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2 Fluctuation results



Diffusions interacting on a (random) graph

Let Gn a graph with vertices Vn := {1, . . . ,n} and for any i, j ∈ Vn, denote by
ε
(n)
i,j = 1 (resp. ε

(n)
i,j = 0) if the edge j → i is present in Gn (resp. absent).

Consider n interacting diffusions X i
t ∈ X , i = 1, . . . ,n, t ≥ 0 solving

dX i
t =

1
npn

n

∑
j=1

ε
(n)
i,j Γ(X i

t ,X
j
t )dt +dBi

t , i = 1, . . . ,n.

1 Also possible to add some local dynamics: F(X i
t )dt ,

2 Additive noise: B1, . . . ,Bn: standard i.i.d. Brownian motions.

3 Assume X = T := R/2π : each X i is a phase on the torus (extensions
to Rd possible).



We place ourselves in a situation where the εn
i,j encode for a graph Gn that is

well-approximated by a bounded graphon W (see the first example of P-E.
Jabin’s lecture).

dX i
t =

1
npn

n

∑
j=1

ε
(n)
i,j Γ(X i

t ,X
j
t )dt +dBi

t , i = 1, . . . ,n.

Further simplification here: assume that W ≡ 1: we are looking at ho-
mogeneous graphs.
The renormalisation by npn is here to ensure that the interaction re-
mains of order 1 as n → ∞. If d i

n := ∑
n
j=1 ε

(n)
i,j is the degree of vertex i ,

we will assume that dn ∼ npn as n → ∞.
Remark: Extensions to inhomogeneous graphs/nontrivial bounded graphons
possible and easy.

Homogeneity

We are interested in two regimes
• The dense case pn ≡ p ∈ (0,1]: the degree of each vertex

remains of order n.
• The diluted case pn → 0 as n → ∞: the degree of each vertex is

o(n).

Dense vs Diluted



A detour to the mean-field framework
In case Gn is the complete graph,

dX i
t =

1
n

n

∑
j=1

Γ(X i
t ,X

j
t )dt +dBi

t , i = 1, . . . ,n.

Rewriting the interaction in terms of the empirical measure of the system

µn,t :=
1
n

n

∑
j=1

δX j
t

gives

dX i
t =

∫
X

Γ(X i
t ,y)µn,t(dy)dt +dBi

t , i = 1, . . . ,n.

Crucial assumptions/properties are
• All-to-all interactions: the graph of interaction between particles in the

complete graph Kn on {1, . . . ,n},
• Homogeneous interactions: the strength of interaction is of the same

order 1
n , uniformly on all edges (i → j),

• Exchangeability at any time: assuming the initial condition (X 1
0 , . . . ,X

n
0 )

to be i.i.d., the law of the vector (X 1
t , . . . ,X

n
t ) at any t > 0 is invariant by

permutation.



• The X i , i = 1, . . . ,n have symmetric laws Pn on C ([0,T ),X )n

which are µ-chaotic, where µ is the law of the nonlinear process
solution to {

dX̄t =
∫
Γ(X̄t ,y)µt(dy)dt +dBt ,

µt = Law(X̄t).

• Equivalently, the empirical measure µn converges weakly as
n → ∞ towards µ , weak solution to the nonlinear Fokker Planck
equation

∂t µt =
1
2

∂
2
x µt −∂x

({∫
Γ(·,y)µt(dy)

}
µt

)
.

• The previous convergence may be formalized as

E

(
sup

t∈[0,T ]

dBL (µn,t ,µt)

)
≤ C(T )√

n

for the bounded-Lipschitz distance defined as

dBL (µ,ν) = sup
{
|
∫

fdµ −
∫

fdν | ,∥f∥
∞
≤ 1, |f |Lip ≤ 1

}
.

Theorem [McKean, Sznitman, etc.]



