
FUNCTIONAL CONVERGENCE OF BERRY’S NODAL
LENGTHS

Anna Vidotto

University of Naples “Federico II”

joint work with Massimo Notarnicola and Giovanni Peccati

June 8th 2023, Random Nodal Domains, Rennes



BERRY’S RANDOM WAVES (1977)

I Berry’s planar random wave, written

BE =
{
BE(x) : x ∈ R2} , E > 0

is the unique planar centred, isotropic Gaussian field such that

∆BE + 4π2E ·BE = 0 a.s. where ∆ =
∂2

∂x21
+

∂2

∂x22
.

I Equivalently,

E [BE(x)BE(y)] := J0(2π
√
E‖x− y‖)

I Write b =
{
b(x) : x ∈ R2} for B(4π2)−1



BERRY’S RANDOM WAVES (1977)

I Think of b as a “canonical” