) =

∫
[0,t]

h(t − s)f (Ū(s))ds.

I Consider Erlang memory kernels:
h(t) = ce−αt t

n

n! , α > 0, c ∈ R, n ≥ 0.
I The delay of influence on the past is distributed.
I Takes its maximal value at n/α times steps back in the bast.
I We say that n is the order of the memory.

If c > 0, the
influence on the past is excitatory, else, inhibitory.

I Notice that h′(t) = −αh(t) + ce−αt tn−1

(n−1)!
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Monotone cyclic feedback systems

I Introduce the auxiliary variables

xk(t) = c

∫ t

0
e−α(t−s) (t − s)n−k

(n − k)!
f (Ū(s))ds, 0 ≤ k ≤ n.

I So Ū(t) = x0(t).

I And

(+)

{
dxk (t)
dt = −αxk(t) + xk+1(t), 0 ≤ k < n

dxn(t)
dt = −αxn(t) + f (x0(t))

Definition
System (+) is called a monotone cyclic feedback system
(Mallet-Paret+Smith 1990).
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Some simulations in the case of a single neuron (N = 1)

A single neuron’s spike train represented by a Hawkes process with
an Erlang memory kernel, of memory order 3 :
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Figure: Picture by Aline Duarte, USP, Sao Paulo



Figure: Picture by Aline Duarte, USP, Sao Paulo



Lemma
Suppose c < 0 and f non-decreasing. Then (+) admits a unique
equilibrium x∗.

Proof.
x∗ = (x∗,0, . . . , x∗,n) satisfies

αx∗,k = x∗,k+1 for all k < n and αx∗,n = cf (x∗,0).

So
x∗,n =

c

α
f (

1
αn

x∗,n).

Since t 7→ c
α f ( 1

αn t) is non-increasing, this implies the existence of a
unique solution.



Poincaré-Bendixson Theorem

Theorem (Mallet-Paret+Smith 1990)
Suppose n ≥ 2, f non-decreasing, bounded, analytic. Suppose
moreover that

|cf ′(x∗,0)| > αn+1(
cos( π

n+1)
)n+1 .

Then x∗ is unstable and (+) possesses a finite positive number of
periodic orbits. At least one of them is orbitally asymptotically
stable.



Oscillations of the limit intensities in a two-population model

Simulation of a system with 2 populations of neurons (we pass to a
mean field limit in a multi-population frame) and memory 3 for the
first population and memory 4 for the second one :
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Spatially structured Hawkes processes

I This part of the lecture is based on joint work with Julien
Chevallier, Aline Duarte and Guilherme Ost.

I N neurons which are attached to positions xi ∈ Rd , 1 ≤ i ≤ N,
xi is the position of neuron i .

I Spiking rate of neuron i at time t is f (UN,i (t−)) with

UN,i (t) = e−αtu0(xi ) +
1
N

N∑
j=1

w (xj , xi )

∫
]0,t]

e−α(t−s)dZN,j(s).

I w : Rd × Rd → R is the matrix of synaptic weights. (We read
the interactions from left to right...)

I α ≥ 0 is the leakage rate and u0 : Rd → R is the initial input.



Equivalent Markovian description

I Exponential leakage function ⇒ Process of membrane
potentials (UN,i (t), 1 ≤ i ≤ N) is a piecewise deterministic
Markov process (PDMP).

I Generator : For u = (u1, . . . , uN)

ANg(u) = −α
N∑
i=1

∂g(u)

∂ui
ui+

+
N∑
i=1

f (ui )[g(u +
1
N

∑
j

w(xi , xj)ej)− g(u)],

ej is the j−th unit vector in RN .



We shall work under

Assumption

1. The firing rate f is Lipschitz.
2. The initial potential input u0(x) is bounded and Lipschitz in x .

3. The matrix of synaptic weights w is Lipschitz and bounded.

Remark
What we actually need is this : Total input of interactions is
bounded in the following sense: for some convenient a priori
probability measure % (spatial distribution of neurons)

sup
x

∫
|w(y , x)|2%(dy) <∞

plus analogous condition when we integrate over x .

The condition
that w is bounded is only to make the talk easier to follow.
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Proposition (Bounds on first and second moments)
Under our assumptions, for each N ≥ 1 and T > 0:

1
N

N∑
i=1

E
[
(ZN,i (T ))

]
+

1
N

N∑
i=1

E
[
(ZN,i (T ))2

]
≤ CT

where CT does not depend on N.



For each T > 0, we consider the empirical measure of spike trains
associated to positions of neurons

P
(N,N)
[0,T ] (dη, dx) =

1
N

N∑
i=1

δ((ZN,i (t))0≤t≤T , xi)(dη, dx).