From a modelling point of view, the homogeneity and exchangeability of the
initial mean-field system

dX i
t =

1
n

n

∑
j=1

Γ(X i
t ,X

j
t )dt +dBi

t , i = 1, . . . ,n (MF)

suffers from several limitations:
• in many applications, the graph of interaction is not complete (e.g.

neuroscience) and interactions are not homogeneous along the graph,
• one may not want the initial condition to be i.i.d., only that (see [Gärtner,

Oelschläger] for (MF))

µn,0
weakly−−−→
n→∞

µ0

Just one motivation for this: in order to look at the behavior of
(Markovian) (MF) on a time-scale that goes beyond bounded [0,T ], one
may want to re-iterate the typical estimate

E

(
sup

t∈[0,T ]

dBL (µn,t ,µt)

)
≤ C(T )√

n

on [T ,2T ], [2T ,3T ], etc. [Bertini, Giacomin, Poquet, Coppini, L.]

But at any T , the initial condition µn,T for (µn,s,s ∈ [T ,2T ]) is not i.i.d.!



Universality of the mean-field class

• How universal the mean-field framework is? How much can we perturb
the complete graph of interaction Kn into some graph Gn and
nonetheless conserve similar asymptotics (in particular the same
mean-field limit) for the empirical measure as n → ∞?

• At which level is this universality true? law of large numbers,
fluctuations, large deviations?

• what is the possible range of dilution/sparsity of the graph Gn?
• Is it possible to quantify the proximity of µn to its mean-field limit µ in

terms of the proximity between Gn and Kn? for which graph topology?
• what does it imply on the local or global structure of the graph Gn?



Example 1: Erdős-Rényi graph

Gn: Erdős-Rényi graph with parameter pn ∈ [0,1]: the ε
(n)
i,j are independent

variables with Bernoulli law with parameter pn. Then d i
n is Binomial(n−1,pn)

so that E
(
d i

n

)
≈ npn so that we look at

dX i
t =

1
npn

n

∑
j=1

ε
(n)
i,j Γ(X i

t ,X
j
t )dt +dBi

t , i = 1, . . . ,n

Complete graph VS Erdős-Rényi graph, with n = 200 and p = 0.05:



Example 2: Random regular graphs
One can construct a graph Gn in which each vertex has degree d = dn

provided 3 ≤ d < n and dn is even and defining pn =
dn
n , so that one can also

define

dX i
t =

1
npn

n

∑
j=1

ε
(n)
i,j Γ(X i

t ,X
j
t )dt +dBi

t , i = 1, . . . ,n



The LLN

dX i
t =

1
npn

n

∑
j=1

ε
(n)
i,j Γ(X i

t ,X
j
t )dt +dBi

t , i = 1, . . . ,n

The interaction is no longer a functional of the empirical measure µn but
rather of a collection of local empirical measures

µ
(i)
n,t :=

1
npn

n

∑
j=1

ε
(n)
i,j δX j

t
.

Here µ
(i)
n accounts for the direct neighbbors of the vertex i . But the dy-

namics of a neighbor j of i itself depends on the local empirical measure
µ
(j)
n , etc. : a whole hierarchy of empirical measures appears, indexed

by local patterns in the graph.

Local empirical measures



LLN: naive approach, synchronous coupling

Compare

1 the particle system

dX i
t =

1
npn

n

∑
j=1

ε
(n)
i,j Γ(X i

t ,X
j
t )dt +dBi

t , i = 1, . . . ,n

2 with i.i.d. copies X̄i of the nonlinear process, with same initial condition
and Brownian motion

dX̄ i
t =

∫
Γ(X̄ i

t ,y)µt(dy)dt +dBi
t , i = 1, . . . ,n

As in the mean-field case, we want to prove that

sup
i=1,...,n

E

[
sup

s∈[0,t]

∣∣X i
s − X̄ i

s

∣∣2]−−−→
n→∞

0.



Suppose that

bn = bn(Gn) := sup
i=1,...,n

∣∣∣∣ d i
n

npn
−1

∣∣∣∣−−−→n→∞
0. (1)

Suppose that X i
0, i = 1, . . . ,n i.i.d. with law µ0. Suppose that npn → ∞.

