Particle approximation of the doubly parabolic Keller-Segel equation in the plane

Milica Tomasevic CNRS - CMAP Ecole Polytechnique

with N. Fournier (LPSM, SU), to appear in JFA

Mean Field Systems Rennes, June 2023 Motivations

Particle approximation

Main Result

Strategy of proof

"Markovianization" argument

Motivations

Particle approximation

Main Result

Strategy of proof

"Markovianization" argument

KS equation

- Models chemotaxis: directed movement of a cell population guided by chemical stimuli (Keller-Segel '70).
- $\begin{array}{l} \bullet \quad \mbox{Cell density } \rho_t \geq 0, \mbox{ concentration of the chemical } c_t \geq 0 \mbox{ at } t > 0. \\ \left\{ \begin{array}{l} \partial_t \rho_t(x) = \Delta \rho_t(x) \chi \nabla \cdot (\rho_t(x) \nabla c_t(x)), \quad t > 0, x \in \mathbb{R}^2, \\ \theta \partial_t c_t(x) = \Delta c_t(x) \lambda c_t(x) + \rho_t(x), \quad t > 0, x \in \mathbb{R}^2, \\ \rho_0, c_0. \end{array} \right. \end{array} \right.$

(1)

Parameters:

- · $\chi > 0$: chemotactic sensitivity,
- $\cdot \ \theta > 0:$ ratio between the diffusion time scales of cells and chemical,
- $\cdot \ \lambda \geq 0:$ death rate of the chemo-attractant,
- $\cdot \int \rho_0(dx) = 1$ total mass of cells rescaled.
- $\theta = 0$: parabolic-elliptic case, $\theta > 0$ doubly parabolic.

Finite Time Blow Up VS Global Well-Posedness in \mathbb{R}^2

- FTBU: A point cluster emerges due to mutual cell attraction (some norm explodes in FT).
- ► Well known for parabolic-elliptic case:
 - $\cdot \ \chi < 8\pi$: GWP,
 - $\cdot \ \chi > 8\pi$: FTBU,
 - · $\chi = 8\pi$: BU as $t \to \infty$. (See e.g. Perthame survey '05)

Doubly parabolic:

- $\cdot \chi < 8\pi$: GWP (Calvez-Corrias '08) ,
- $c_0 \equiv 0$, GW for any $\chi > 0$ when θ is large enough (Biler-Guerra-Karch '15, extension Corrias-Escobedo-Matos '14)
- FTBU open, only result for $\chi > 8\pi$ radial solution on a disk. (Herrero-Velasquez '97) and recently (Mizoguchi '21).

Our goal: derive the system (1) as a mean-field limit of an Interacting particle system.

Finite Time Blow Up VS Global Well-Posedness in \mathbb{R}^2

- FTBU: A point cluster emerges due to mutual cell attraction (some norm explodes in FT).
- ► Well known for parabolic-elliptic case:
 - $\cdot \ \chi < 8\pi$: GWP,
 - $\cdot \ \chi > 8\pi$: FTBU,
 - · $\chi = 8\pi$: BU as $t \to \infty$. (See e.g. Perthame survey '05)

Doubly parabolic:

- $\cdot \ \chi < 8\pi$: GWP (Calvez-Corrias '08) ,
- $c_0 \equiv 0$, GW for any $\chi > 0$ when θ is large enough (Biler-Guerra-Karch '15, extension Corrias-Escobedo-Matos '14)
- · FTBU open, only result for $\chi > 8\pi$ radial solution on a disk. (Herrero-Velasquez '97) and recently (Mizoguchi '21).

Our goal: derive the system (1) as a mean-field limit of an Interacting particle system.

Motivations

Particle approximation

Main Result

Strategy of proof

"Markovianization" argument

Mean field limit

Typical particle when $N=\infty$ with a 2 step approach:

1. Follows the potential *c*:

$$dX_t = \sqrt{2}dW_t + \chi \nabla c_t(X_t)dt.$$

Denote $\rho_t := \mathcal{L}(X_t)$, for t > 0.

2. Feynman-Kac for c with ρ as source term:

$$c_t(x) = b_t^{c_0,\theta,\lambda}(x) + \int_0^t (K_{t-s}^{\theta,\lambda} * \rho_s)(x) \mathrm{d}s,$$

where we denoted, for $(t,x) \in (0,\infty) \times \mathbb{R}^2$,

$$\begin{split} g_t^{\theta}(x) &:= \frac{\theta}{4\pi t} e^{-\frac{\theta}{4t}|x|^2}, \quad K_t^{\theta,\lambda}(x) := \frac{1}{\theta} e^{-\frac{\lambda}{\theta}t} g_t^{\theta}(x), \\ b_t^{c_0,\theta,\lambda}(x) &:= e^{-\frac{\lambda}{\theta}t} (g_t^{\theta} * c_0)(x). \end{split}$$

Mean field limit

Typical particle when $N = \infty$ with a 2 step approach:

1. Follows the potential *c*:

$$dX_t = \sqrt{2}dW_t + \chi \nabla c_t(X_t)dt.$$

Denote $\rho_t := \mathcal{L}(X_t)$, for t > 0.

2. Feynman-Kac for c with ρ as source term:

$$c_t(x) = b_t^{c_0,\theta,\lambda}(x) + \int_0^t (K_{t-s}^{\theta,\lambda} * \rho_s)(x) \mathrm{d}s,$$

where we denoted, for $(t,x)\in(0,\infty)\times\mathbb{R}^2$,

$$\begin{split} g^{\theta}_t(x) &:= \frac{\theta}{4\pi t} e^{-\frac{\theta}{4t}|x|^2}, \quad K^{\theta,\lambda}_t(x) := \frac{1}{\theta} e^{-\frac{\lambda}{\theta}t} g^{\theta}_t(x), \\ b^{c_0,\theta,\lambda}_t(x) &:= e^{-\frac{\lambda}{\theta}t} (g^{\theta}_t * c_0)(x). \end{split}$$

Putting everything together,

$$\begin{cases} X_t = X_0 + \sqrt{2}W_t + \chi \int_0^t \nabla b_s^{c_0,\theta,\lambda}(X_s) \mathrm{d}s + \chi \int_0^t \int_0^s (\nabla K_{s-u}^{\theta,\lambda} * \rho_u)(X_s) \mathrm{d}u \mathrm{d}s, \\ \rho_s = \mathrm{Law}(X_s), s \ge 0. \end{cases}$$

Notice

- 1. Past laws dependence,
- 2. Singular interaction in ∇K .

(well posedness with L^p spaces (T. '20) in \mathbb{R}^2)

Putting everything together,

$$\begin{cases} X_t = X_0 + \sqrt{2}W_t + \chi \int_0^t \nabla b_s^{c_0,\theta,\lambda}(X_s) \mathrm{d}s + \chi \int_0^t \int_0^s (\nabla K_{s-u}^{\theta,\lambda} * \rho_u)(X_s) \mathrm{d}u \mathrm{d}s, \\ \rho_s = \mathrm{Law}(X_s), s \ge 0. \end{cases}$$

Notice

- 1. Past laws dependence,
- 2. Singular interaction in ∇K .

(well posedness with L^p spaces (T. '20) in \mathbb{R}^2)

Particle system

For $N\geq 2$ it reads

$$\begin{split} X^{i,N}_t &= X^{i,N}_0 + \sqrt{2} W^i_t + \chi \int_0^t \nabla b^{c_0,\theta,\lambda}_s(s,X^{i,N}_s) \mathrm{d}s \\ &+ \frac{\chi}{N-1} \sum_{j \neq i} \int_0^t \int_0^s \nabla K^{\theta,\lambda}_{s-u}(X^{i,N}_s - X^{j,N}_u) \mathrm{d}u \mathrm{d}s. \end{split}$$

Notice

- 1. Non-Markovian system!
- 2. Singular interaction

$$\nabla K_t^{\theta,\lambda}(x) = -\frac{\theta}{8\pi t^2} e^{-\frac{\lambda}{\theta}t} e^{-\frac{\theta}{4t}|x|^2} x.$$