This is a random probability measure on D([0,T ],R+)× Rd .

Let %(dx) be a probability measure on Rd . We work under

Assumption

1. The positions of neurons x1, . . . , xN are i.i.d. distributed
according to %(dx).

2. % possesses some exponential moments.



Propagation of chaos

We will prove : there exists a deterministic probability measure
P[0,T ] on D([0,T ],R+)× Rd with :

lim
N→∞

dKR(P
(N,N)
[0,T ] ,P[0,T ]) = 0, almost surely w.r.t x1, x2, . . . .

Here:

dKR(P
(N,N)
[0,T ] ,P[0,T ]) = sup

g∈Lip1
E
[∣∣∣〈g ,P(N,N)

[0,T ] − P[0,T ]

〉∣∣∣] ,
Lip1 = Lip1(D([0,T ],R+)× Rd) and E is taken w.r.t to the
randomness present in the jumps.



Remark
dKR is a Kantorovich-Rubinstein type distance.

Proposition (A priori properties of P[0,T ] :)
Under our assumptions,∫

Rd

∫
D([0,T ],R+)

[η2
T + ηT ]P[0,T ](dη, dx) <∞.

By the Disintegration theorem:

P[0,T ](dη, dx) = P[0,T ](dη|x)%(dx).

MAIN QUESTION : what does P[0,T ](dη|x), the conditional
distribution of η on [0,T ], given the position x ∈ Rd , look like?



Macroscopic Model:

Recall : Intensity of neuron at position xi , at time t given by

f (e−αtu0(xi ) +
1
N

N∑
j=1

w(xj , xi )

∫
]0,t]

e−α(t−s)dZN,j(s)).

=⇒ For each x ∈ supp(%): P[0,T ](dη|x) = law of inhomogeneous
Poisson process Z̄ x(t) having intensity (λ(t, x))0≤t≤T , where

λ(t, x) = f
(
e−αtu0(x)

+

∫
Rd

w(y , x)

∫ t

0
e−α(t−s)λ(s, y)ds%(dy)

)
. (3)



Rewriting the a priori bounds in terms of the intensities gives that
it should be a priori true that∫

Rd

[(∫ T

0
λ(t, x)dt

)2

+

∫ T

0
λ(t, x)dt

]
%(dx) <∞ (4)

=⇒

Proposition (Regularity)
Under our assumptions, for any solution λ of the equation (3) such
that (4) holds for all T > 0, we have:
1. ∀T > 0, λ ∈ C ([0,T ]× Rd ,R+) and ‖λ‖[0,T ]×Rd ,∞ <∞.
2. λ is Lipschitz-continuous in the space variable, uniformly in

time over compact time intervals.



Proposition (Existence and uniqueness)
Define F from C ([0,T ]× Rd ,R+) to itself by

λ 7→ F (λ)(t, x) = f
(
e−αtu0(x)

+

∫
Rd

w(y , x)

∫ t

0
e−α(t−s)λ(s, y)ds%(dy)

)
.

Then for any λ, λ̃ ∈ C ([0,T ]× Rd ,R+),

‖F (λ)− F (λ̃)‖[0,T ]×Rd ,∞ ≤ C (α, Lf )(1− e−αT )

× ‖λ− λ̃‖[0,T ]×Rd ,∞. (5)

Remark
The inequality (5) + a fixed point argument imply both existence
and uniqueness of a solution of the equation (3).



Theorem
Under our assumptions, almost surely (wrt the positions) we have
that

dKR

(
P

(N,N)
[0,T ] ,P[0,T ]

)
≤ CT

(
N−1/2 + W2(µ(N), %)

)
.



Corollary : Suppose %(dy)� λ(dy) with C 1−density and fix
x , x̃ ∈ supp(%). Consider “kernels” ΦN(z), Φ̃N(z) s.t. as N →∞,
1. ΦN(z)%(dz)

w→ δx(dz) and Φ̃N(z)%(dz)
w→ δx̃(dz).

2. For ϕ, ϕ̃ : D([0,T ],R+)→ [−1, 1],∈ Lip1, let

gN(η, z) = ϕ(η)ΦN(z) ∼ ϕ(η)δx(z)

and
g̃N(η, z) = ϕ̃(η)Φ̃N(z) ∼ ϕ̃(η)δx̃(z).

Then :

E
[〈

gN ,P
(N,N)
[0,T ]

〉〈
g̃N ,P

(N,N)
[0,T ]

〉]
→
〈
ϕ,P[0,T ](·|x)

〉 〈
ϕ̃,P[0,T ](·|x̃)

〉
.

The activity near x is asymptotically independent of that near x̃ .
Relating this result with multi-class propagation of chaos:
I x = x̃ : chaoticity within a class.
I x 6= x̃ : chaoticity between two different classes.



Remark (Neural field equation)
Write for each t ≥ 0 and x ∈ Rd

u(t, x) = e−αtu0(x) +

∫
Rd

w(y , x)

∫ t

0
e−α(t−s)λ(s, y)ds%(dy).

Then
λ(t, x) = f (u(t, x)),

and u(t, x) satisfies the neural field equation:

∂u(t, x)

∂t
= −αu(t, x)+

∫
Rd

w(y , x)f (u(t, y))%(dy), u(0, x) = u0(x).



Remark
Neural field equations have been widely studied in the analytical
and the neuro-scientifique literature, see e.g. Bressloff (2012).
I Standard choices for f : Sigmoid, piecewise linear function or a

Heaviside function (to ease computations only!)
I Often : Symmetry assumption on w , e.g. Mexican hat =⇒ to

generate oscillations.
I Choices of % : Uniform over bounded set (Luçon and Stannat

2014), or Gaussian distribution (Bressloff 2012).



Writing U(N)(t, xi ) := UN,i (t), where

UN,i (t) = e−αtu0(xi ) +
1
N

N∑
j=1

w (xj , xi )

∫
]0,t]

e−α(t−s)dZ
(N)
j (s)

is the potential of neuron in position xi at time t,
we obtain the convergence of U(N)(t, xi ) to the solution u(t, x).
Corollary 3: Under the conditions of Theorem 1, ∀ T > 0 and
almost all realizations of x1, x2, . . ., it holds that

lim
N→∞

E
(∫

Rd

∫ T

0
|U(N)(t, x)− u(t, x)|dtµ(N)(dx)

)
= 0,

where E is taken w.r.t the randomness present in the jumps.



Sketch of proof of Theorem
Estimates on the distance dKR(P

(N,N)
[0,T ] ,P[0,T ]) are done in 2 steps.

The fundamental objects to study are:

P
(N,N)
[0,T ] (dη, dx) =

1
N

N∑
i=1

δ((ZN,i (t))0≤t≤T ,xi)(dη, dx),

P
(∞,N)
[0,T ] (dη, dx) = P[0,T ](dη|x)µ(N)(dx),

P[0,T ](dη, dx) = P[0,T ](dη|x)%(dx).

Step 1: To show that (discretisation in space and coupling à la
Sznitman)

dKR

(
P

(N,N)
[0,T ] ,P

(∞,N)
[0,T ]

)
≤ CT [N−1/2 + W2(%, µ(N))].

Basically the same proof as before.

Step 2: To show that

dKR

(
P

(∞,N)
[0,T ] ,P[0,T ]

)
≤ CTW1(%, µ(N)).
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Proof of dKR(P
(∞,N)
[0,T ] ,P[0,T ]) ≤ CTW1(%, µ

(N))

I Fix any coupling W [N](dx , dy) of µ(N)(dx) and %(dy).

I ∀ x , y , take the sync. coupling of Z̄ x and Z̄ y . Let g ∈ Lip1.

I

< g ,P
(∞,N)
[0,T ] − P[0,T ] >

= E[

∫
g(Z̄ x , x)µ(N)(dx)−

∫
g(Z̄ y , y)%(dy)]

= E
∫
Rd×Rd

[g(Z̄ x , x)− g(Z̄ y , y)]W [N](dx , dy).

I g ∈ Lip1 implies that [. . .] ≤ supt≤T |Z̄ x
t − Z̄ y

t |+ ‖x − y‖.
I E supt≤T |Z̄ x

t − Z̄ y
t | ≤

∫ T
0 |λ(s, x)− λ(s, y)| ds ≤ CT‖x − y‖,

since λ Lipschitz in space, uniformly in time.
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Some simulations: Propagation of activity
Simulations done by Julien Chevallier

Figure: N=100

Figure: N=1000



Some simulations: Propagation of activity

Figure: N=5000

Figure: N=∞
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Models with reset

I Neurons reset after spiking (their potential goes back to a
resting value, that we take equal to 0 here).

I N neurons having membrane potential
UN,i (t) ≥ 0, 1 ≤ i ≤ N, each spiking at rate f (UN,i (t−)).

I We take h(t) = he−αt , where α > 0 (exponential decay),
h > 0 (synaptic weight).

Then

UN,i (t) =
h

N

∑
j 6=i

∫
]Lit ,t]

e−α(t−s)dZN,j(s),

Lit = sup{s ≤ t : ∆ZN,i (s) = 1} last spike before time t.

I The membrane potential goes back to 0 at each spike: t = Lit
implies that UN,i (t) = 0. And then the neuron’s potential
collects inputs of presynaptic spikes since the last spiking time
of the neuron.
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I Equation driven by PRM’s (of Lebesgue intensity)

dUN,i (t) = −αUN,i (t)dt+
∑
j 6=i

h

N

∫
R+

1{z≤f (UN,j (t−)}π
j(dt, dz)

−UN,i (t−)

∫
R+

1{z≤f (UN,i (t−)}π
i (dt, dz).

I Generator: for all ϕ : RN → R, sufficiently regular,
x = (x1, . . . , xN),

ANϕ(x) =
N∑
i=1

f (xi )[ϕ(x + ∆i (x))− ϕ(x)]− α
N∑
i=1

∂ϕ

∂xi
(x)xi ,

(∆i (x))j =

{
h/N, i 6= j

−xi , i = j .

I We call the reset the big jump.



Assumption
f ↑, f (0) = 0, f (x) > 0 for all x > 0, f ∈ C 2, convex,
f (x + y) ≤ Cf (1 + f (x) + f (y)) and

sup
x≥1

[f ′(x)/f (x) + f ′′(x)/f ′(x)] <∞.

Example
We think of f (x) = (x/K )p for some (possibly large) p, where
K > 0 is fixed (soft threshold).



Associated limit equation

I

dŪ i (t) = −αŪ i (t)dt − Ū i (t−)

∫
R+

1{z≤f (Ū i (t−)}π
i (dt, dz)

+ hE(f (Ū i (t)))dt.

I Evolution remains stochastic as consequence of the “big
jumps” (reset after spike).

I Writing gt = L(Ū i (t)), gt is weak solution of a non-linear PDE

∂tgt(x) = (αx−hgt(f ))∂xgt(x)+(α−f (x))gt(x), t ≥ 0, x > 0,

gt(f ) =

∫
f (x)gt(dx), gt(0) =

1
h
∀t > 0.



Theorem (with Nicolas Fournier, 2016)

1. Suppose that g0(f ) <∞. Then there exists a pathwise unique
solution of the limit equation.

2. If moreover g0(f 2) <∞, for the Sznitman coupling, supposing
that UN,i (0) i.i.d. ∼ g0, and introducing the function
H(x) = f (x) + arctan(x), we have

sup
t≤T

E(|UN,i (t)−Ū i (t)|+|H(UN,i (t))−H(Ū i (t))|) ≤ CT/
√
N.

Plan of proof.
i) A priori bounds.
ii) Well-posedness of limit system (f unbounded and non-Lipschitz)
iii) Quantified propagation of chaos by Sznitman coupling.



A priori bounds

f non-decreasing implies that a priori
I UN,i (t) ≤ UN,i (0) + 3ŪN(0) + 4h 1

NN
Nf (2h)
t .

I This implies the well-posedness of the finite system (we
construct it up to time τK = inf{t :

∑
i U

N,i (t) ≥ K}, it is
well-defined up to τK , and then we show that
limK→∞ τK =∞ thanks to the a priori bounds).

I Ū i (t) ≤ Ū i (0) + 3E(Ū i (0)) + 4hf (2h)t.

I This implies that any solution of the limit equation a priori
satisfies that t 7→ E(f (Ū(t))) is locally bounded, if g0(f ) <∞.
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Pathwise uniqueness of the limit
I Let Ū(t), Ũ(t) be two solutions, driven by the same PRM,

starting from Ū(0) = Ũ(0). Then

Ū(t)− Ũ(t) = −α
∫ t

0
(Ū(s)− Ũ(s))ds

+ h

∫ t

0
E(f (Ū(s))− f (Ũ(s)))ds

−
∫

[0,t] ×R+

(
Ū(s−)1{z≤f (Ū(s−))} − Ũ(s−)1{z≤f (Ũ(s−))}

)
π(ds, dz).

I Need to take L1 distance because of the state-dependent jump
rate.

But the compensator of the big jumps is

ūf (ū)− ũf (ũ)

which is not Lipschitz. So: compare the two processes after
having applied the bijection H(x) = f (x) + arctan(x). Most

important point, for x > 0 small, x is comparable to arctan(x) (while it is not to f (x)).
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I Let Ū(t), Ũ(t) be two solutions, driven by the same PRM,

starting from Ū(0) = Ũ(0). Then
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−
∫

[0,t] ×R+

(
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Properties of the space transform

Lemma
There is a constant C such that for all x , y ∈ R+, we have

1. |H ′′(x)| ≤ CH ′(x),
2. x + H ′(x) ≤ C (1 + f (x)),
3. |x − y |+ |H ′(x)− H ′(y)|+ |f (x)− f (y)| ≤ C |H(x)− H(y)|,
4. −sign(x − y)(xH ′(x)− yH ′(y)) ≤ C |H(x)− H(y)|,
5.

− (f (x) ∧ f (y))|H(x)− H(y)|
+ |f (x)− f (y)|(H(x) ∧ H(y)− |H(x)− H(y)|)

≤ C |H(x)− H(y)|.



Proof.
Suppose x ≤ y . Then we may rewrite the LHS of the last point as

−f (x)(H(y)− H(x)) + (f (y)− f (x))[H(x)− (H(y)− H(x))].

This equals

H(x)[f (y)− f (x)] + f (y)[H(x)− H(y)] .

We use that (f (y)− f (x)) ≤ (H(y)− H(x)) because
H(x) = f (x) + arctan(x) with both f and arctan non-decreasing,
that f (y) ≥ f (x) to get the upper-bound

|H(x)− H(y)|(H(x)−f (x)) = |H(x)−H(y)| arctan x ≤ π

2
|H(x)−H(y)|.

This completes the proof.
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Pathwise uniqueness-continued

− Itô together with the above properties of H gives

E(| H(Ū(t))− H(Ũ(t))|) ≤ C

∫ t

0
E(| H(Ū(s))− H(Ũ(s))|)ds

+ h

∫ t

0
Bsds,

Bs = E
(
sign(Ūs − Ũs)

(
H ′(Ūs)Ef (Ūs)− H ′(Ũs)E(f (Ũs))

))
.

Bs ≤ E(|H ′(Ūs)− H ′(Ũs)|Ef (Ūs)ds+

E(H ′(Ũs))E|f (Ūs)− f (Ũs)|ds.

Red terms bounded by a priori bounds since H′ ≤ C(1 + f ). Then use that

|H′(x)− H′(y)| + |f (x)− f (y)| ≤ C |H(x)− H(y)| .
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Existence of a strong solution of the limit equation

I OK if f is bounded, by Picard iteration.
I Less evident for f unbounded such as (x/K )p.

I In this case we first prove the weak propagation of chaos.
I From this we deduce the existence of a weak solution of the

limit equation.
I And thus strong existence (Yamada-Watanabe).
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Theorem (with Nicolas Fournier, 2016)
Let UN,i (0) be i.i.d., ∼ g0 such that g0(f ) <∞. Then
1. The sequence of processes (UN,1(t))t≥0 is tight in D(R+).
2. The sequence of empirical measures
µN = N−1∑N

i=1 δ(UN,i (t))t≥0
is tight in P(D(R+)).

3. Any limit point µ of µN a.s. belongs to {L((Ū(t))t≥0)}.
4. Therefore, µN goes in probability to µ := L((Ū(t)), where Ū

is the unique solution to the limit equation.

Remark
Point 2. follows from point 1., Sznitman, Saint Flour Lecture
notes.

To prove point 1., we prove the tightness in Skorokhod
space. For this, ∃ well-known criterion : Aldous tightness
criterion, well explained in the book by Jacod-Shiryaev.
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Aldous criterion

Check that :
I for all T > 0, all ε > 0,

lim
δ↓0

lim sup
N→∞

sup
(S,S ′)∈Aδ,T

P(|UN,1(S ′)− UN,1(S)| > ε) = 0,

Aδ,T = set of all pairs of stopping times (S ,S ′) such that
0 ≤ S ≤ S ′ ≤ S + δ ≤ T a.s.,

I for all T > 0, limK↑∞ supN P(supt∈[0,T ] U
N,1(t) ≥ K ) = 0.

To check this in our model is not too difficult... (see details in
paper with Nicolas).
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Identification of the limit measure

I Once we have tightness of the sequence µN , we need to
characterize any of its possible limits µ.

I Martingale problem We show that µ satisfies F (µ) = 0,
where for all s1 ≤ s2 ≤ . . . ≤ sk ≤ s ≤ t,

F (µ) :=

∫
D(R+)

∫
D(R+)

µ(dγ)µ(d γ̃) ϕ1(γs1) . . . ϕk(γsk )[
ϕ(γt)− ϕ(γs)−

∫ t

s
f (γu)(ϕ(0)− ϕ(γu))du

−
∫ t

s
ϕ′(γu)[hf (γ̃u)− αγu]du

]
= 0.

I This is nothing else then saying that µ has to be the law of
(Ū(t))t .
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Remark
− To prove that any limit is solution of the martingale problem is
done by developing the generator of the N−particle system
(Taylor etc). Technical, but not so difficult.
− We can also prove a quantified version of the propagation of
chaos by using a C 2−regularized version of the distance
|H(x)− H(y)| and some localization technique/truncation
procedure of the total jump rate.



Where are we ?

Introduction

Models based on stochastic intensity

Representation by means of Poisson random measures

Mean field limits in the Hawkes frame

Emergence of oscillations in the limit

Spatially structured models

Models with reset

Longtime behavior of the limit system



Longtime behavior of the finite system in the case with
reset, without external stimuli

The results of this part are mostly based on a joint work with Pierre
Monmarché.
I If f (0) = 0, the all-zero state is the only invariant state of the

finite system.

I Indeed, Aline Duarte and Guilherme Ost (2016) have shown :

Theorem
If f is differentiable in 0, then the system stops spiking almost
surely. As a consequence, the unique invariant measure of the
process is given by δ0, where 0 ∈ RN denotes the all-zero vector in
RN .
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Proof.
− Suppose all initial potential values are xi > 0, 1 ≤ i ≤ N, then
the probability that the first spike of the system occurs after time t
is

P(T1 > t) = exp

(
−

N∑
i=1

∫ t

0
f (e −αsxi )ds

)
.

− Use change of variables y = e −αsxi :

P(T1 > t) = exp

(
− 1
α

N∑
i=1

∫ xi

e−αtxi

f (y)

y
dy

)
.

− Let t →∞ :

P(T1 =∞) = exp

(
− 1
α

N∑
i=1

∫ xi

0

f (y)

y
dy

)
> 0,

since
∫
0
f (y)
y dy <∞ : f ′(0) <∞.



Proof.
− Suppose all initial potential values are xi > 0, 1 ≤ i ≤ N, then
the probability that the first spike of the system occurs after time t
is

P(T1 > t) = exp

(
−

N∑
i=1

∫ t

0
f (e −αsxi )ds

)
.

− Use change of variables y = e −αsxi :

P(T1 > t) = exp

(
− 1
α

N∑
i=1

∫ xi

e−αtxi

f (y)

y
dy

)
.

− Let t →∞ :

P(T1 =∞) = exp

(
− 1
α

N∑
i=1

∫ xi

0

f (y)

y
dy

)
> 0,

since
∫
0
f (y)
y dy <∞ : f ′(0) <∞.



Proof.
− Suppose all initial potential values are xi > 0, 1 ≤ i ≤ N, then
the probability that the first spike of the system occurs after time t
is

P(T1 > t) = exp

(
−

N∑
i=1

∫ t

0
f (e −αsxi )ds

)
.

− Use change of variables y = e −αsxi :

P(T1 > t) = exp

(
− 1
α

N∑
i=1

∫ xi

e−αtxi

f (y)

y
dy

)
.

− Let t →∞ :

P(T1 =∞) = exp

(
− 1
α

N∑
i=1

∫ xi

0

f (y)

y
dy

)
> 0,

since
∫
0
f (y)
y dy <∞ : f ′(0) <∞.



Proof.
− At each time t such that all potential values of all neurons
are simultaneously below some threshold K , there is a strictly
positive probability

≥ exp

(
−N

α

∫ K

0

f (y)

y
dy

)
that none of the neurons does ever spike again.
− Use Lyapunov techniques to show that this event (all values
below K ) happens i.o. almost surely plus conditional
Borel-Cantelli lemma.



I Finite system possesses a last spiking time L = LN <∞
almost surely, for any N.

I The situation changes however as N →∞ as we can see on
simulations (done by C. Pouzat for a slightly different model)

I We will show that LN is exponentially large in N as N →∞.
But ... LN is not a stopping time...



The last spiking time is a stopping time - somehow !
I LN is not a stopping time of the process (that is, to decide if LN ≤ t it is

not sufficient to consider the history up to time t only).
I LN becomes a stopping time if we consider a “larger” version

(UN(t),E (t)) ∈ RN+1
+ of our process.

I Fix an i.i.d. sequence (τn)n≥0, τn ∼ Exp(1). Put E (0) = τ0.

I Up to the first jump time T1, we have as before

dUN,i (t) = −αUN,i (t)dt, 1 ≤ i ≤ N.

Moreover, we put

dE (t) = −
N∑
i=1

f (UN,i (t))dt, that is,

E (t) = E (0)−
∫ t

0

N∑
i=1

f (UN,i (s))ds.



I We define T1 = inf{t ≥ 0 : E (t−) = 0}.
I At time T1, the process UN makes its transition as before

(decide which of the neurons spike and then perform the jump
transition).

I Moreover, we put E (T1) := τ1, and start again with the
dynamics described above up to the next jump

T2 = inf{t ≥ T1 : E (t−) = 0}.



I In this new setting,

LN = inf{t : E (t) >

∫ ∞
0

N∑
i=1

f (e−αsUN,i (t))ds} (6)

is now a stopping time with respect to the canonical filtration
of the enlarged process (UN ,E ).

I Notice that
∫∞
0
∑N

i=1 f (e−αsUN,i (t))ds is finite !!!
I A similar construction has been proposed by Marie Cottrell in

her article Mathematical analysis of a neural network with
inhibitory coupling SPA 1992.



Invariant states of the limit process

I In the limit, each neuron’s potential undergoes leakage at
exponential rate - and has an upward drift given by the current
mean firing rate of the system (multiplied by h).

I Moreover, it spikes randomly, at rate f (x), whenever its
current value of potential is x .

I In any invariant state, the drift term t 7→ hE(f (Ū(t))) must
be constant, say ≡ b.

I This defines - for any fixed b - a classical renewal Markov
process Ūb(t) (process coming back to 0 i.o. and thus being recurrent) with
generator

Abϕ(x) = −αxϕ′(x) + bϕ′(x) + f (x)[ϕ(0)− ϕ(x)]

and unique invariant probability measure πb.



Shape of invariant measure for fixed b
I Kac Formula implies that for any A ∈ B(R+),

πb(A) = E0

∫ T 0

0
1A(Ūb(s))ds.

I Since in between successive jumps there is only the
deterministic flow that acts, this equals∫ ∞

0
e−

∫ t
0 f (ϕs(0))ds1A(ϕt(0))dt,

ϕs(0) = b
α(1− e−αs) solution of the deterministic flow.

I R+ 3 s 7→ ϕs(0) ∈ [0, b/α[ is a bijection. Use change of
variables x = ϕs(0) to obtain that πb admits a Lebesgue
density on [0, b/α[ given by

gb(x) =
pb

b − αx
e−

∫ x
0

f (y)
b−αy dy , x < b/α,

where pb is such that
∫ b/α
0 gb(x)dx = 1 2.

2which implies that
∫
f (x)gb(x)dx = pb.



Remark
Any invariant measure of the true non-linear process must be
solution of the fixed-point equation

hpb = hπb(f ) = h

∫
f (x)gb(x)dx = b.

I Since f (0) = 0, b = 0 and π0 = δ0 is always a solution which
corresponds to the silent state.

I Are there others?
I Is the all-zero state instable?



Non-trivial equilibrium states

Assumption
f (0) = 0, f bounded and Lipschitz, f (u) ≥ ku for all u ∈ [0, u∗] for
some u∗ > 0.

Theorem
If kh > α, then there exists at least a second equilibrium state πb

∗

of the system with b∗ > 0.

In the sequel, just for simplicity, we assume that

f (x) = kx ∧ f∗, such that f (x) = kx for all x ≤ f∗/k.

In particular, if b << 1, then f (x) = kx on the support of πb.
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Proof.
I Fix b > 0 and consider the generator of the process

Abϕ(x) = (b − αx)ϕ′(x) + f (x)[ϕ(0)− ϕ(x)] .

I ϕ(x) = x gives Abϕ(x) = b − αx − xf (x).

I Integrating against the invariant measure gives

0 =

∫
[b − αx − xf (x)]gb(x)dx .

I Using that f (x) ≤ kx and that the support of πb is [0, b/α],
such that x ≤ b/α on the support, we obtain

xf (x) ≤ xk x

≤ x k
b

α
such that

0 ≥ b −
(
α + k

b

α

)∫
xgb(x)dx .
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Proof.
I Therefore

∫
xπb(dx) ≥ b

α+k b
α

.

I If b sufficiently small, then f (x) = kx for all x ∈ supp(πb). So

pb =

∫
f πb(dx) = k

∫
xπb(dx) ≥ kb

α + k b
α

. (7)

Since kh > α by assumption, this implies, if moreover
b < αkh−α

k ,

hpb = hπb(f ) > b.

I pb ≤ ‖f ‖∞ =⇒ hpb ≤ h‖f ‖∞ < b for all b sufficiently large.
Remains to show that b 7→ pb continuous.
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b 7→ pb continuous

follows from

1
pb

=

∫ b/α

0

1
b − αx

e−
∫ x
0

f (y)
b−αy dydx

=

∫ 1/α

0

1
1− αx

e−
∫ x
0

f (by)
1−αy dydx ,

(change of variables x 7→ x/b, y 7→ y/b). Dominated convergence.



Instability of 0 by means of an auxiliary simple Markov
process
− Goal : Lower bound for the total spiking rate of the finite system.
− We introduce an auxiliary simple Markov process ZN such that

FN
t :=

N∑
i=1

f (UN,i (t)) ≥ NZN(t)

for all t and such that large deviation estimates for ZN are easily
obtained (associated limit process zt is deterministic).
− Construction of ZN does only depend on behavior of derivative
of f in vicinity of 0.
The true assumption that suffices is

Assumption
f ′(u)u ≤ (r/α)f (u), f (u) ≥ ku for all u ≤ u∗.

− But in the sequel we suppose for simplicity that f (x) = kx for all
x ≤ f∗/k. And that kh > ‖f ‖∞ and N >> 1.



I If t is a spiking time, then all neurons with potential below
u∗ := f ∗/k − h/N will have an increase kh/N of their firing
rate.

I Therefore,

FN
t ≥ FN

t− +
kh

N

(
card{i : UN,i (t−) < u∗}−1

)
− ‖f ‖∞.

I Since f is non-decreasing,
FN
t− ≥ f (u∗)card{i : UN,i (t−) ≥ u∗}, such that

card{i : UN,i (t−) < u∗} ≥ N −
FN
t−

f (u∗)
.

I

FN
t

N
≥

FN
t−
N

+
kh

N

(
1−

FN
t−/N

f (u∗)
− 1
N

)
− ‖f ‖∞

N
=: mN(

FN
t−
N

).
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Definition of the PDMP ZN

ZN has generator

AZN
ϕ(z) = −rzϕ′(z) + Nz [ϕ(mN(z) ∧ zN)− ϕ(z)],

where

mN(z) = z +
kh

N
(1− z

f (u∗)
− 1

N
)+ −

‖f ‖∞
N

; u∗ = f ∗/k − h/N,

zN =

(
1− ‖f ‖∞

kh
− 1

N

)
+

f (u∗)− ‖f ‖∞/N.

Remark
Since kh > ‖f ‖∞, we have that mN(z) > 0 for all N ≥ N0, and
mN is non-decreasing in z .



− The definition of zN is such that{
FN
t−/N ≤ zN + ‖f ‖∞

N =⇒ FN
t ≥ FN

t−
FN
t−/N ≥ zN + ‖f ‖∞

N =⇒ FN
t ≥ zN .

− So we may couple ZN and FN/N together s.t. they jump
together as often as possible. Since ZN

t ≤ zN for all t, the above
implies that, whenever FN jumps alone, after the jump we still have
FN
t /N ≥ ZN

t , provided it was true before the jump.

− Since mN ↑, at any common jump time t,

ZN
t ≤ mN(ZN

t−) ≤ mN(FN
t−/N) ≤ FN

t /N.
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Mean field limit of ZN

I ZN jumps at rate Nz (whenever its current state is z), and
jumps are of size ∼ kh

N (1− z
f (u∗) )+ − ‖f ‖∞N .

I In particular we have that, as N →∞,

AZN
ϕ(z)→ (−rx + xG (x))ϕ′(x)

which is the generator associated to a (non-stochastic) ODE
given by

ż = −rz + G (z)z , G (z) = (kh(1− z

f (u∗)
)− ‖f ‖∞)+.

I G ↓ . Thus (if kh sufficiently large) there is a unique solution
z∗ > 0 of G (z∗) = r , and z∗ is globally attracting.

This
implies the instability of 0 for the limit process and also a LDP.
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The above coupling implies that, for

LN = inf{t :
N∑
i=1

ZN,i (]t,+∞[) = 0}

and
L̄N = inf{t : ZN does not jump in ]t,∞[ },

we have

Corollary
Suppose that ZN

0 ≤
FN
0
N ∧ zN . Then for the synchronous coupling,

LN ≥ L̄N .

− It is however easier to control

LNη = inf{t : ZN
t ≤ η}

for some fixed and small 0 < η < z∗.



I If ZN
0 = x ∈]η, z∗[, then limN ZN

t = zt → z∗ as t →∞.
I So for N large, ZN

t should also be attracted to z∗; at least
during some long time period.

I Such results can be expressed in terms of large deviation
results - here for jump processes.

More precisely, we have

Theorem (Feng-Kurtz, LD for stoch. processes, 2006)
Suppose that ZN

0 = x ∈]η, z∗[. Then there exists V̄ <∞ (cost
functional related to the fact that we force the limit ODE to go
from its equilibrium z∗ to η ) such that

1. For all δ > 0, limN Px(e(V̄−δ)N < LNη < e(V̄+δ)N) = 1.

2. limN
1
N logExL

N
η = V̄ .



I In particular, the last spiking time of the system is
exponentially large in N.

I We have even obtained a stronger result with Pierre
Monmarché : the metastability of the system, that is, the
fact that – suitably renormalized – exit times of neighborhoods
of the limit invariant state are exponentially distributed.



Thanks for your attention !!!
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