Under Lipchitz regularity of Γ, assuming condition (1), there exists some
constant CΓ > 0 and n0 such that for all n ≥ n0 and any t ≥ 0,

sup
i=1,...,n

E

[
sup

s∈[0,t]

∣∣X i
s − X̄ i

s

∣∣2]≤ CΓ

(
1

npn
+b2

n

)
exp(CΓt)−−−→

n→∞
0. (2)

In particular,

E

[
sup

s∈[0,t]
dBL (µn,s,µs)

]
−−−→
n→∞

0, (3)

where (µt)t∈[0,T ] solves the NFP with initial condition µ0.

Theorem [Delattre, Giacomin, L., 2016]



The proof is elementary

Apply Ito’s formula to
∣∣X i

t − X̄ i
t

∣∣2:

E
[
sup

0≤s≤t

∣∣X i
s − X̄ i

s

∣∣2]≤ C
∫ t

0
E
[
sup

0≤v≤u

∣∣X i
v − X̄ i

v

∣∣2]du

+
∫ t

0
E

∣∣∣∣∣ 1
npn

n

∑
j=1

ε
(n)
i,j Γ

(
X i

u,X
j
u

)
−
∫

Γ
(
X̄ i

u,y
)

µu (dy)

∣∣∣∣∣
2
du

and split the last term within the integral into the sum of

• E
[∣∣∣ 1

npn
∑

n
j=1 ε

(n)
i,j

{
Γ
(

X i
u,X

j
u

)
−Γ
(

X̄ i
u, X̄

j
u

)}∣∣∣2], → Grönwall term

• E
[∣∣∣ 1

npn
∑

n
j=1 ε

(n)
i,j Γ

{(
X̄ i

u, X̄
j
u

)
−
∫
Γ
(
X̄ i

u,y
)

µu (dy)
}∣∣∣2], → covariance

term, of order 1
npn

•
∣∣∣ 1

npn
∑

n
j=1 ε

(n)
i,j −1

∣∣∣2 E
[∣∣∫ Γ(X̄ i

u,y
)

µu (dy)
∣∣2], → bounded by b2

n .



About bn → 0 and the initial condition
Propagation of chaos

sup
i=1,...,n

E

[
sup

s∈[0,t]

∣∣X i
s − X̄ i

s

∣∣2]→ 0 (4)

is valid under the condition

bn = bn(Gn) := sup
i=1,...,n

∣∣∣∣ d i
n

npn
−1

∣∣∣∣−−−→n→∞
0.

• Example 1, ER(pn): the last condition is satisfied for almost every
realisation of ER(pn) as long as

npn ≫ lnn

This condition is optimal for (4), as pn ∼ lnn
n is the threshold for

connectivity in ER(pn) (but not necessarily optimal for the convergence
of the empirical measure!)

• Example 2, regular graphs with degree dn: last condition true when
dn → ∞.



Why we are not very satisfied with this result

1 The condition bn → 0 does not even require the graph Gn to be
connected (hence the result does not distinguish at all between (i) some
ER(1/2) and (ii) two disjoints mean-field K (1)

n/2 ∪K (2)
n/2. Solution to this

“paradox”: the convergence supi=1,...,n E
[
sups∈[0,t]

∣∣X i
s − X̄ i

s

∣∣2]→ 0 is

only valid on small (logarithmic) times, but does not say anything on the
long time behavior of the system.

Conclusion: in one needs to look at the longtime behavior of the system,
bn → 0 is not the correct condition.

2 For the convergence of the empirical measure, for ER graphs, we need
npn ≫ lnn, but one expects the result to be valid under npn → ∞ only.

3 We want to discard the hypothesis that X i
0 are i.i.d. One may even want

that the initial condition depends on the graph !



Let (Gn)n a (deterministic) sequence of graph on {1, . . . ,n}. Suppose
that dBL (µn,0,µ0) → 0 (not necessarily i.i.d. and may depend on the
graph). Then, if Gn satisfies

∥WGn −1∥
∞→1 = sup

si ,tj∈±1

1
n2

n

∑
i,j=1

(
ε
(n)
i,j

pn
−1

)
si tj −−−→

n→∞
0 (C)

then

E

(
sup

t∈[0,T ]

dBL (µn,t ,µt)

)
−−−→
n→∞

0.

Theorem, Convergence of µn, [Coppini, 2022, Coppini, L., Poquet, 2022]

• Ex 1, ER(pn) case: condition (C) is true as long as npn → ∞, and
this condition is optimal: when npn → λ , Gn converges locally to a
Galton-Watson tree [Oliveira, Reis, Stolerman 2020], [Lacker, Ramanan, Wu,

2020].
• Ex 2, regular graphs with degree dn: condition (C) is true for

Ramanujan graphs (i.e. regular graphs for which the second
highest eigenvalue verifies λ (dn)≤ 2

√
dn −1).

Examples



The effect on non-exchangeability

Consider Example 1: ER(pn) graphs. What we have is: almost surely w.r.t.
the graph,

1 Convergence of marginals: supi=1,...,n E
[
sups∈[0,t]

∣∣X i
s − X̄ i

s

∣∣2]−−−→
n→∞

0,

when pn ≫ lnn
n (and this is optimal!)

2 Convergence of empirical measure: E
(
supt∈[0,T ] dBL (µn,t ,µt)

)
−−−→
n→∞

0,

when pn ≫ 1
n (and this is optimal!)

When 1
n ≪ pn ≪ lnn

n , item (1) is false, but (2) is true: the convergence
of marginals is no longer equivalent to the convergence of the empirical
measure.

Non-exchangeability breaks propagation of chaos



Recall that

µ
(i)
n,t :=

1
npn

n

∑
j=1

ε
(n)
i,j δX j

t
.

Theorem (Convergence of local measures, [Coppini, L., Poquet, 2022])
Let Gn be a sequence of ER(pn) graphs. Suppose that dBL (µn,0,µ0)→ 0 (not
necessarily i.i.d. but independent on the graph). Suppose that

pn ≫
1

n1/3
,

then for almost every realisation of the graph Gn, we have that, for all l ≥ 1

E

(
sup

t∈[0,T ]

dBL

(
µ
(l)
n,t ,µt

))
−−−→
n→∞

0



Sketch of proof
Define for all test function f and s ≤ T , Ps,T f (x) = EB

(
f (ΦT

s (x))
)

where
t 7→ Φt

s(x) solves dXt =
∫
Γ(Xt ,y)µt(dy)+dBt with Φs

s(x) = x . Then, for
any T , one has that ∂t ⟨µt , Pt,T ⟩= 0. Hence, one expects that
∂t ⟨µn,t , Pt,T ⟩ ≈ 0, up to order terms that one can control in n. More
precisely, one has

E |⟨µn
T −µT , f ⟩| ≤ E |⟨µn

0 −µ0 , P0,T f ⟩|+E

∣∣∣∣∣1n n

∑
k=1

∫ T

0
∂x Pt,T f (X k

t )dBk
t

∣∣∣∣∣
+
∫ T

0
E

∣∣∣∣∣ 1
n2

n

∑
i,j=1

(
εn

i,j

pn
−1

)
∂x Pt,T f (X i

t )Γ
(

X i
t ,X

j
t

)∣∣∣∣∣dt

+
∫ T

0
E

∣∣∣∣∣1n n

∑
i=1

∂x Pt,T f (X i
t )
〈
Γ
(
X i

t , ·
)
, µ

n
t −µt

〉∣∣∣∣∣dt := (A)+(B)+(C)+(D)

• (A): initial condition
• (B): noise term
• (C): graph term, controlled by ∥WGn −1∥

∞→1, via Grothendieck
inequality

• (D): controlled by dBL (µn,t ,µt).



Extensions

1 Inhomogenous graphs:
• [Medvedev, 2014]: no noise, Neunzert approach.
• [L. 2020]: quenched results for diffusions on W -random graphs (bounded or

in Lp)
• [Bayraktar, Wu, 2020]: annealed results for bounded W
• [Bet, Coppini, Nardi, 2020]: random graphons

2 Sparse connections:
• [Lacker, Ramanan, Wu, 19-20], [Oliveira, Reis, Stolerman, 19-20]: interaction on

locally tree-like graphs
• [Jabin, Poyato, Soler, 2021]: sparse connection and measured-valued

graphons

3 Beyond bounded times
• [Coppini, 2022]: long-term stability for Kuramoto-type interaction
• [Poquet, Le Bris, 2023]: uniform in time convergence for F confining

4 Other types of (jump) dynamics
• [Agathe-Nerine, 2022]: Hawkes processes
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Review of the pure mean-field case

Beyond the previous LLN result, one is interested in CLT results: the
fluctuation process is

ηn,t :=
√

n (µn,t −µt)

The process ηn is a signed measure, element of C ([0,+∞),S ′), where S ′

is the classical Schwartz space of distributions.
Classical approaches in the pure mean-field case:

• Girsanov transform and asymptotics for U-statistics: finite-dimensional
convergence of the field

{
⟨ηn , f ⟩ , f ∈ L2(µ), Eµ(f ) = 0

}
towards some

Gaussian process [Sznitman, Shiga, Tanaka, Hitsuda, Budhiraja, Wu, etc.]

• Semi-martingale approach [Fernandez, Méléard, Jourdain etc.]:
1 Write a semimartingale decomposition for ηn,
2 Prove tightness of ηn (typically in C ([0,T ],W−j,α ), where W−j,α is the

dual of the set of test functions g s.t. ∑k≤j
∫
X

|∂ k
x g(x)|2

1+|x |2α dx <+∞,

[Rebolledo,Mitoma, Joffe, Métivier]
3 Identify the limit as the unique solution of a linear SPDE



The result of Fernandez and Méléard (1997) in the MF case
Ito’s formula gives, for all test function f

⟨ηn,t , f ⟩= ⟨ηn,0 , f ⟩+
∫ t

0

〈
ηn,s , Lµn,s(f )

〉
ds+Wn,t(f ),

where

Lν f :=
1
2

∂
2
x f +

〈
ν(dx ′) , Γ

(
·,x ′)

∂x f (·)
〉
+
〈
ν(dx ′) , Γ

(
x ′, ·
)

∂x f (x ′)
〉

and Wn is an explicit martingale converging to some Gaussian process W .

There exist j ≥ 1, α > 0, such that for iid initial condition with sufficient
moments, the process ηn converges in C ([0,+∞),W−j,α) as n → ∞ to
η , unique solution to the linear SPDE

ηt = η0 +
∫ t

0
L ∗

µs
ηsds+Wt ,

Theorem [Fernandez, Méléard, 1997]

• The proof relies heavily on the exchangeability of the initial
condition

• The miracle of mean-field set-up again: we have a closed
formulation of the fluctuation process.

Remark



Fluctuations on Gn = ER(pn)

There is no longer a closed equation for the fluctuation process: Ito’s formula
gives again

ηn,t = ηn,0 +
∫ t

0
L ∗

µn,s
ηn,sds+

∫ t

0
Θ∗

η̂n,sds+Wn,t ,

for the auxiliary process:

η̂n,t =
1

n3/2

n

∑
i,j=1

(
ε
(n)
i,j

pn
−1

)
δ
(X i

t ,X
j
t )

If ones believes in the universality of the mean-field fluctuations, one is
left with proving that

η̂n → 0, in some H−j(T) as n → ∞

Question



Dealing with the auxiliary process: first wrong approach

η̂n,t =
1

n3/2

n

∑
i,j=1

(
ε
(n)
i,j

pn
−1

)
δ
(X i

t ,X
j
t )

First guess: apply η̂n to the test function f ≡ 1:

⟨η̂n , 1⟩= 1

n3/2

n

∑
i,j=1

(
ε
(n)
i,j

pn
−1

)
By Bernstein inequality, one has immediately that for all ε > 0

P

(
|⟨η̂n , 1⟩|> 1

n
1
2−ε p1−ε

n

)
≤ 2exp

(
−nε

4

)
and hence ⟨η̂n , 1⟩ → 0 a.s. when pn ≫ 1

n1/2−ε
.

The presence of δ
(X i

t ,X
j
t )

makes the previous argument no longer appli-

cable. X i
t ,X

j
t depend in a nontrivial way on the sequence (εn

i,j): inde-
pendence is broken.