Particle system

For $N\geq 2$ it reads

$$\begin{split} X^{i,N}_t &= X^{i,N}_0 + \sqrt{2}W^i_t + \chi \int_0^t \nabla b^{c_0,\theta,\lambda}_s(s,X^{i,N}_s) \mathrm{d}s \\ &+ \frac{\chi}{N-1} \sum_{j \neq i} \int_0^t \int_0^s \nabla K^{\theta,\lambda}_{s-u}(X^{i,N}_s - X^{j,N}_u) \mathrm{d}u \mathrm{d}s. \end{split}$$

Notice

- 1. Non-Markovian system!
- 2. Singular interaction

$$\nabla K_t^{\theta,\lambda}(x) = -\frac{\theta}{8\pi t^2} e^{-\frac{\lambda}{\theta}t} e^{-\frac{\theta}{4t}|x|^2} x.$$

Suppose $X_t^{1,N} = X_t^{2,N}$ at some time t > 0. We expect

$$|X_t^{1,N} - X_s^{2,N}| = |X_t^{2,N} - X_s^{2,N}| \simeq (t-s)^{\alpha},$$

for some $\alpha \in (0,1)$. Interaction in the drift of $X^{1,N}$ of order

$$\int_0^t |\nabla K_{t-s}^{\theta,\lambda}(X_t^{1,N}-X_s^{2,N})| \mathrm{d}s \simeq \int_0^t \frac{(t-s)^\alpha}{(t-s)^2} e^{-\frac{\theta}{4(t-s)}(t-s)^{2\alpha}} e^{-\frac{\lambda}{\theta}(t-s)} \mathrm{d}s.$$

This diverges iff $\alpha \geq 1/2$.

As we precisely expect the paths to be Hölder $(\frac{1}{2})^-$ (as BM), it is not clear whether the drift is well-defined or not, and we are really **around the critical exponent**.

Suppose $X_t^{1,N} = X_t^{2,N}$ at some time t > 0. We expect

$$|X_t^{1,N} - X_s^{2,N}| = |X_t^{2,N} - X_s^{2,N}| \simeq (t-s)^{\alpha},$$

for some $\alpha \in (0, 1)$.

Interaction in the drift of $X^{1,N}$ of order

$$\int_0^t |\nabla K_{t-s}^{\theta,\lambda}(X_t^{1,N}-X_s^{2,N})| \mathrm{d}s \simeq \int_0^t \frac{(t-s)^\alpha}{(t-s)^2} e^{-\frac{\theta}{4(t-s)}(t-s)^{2\alpha}} e^{-\frac{\lambda}{\theta}(t-s)} \mathrm{d}s.$$

This diverges iff $\alpha \geq 1/2$.

As we precisely expect the paths to be Hölder $(\frac{1}{2})^-$ (as BM), it is not clear whether the drift is well-defined or not, and we are really **around the critical exponent**.

Suppose $X_t^{1,N} = X_t^{2,N}$ at some time t > 0. We expect

$$|X_t^{1,N} - X_s^{2,N}| = |X_t^{2,N} - X_s^{2,N}| \simeq (t-s)^{\alpha},$$

for some $\alpha \in (0,1).$ Interaction in the drift of $X^{1,N}$ of order

$$\int_0^t |\nabla K_{t-s}^{\theta,\lambda}(X_t^{1,N} - X_s^{2,N})| \mathrm{d}s \simeq \int_0^t \frac{(t-s)^\alpha}{(t-s)^2} e^{-\frac{\theta}{4(t-s)}(t-s)^{2\alpha}} e^{-\frac{\lambda}{\theta}(t-s)} \mathrm{d}s.$$

This diverges iff $\alpha \geq 1/2$.

As we precisely expect the paths to be Hölder $(\frac{1}{2})^-$ (as BM), it is not clear whether the drift is well-defined or not, and we are really **around the critical exponent**.