Problem



η̂n,t =
1

n3/2

n

∑
i,j=1

(
ε
(n)
i,j

pn
−1

)
δ
(X i

t ,X
j
t )

Idea: apply again Ito’s formula and pursue this decomposition on η̂n:

η̂n,t = η̂n,0 +
∫ t

0
L̂ ∗

µn,s
η̂n,sds+Cn,t + Ŵn,t ,

Again, the remaining term Cn depends itself on higher statistics within the
graph, i.e. e.g. quantities such that

1
n3

n

∑
i,j,k=1

(
ε
(n)
i,j

pn
−1

)(
ε
(n)
i,k

pn
−1

)
δ
(X i

t ,X
j
t ,X

k
t )

etc.

How to close this hierarchy of empirical measure?
Question



Main result
Good news: the remainder term Cn vanishes as n → ∞: the fluctuations are
only captured by the 2-order expansion (ηn, η̂n).

There exists 3 < r < r ′ such that if the initial fluctuations (ηn,0, η̂n,0) sat-

isfies supn E
(
∥ηn,0∥1+α

−r

)
< ∞, supn E

(
∥η̂n,0∥1+α

−r

)
< ∞ and converge

in H−r ′(T)⊗H−r ′(T2) and and if the dilution condition holds

pn ≫
1

n1/4
.

Then, for almost every realisation of the graph Gn, (ηn, η̂n) converges

in C
(
[0,T ],H−r ′(T)⊗H−r ′(T2)

)
towards the unique solution to the

system of coupled SPDEs{
ηt = η0 +

∫ t
0 L ∗

µs
ηsds+

∫ t
0 Θ

∗η̂sds+Wt ,

η̂t = η̂0 +
∫ t

0 L̂ ∗
µs

η̂sds,

where (Wt)t∈[0,T ] is an explicit Gaussian process, independent of (η0, η̂0).

Theorem [Coppini, L., Poquet, 2022]



Universality of fluctuations

Suppose in addition that the initial condition is chosen independently of
the graph. Then, under the previous assumption, the fluctuations are
the same as in the mean-field case: η̂ ≡ 0 and ηn converges to

ηt = η0 +
∫ t

0
L ∗

µs
ηsds+Wt

Corollary

Hence, the mean-field CLT is universal, provided we choose the initial
condition independently on the graph.

It is possible to choose well-prepared initial conditions (that depend on
the graph) such that the fluctuations are captured by (η , η̂), not only η .
Hence, fluctuations are non universal is one chooses initial conditions
that depend on the graph.

Remark



CLT for local fluctuations
We are also interested in the joint convergence of(

ζ
1
n ,ζ

2
n ,ηn

)
where ζ l

n is the fluctuation field associated to the local empirical measure

ζ
l
n :=

√
npn
(
µ

l
n −µ

)
.

Suppose that (X 1
0 , . . . ,X

n
0 ) are i.i.d. with law µ0, independent from the

graph. Suppose that liminfn np5
n = ∞ and denote by p := limn→∞ pn ∈

[0,1]. Then, for a.e. realizations of the graph,
(
ζ n,1,ζ n,2,ηn

)
con-

verges as n → ∞ in C
(
[0,T ],(S ′)3

)
to
(
ζ 1,ζ 2,η

)
solution to

ζ
l
t = ζ

l
0 +

∫ t

0
U ∗

s ζ
l
sds+

√
p
∫ t

0
V ∗

s ηsds+W l
t , l = 1,2,

ηt = η0 +
∫ t

0
L ∗

µs
ηsds+Wt .

(5)

for explicit linear operators Us, Vs and for (ζ 1
0 ,ζ

2
0 ,η0)⊥⊥

(
W 1

t ,W
2
t ,Wt

)
Gaussian processes with explicit covariance.

Theorem [Coppini, L., Poquet, 2022]



Consequence: phase transitions for local measures

Under the previous assumptions,
• if pn → p > 0 (dense case), (ζ 1,ζ 2) = limn→∞(ζ

1
n ,ζ

2
n ) are

correlated (they are equal in the MF case!)
• if pn → 0 (diluted case), (ζ 1,ζ 2) = limn→∞(ζ

1
n ,ζ

2
n ) are

independent.

Corollary



Idea of proof

The proof follows the usual steps of (i) tightness of the processes (ηn, η̂n)
and (ii) uniqueness of the limit. The key argument is to control the terms in
the expansion of the fluctuation process, the first one being the auxiliary
process

η̂n,t =
1

n3/2

n

∑
i,j=1

(
ε
(n)
i,j

pn
−1

)
δ
(X i

t ,X
j
t )

but really higher-order functionals, indexed by local trees within the graph:

Cn,t :=
1
n3

n

∑
i,j,k=1

(
ε
(n)
i,j

pn
−1

)(
ε
(n)(
i,k

pn
−1

)
δ
(X i

t ,X
j
t ,X

k
t )
,

Cn,t :=
1
n3

n

∑
i,j,k=1

(
ε
(n)
i,j

pn
−1

)(
ε
(n)
j,k

pn
−1

)
δ
(X i

t ,X
j
t ,X

k
t )



Key idea: Grothendieck inequalities

The proof relies on (extensions of) the Grothendieck inequality, whose most
simple instance is

There is a universal constant K such that for any array ai,j , for any
Hilbert space H,

sup

{∣∣∣∣∣∑j,k ajk ⟨xj ,yk ⟩H

∣∣∣∣∣ : ∥xj∥H ,∥yk∥H ≤ 1

}

≤ K sup

{∣∣∣∣∣∑j,k ajk sj tk

∣∣∣∣∣ : sj =±1, tk =±1

}

Theorem, Grothendieck



This identity gives an estimate on Sobolev norms of the process η̂n in terms
of similar quantities where the Dirac has been replaced by signs in ±1: we
have removed the dependence!
The price we have to pay is that we need to control such weighted sums in
the worst-case scenario, which requires stronger concentration estimates: a
union bound on the sup gives a factor 4n so that the previous

P

(
sup
s,t

∣∣∣∣∣ 1

n3/2

n

∑
i,j=1

(
ε
(n)
i,j

pn
−1

)
si tj

∣∣∣∣∣> 1

n
1
2−ε p1−ε

n

)
≤ 2×4n exp

(
−nε

4

)
is no longer summable ! And this does not work for η̂n !



In order to deal with Cn,t , Cn,t , we need higher order inequalities. Bad news:
Grothendieck inequalities for multlinear functionals are false in general. Good
news: there is a class of functionals for which they remain true [Blei, 2014].
Let m ≥ 1, U = (S1, . . . ,SN) of non empty sets with ∪N

i=1Si = {1,2, . . . ,m},
for α = (αj)1≤j≤m ∈ Zm, define the projections πSi (α) = (αj)j∈Si . Consider
the functional νU : l2

(
Z|S1|

)
× . . .× l2

(
Z|SN |

)
→ C defined as

νU (x1, . . . ,xN) = ∑α∈Zm x1(πS1(α)) · · ·xN(πSN (α)). Denote, for 1 ≤ j ≤ m,
by kj(U ) = |{i : j ∈ Si}| and by IU the minimal incidence
IU =min{kj(U ) : j ∈ {1, . . . ,m}}.

Theorem
Suppose that IU ≥ 2. Then there exists a positive constant KU , depending
only on the covering U , such that for any finitely supported scalar n-array
aj1...jN ,

sup

∣∣∣∣∣
{

∑
j1...,jN

aj1...jN νU (x1, . . . ,xN) : ∥x1∥l2(Z|S1|) ≤ 1, . . . ,∥xN∥l2(Z|SN |) ≤ 1

}∣∣∣∣∣
≤ KU sup

{∣∣∣∣∣ ∑
j1,...,jN

aj1...jN s1,j1 · · ·sN,jN

∣∣∣∣∣ : s1,j1 =±1, . . . ,sN,jN =±1

}
. (6)



Conclusion

• At the level of the LLN, the mean-field limit remains universal for
diffusions on random graphs for both the empirical measure and local
empirical measures as long as npn → ∞.

• These results remains largely true for inhomogeneous connections
(W -random graphs)

• At level of the CLT, mean-field fluctuations remain universal as long as
the initial condition is independent of the graph, but not be universal in
general.

• The optimality of the dilution regime (for now np4
n → ∞) remains unclear.
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