Suppose $X_t^{1,N} = X_t^{2,N}$ at some time t > 0. We expect

$$|X_t^{1,N} - X_s^{2,N}| = |X_t^{2,N} - X_s^{2,N}| \simeq (t-s)^{\alpha},$$

for some $\alpha \in (0,1).$ Interaction in the drift of $X^{1,N}$ of order

$$\int_0^t |\nabla K_{t-s}^{\theta,\lambda}(X_t^{1,N} - X_s^{2,N})| \mathrm{d}s \simeq \int_0^t \frac{(t-s)^\alpha}{(t-s)^2} e^{-\frac{\theta}{4(t-s)}(t-s)^{2\alpha}} e^{-\frac{\lambda}{\theta}(t-s)} \mathrm{d}s.$$

This diverges iff $\alpha \geq 1/2$.

As we precisely expect the paths to be $H\ddot{o}lder(\frac{1}{2})^-$ (as BM), it is not clear whether the drift is well-defined or not, and we are really around the critical exponent.

How singular?

Roughly speaking, if for some $R \in \mathbb{R}^2$ we have

$$X_t^{1,N} = X_s^{2,N} + R, \quad s \in [t-1,t]$$

then the corresponding interaction (in the drift of $X^{1,N}$) looks like, e.g. when $\lambda = 0$,

$$\begin{split} \int_{t-1}^{t} \nabla K_{t-s}^{\theta,\lambda} (X_{t}^{1,N} - X_{s}^{2,N}) \mathrm{d}s &= -\frac{\theta R}{8\pi} \int_{t-1}^{t} \frac{1}{(t-s)^{2}} e^{-\frac{\theta}{4(t-s)}|R|^{2}} \mathrm{d}s \\ &= -\frac{R}{2\pi |R|^{2}} e^{-\frac{\theta |R|^{2}}{4}} \overset{|R| \to 0}{\sim} -\frac{R}{2\pi |R|^{2}}. \end{split}$$

(Of course, this is an exaggerated situation.)

Related works

Doubly parabolic case

- in 1d: $\nabla K_t^{1d}(x) \sim \frac{x}{t^{3/2}} e^{-\frac{x^2}{4t}}$.
 - Propagation of chaos in Jabir-Talay-T. ('18) using Girsanov transforms (impossible here as particles should collide, higher dimension \rightarrow more singularity).
- **in any** *d*: two particle system with mollified interaction by Stevens ('01).

► Parabolic-elliptic case in 2*d*:

$$dX_t^i = \sqrt{2}dW_t^i + \frac{\chi}{N}\nabla K(X_t^i - X_t^j)dt$$

where $\nabla K(x) = -\frac{x}{2\pi |x|^2}$. Well posedness and convergence along subsequences $\chi \leq 2\pi$ in Fournier-Jourdain ('17), $\chi \leq 8\pi$ Tardy ('21).

Navier Stokes vortex 2d: $\nabla K = \frac{(-x_2,x_1)}{|x|^2}$. Osada('85,'87) Fournier-Hauray-Mischler('14).

Related works

Doubly parabolic case

- in 1d: $\nabla K_t^{1d}(x) \sim \frac{x}{t^{3/2}} e^{-\frac{x^2}{4t}}$.
 - Propagation of chaos in Jabir-Talay-T. ('18) using Girsanov transforms (impossible here as particles should collide, higher dimension \rightarrow more singularity).
- **in any** *d*: two particle system with mollified interaction by Stevens ('01).
- Parabolic-elliptic case in 2d:

$$dX_t^i = \sqrt{2}dW_t^i + \frac{\chi}{N}\nabla K(X_t^i - X_t^j)dt$$

where $\nabla K(x) = -\frac{x}{2\pi |x|^2}$. Well posedness and convergence along subsequences $\chi \leq 2\pi$ in Fournier-Jourdain ('17), $\chi \leq 8\pi$ Tardy ('21).

▶ Navier Stokes vortex 2d: $\nabla K = \frac{(-x_2, x_1)}{|x|^2}$. Osada('85,'87) Fournier-Hauray-Mischler('14). Motivations

Particle approximation

Main Result

Strategy of proof

"Markovianization" argument

Main result

We set
$$\mu^N := \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^{i,N})_{t\geq 0}} \in \mathcal{P}(C([0,\infty),\mathbb{R}^2))$$
 a.s. and, for each $t\geq 0$, $\mu^N_t := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^{i,N}} \in \mathcal{P}(\mathbb{R}^2)$ a.s.

Theorem

Let $\chi > 0$, $\lambda \ge 0$ and $\theta > 0$. Consider $\rho_0 \in \mathcal{P}(\mathbb{R}^2)$ and some nonnegative $c_0 \in L^p(\mathbb{R}^2)$, for some p > 2. Consider, for each $N \ge 2$, some exchangeable initial condition $(X_0^{i,N})_{i=1,...,N}$. There exists $\chi^*_{\theta,p} > 0$ such that if $\chi < \chi^*_{\theta,p}$, then, we have (i) For each $N \ge 2$, there exists an exchangeable N-Keller-Segen particle system.

(ii) If $\mu_0^N \xrightarrow{\mathbb{P}} \rho_0$ as $N \to \infty$, then the family $(\mu^N)_{N\geq 2}$ is **tight** in $\mathcal{P}(C([0,\infty),\mathbb{R}^2))$ and any limit point μ of $(\mu^N)_{N\geq 2}$ solves the MP related to the meanfield SDE with initial law ρ_0 .

Main result

We set
$$\mu^N := \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^{i,N})_{t\geq 0}} \in \mathcal{P}(C([0,\infty),\mathbb{R}^2))$$
 a.s. and, for each $t\geq 0$, $\mu^N_t := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^{i,N}} \in \mathcal{P}(\mathbb{R}^2)$ a.s.

Theorem

Let $\chi > 0$, $\lambda \ge 0$ and $\theta > 0$. Consider $\rho_0 \in \mathcal{P}(\mathbb{R}^2)$ and some nonnegative $c_0 \in L^p(\mathbb{R}^2)$, for some p > 2. Consider, for each $N \ge 2$, some exchangeable initial condition $(X_0^{i,N})_{i=1,...,N}$. There exists $\chi^*_{\theta,p} > 0$ such that if $\chi < \chi^*_{\theta,p}$, then, we have (i) For each $N \ge 2$, there exists an exchangeable N-Keller-Segel particle system.

(ii) If $\mu_0^N \stackrel{\mathbb{P}}{\to} \rho_0$ as $N \to \infty$, then the family $(\mu^N)_{N\geq 2}$ is tight in $\mathcal{P}(C([0,\infty),\mathbb{R}^2))$ and any limit point μ of $(\mu^N)_{N\geq 2}$ solves the MP related to the meanfield SDE with initial law ρ_0 .

The particular form is quite complicated (but explicit), here are some numerical explorations:

$$\begin{array}{l} \cdot \ \chi_{\theta=1}^* = 1.39, \\ \cdot \ \chi_{\theta=0.00001}^* = 3.28, \\ \cdot \ \chi_{\theta}^* \overset{\theta \to \infty}{\sim} \frac{1.65}{\sqrt{\theta}}. \end{array}$$

(The last point is troubling, as at least when $c_0 \equiv 0$ one can find for any χ a θ such that the limit is well posed.)

Some comments

• The only information about the limit for all $t \ge 0$,

 $\int_0^t \int_{\mathbb{R}^2} \int_0^s \int_{\mathbb{R}^2} (K_{s-u}^{\theta,\lambda}(x-y) + |\nabla K_{s-u}^{\theta,\lambda}(x-y)|) \rho_u(\mathrm{d} y) \mathrm{d} u \rho_s(\mathrm{d} x) \mathrm{d} s < \infty,$

 \rightarrow very weak, measure valued solution to (KS) (slightly different then the ones in Biler et al and Corrias et al).

- Difficult to show uniqueness to (KS) of such solutions (or propagation of regularity) → not a propagation of chaos result (does not coincide with the MP in more regular spaces, see T. (2020)).
- First result of this kind (non-smooth PS) for the doubly parabolic (KS).
- **>** Threshold small, but not too bad when θ small or of order 1.
- Initial condition only exchangeable particles (can be a dirac); initial concentration c₀ only in L²⁺(ℝ²)

Some comments

• The only information about the limit for all $t \ge 0$,

 $\int_0^t \int_{\mathbb{R}^2} \int_0^s \int_{\mathbb{R}^2} (K_{s-u}^{\theta,\lambda}(x-y) + |\nabla K_{s-u}^{\theta,\lambda}(x-y)|) \rho_u(\mathrm{d} y) \mathrm{d} u \rho_s(\mathrm{d} x) \mathrm{d} s < \infty,$

 \rightarrow very weak, measure valued solution to (KS) (slightly different then the ones in Biler et al and Corrias et al).

- Difficult to show uniqueness to (KS) of such solutions (or propagation of regularity) → not a propagation of chaos result (does not coincide with the MP in more regular spaces, see T. (2020)).
- First result of this kind (non-smooth PS) for the doubly parabolic (KS).
- **•** Threshold small, but not too bad when θ small or of order 1.
- Initial condition only exchangeable particles (can be a dirac); initial concentration c₀ only in L²⁺(ℝ²)

Some comments

• The only information about the limit for all $t \ge 0$,

 $\int_0^t \int_{\mathbb{R}^2} \int_0^s \int_{\mathbb{R}^2} (K_{s-u}^{\theta,\lambda}(x-y) + |\nabla K_{s-u}^{\theta,\lambda}(x-y)|) \rho_u(\mathrm{d} y) \mathrm{d} u \rho_s(\mathrm{d} x) \mathrm{d} s < \infty,$

 \rightarrow very weak, measure valued solution to (KS) (slightly different then the ones in Biler et al and Corrias et al).

- Difficult to show uniqueness to (KS) of such solutions (or propagation of regularity) → not a propagation of chaos result (does not coincide with the MP in more regular spaces, see T. (2020)).
- First result of this kind (non-smooth PS) for the doubly parabolic (KS).
- Threshold small, but not too bad when θ small or of order 1.
- Initial condition only exchangeable particles (can be a dirac); initial concentration c₀ only in L^{2⁺} (R²)

Motivations

Particle approximation

Main Result

Strategy of proof

"Markovianization" argument

Strategy $(\theta = 1, \lambda = 0, c_0 \equiv 0)$

• Remember that
$$\nabla K_t(x) = \nabla g_t(x) \sim -\frac{x}{t^2} e^{\frac{|x|^2}{4t}}$$

Control a priori the 2-by-2 interaction. Set

$$D_s^{1,2,N} := \int_0^s \nabla K_{s-u} (X_s^{1,N} - X_u^{2,N}) \mathsf{d} u,$$

we prove there exists $\gamma \in (\frac{3}{2},2)$ s.t.

$$\sup_{N\geq 2} \mathbb{E}\Big[\int_0^t |D^{1,2,N}_s|^{2(\gamma-1)} \mathrm{d}s\Big] < \infty \qquad \text{for all } t>0.$$

Then, you can do this on a $\varepsilon\text{-regularised}$ PS and get tightness, pass to the limit....

Key idea

We want to perform a "Markovianizartion" of the interaction. Informally

$$|D_t^{1,2,N}| \sim \frac{1}{|X_t^{1,N} - X_t^{2,N}|}$$

• Rigorously, we will prove that for χ small,

$$\mathbb{E}\Big[\int_0^t |D_s^{1,2,N}|^{2(\gamma-1)} \mathrm{d}s\Big] \le C \mathbb{E}\Big[\int_0^t |X_s^{1,N} - X_s^{2,N}|^{-2(\gamma-1)} \mathrm{d}s\Big].$$

We bound the **path dependent** interaction by a **current time dependent** one.

Key idea

We want to perform a "Markovianizartion" of the interaction. Informally

$$|D_t^{1,2,N}| \sim \frac{1}{|X_t^{1,N} - X_t^{2,N}|}$$

• Rigorously, we will prove that for χ small,

$$\mathbb{E}\Big[\int_0^t |D_s^{1,2,N}|^{2(\gamma-1)} \mathrm{d}s\Big] \le C \mathbb{E}\Big[\int_0^t |X_s^{1,N} - X_s^{2,N}|^{-2(\gamma-1)} \mathrm{d}s\Big].$$

We bound the **path dependent** interaction by a **current time dependent** one.

Now, as the interaction is of order $\frac{1}{|x|}$, we apply the idea of Osada and Fournier-Jourdain to treat it.

For $\alpha \in (0,1)$ applying Ito and using exchangeability :

$$\frac{d}{dt}\mathbb{E}|X_t^1 - X_t^2|^{\alpha} \ge C_{\alpha}\mathbb{E}|X_t^1 - X_t^2|^{\alpha-2} - \frac{\chi}{N}C_{\alpha}\sum_{j=2}^N \mathbb{E}[|X_t^1 - X_t^2|^{\alpha-1}|D_t^{1,j}|]$$

Using Holder, exchangeability and the Markovianization

$$\frac{d}{dt}\mathbb{E}|X_t^1 - X_t^2|^{\alpha} \ge (C_{\alpha} - C\chi C_{\alpha})\mathbb{E}|X_t^1 - X_t^2|^{\alpha - 2}$$

Choose $\alpha = 4 - 2\gamma \in (0, 1)$, suppose χ small and rearrange

$$\mathbb{E}|X_t^1 - X_t^2|^{2(1-\gamma)} \le A_t.$$

Motivations

Particle approximation

Main Result

Strategy of proof

"Markovianization" argument

- A suitable Itô formula for the path dependent interaction,
- > Apply it to a **convenient function**,
- A key functional inequality.

Time-space Itô

Denote
$$R_{t,s}^{i,j} := X_t^i - X_s^j$$

Let $F: \mathbb{R}_+ \times \mathbb{R}^2 \to \mathbb{R}$ be of class $C_b^{1,2}(\mathbb{R}_+ \times \mathbb{R}^2)$. For all t > 0,

$$\begin{split} \mathbb{E}\Big[\int_0^t F(t-s,R_{t,s}^{1,2})ds\Big] &= \mathbb{E}\Big[\int_0^t F(0,R_{s,s}^{1,2})ds\Big] \\ &+ \mathbb{E}\Big[\int_0^t \int_0^u (\partial_t F + \Delta F)(u-s,R_{u,s}^{1,2})ds \ du\Big] \\ &+ \frac{\chi}{N-1}\sum_{j=2}^N \mathbb{E}\Big[\int_0^t \Big(\int_0^u \nabla F(u-s,R_{u,s}^{1,2})ds\Big) \cdot D_u^{1,j}du\Big]. \end{split}$$

(Ito between s and t on X^1 with X_s^2 fixed + integrate in s + Fubbini.)

A good F

Notice that

$$|\nabla g_t(x)| \le \frac{C_\beta}{(t+\beta|x|^2)^{\frac{3}{2}}}.$$

Choose

$$F(t,x) = -(t+\beta|x|^2)^{1-\gamma}, \quad \gamma \in (\frac{3}{2},2).$$

So that

$$(\partial_t F + \Delta F)(t, x) \ge C_\beta (t + \beta |x|^2)^{-\gamma}, \text{ for } \beta \text{ small},$$

 $\quad \text{and} \quad$

$$|\nabla F| \le C(t+\beta|x|^2)^{\frac{1}{2}-\gamma}.$$

Key functional inequality

Let b>a>0 and t>0. For any measurable function $f:[0,t]\to \mathbb{R}_+,$ we have

$$\int_0^t \frac{1}{(s+f(s))^{1+a}} ds \le \kappa(a,b) \Big(\int_0^t \frac{1}{(s+f(s))^{1+b}} ds \Big)^{\frac{a}{b}},$$

where

$$\kappa(a,b) = \frac{a+1}{a} \left[\frac{b}{b+1}\right]^{\frac{a}{b}}.$$

(The constant $\kappa(a, b)$ is optimal (for any value of t > 0), as one can show by choosing $f(s) = (\varepsilon - s)_+$ and by letting $\varepsilon \to 0$.)

Board... + Conf!!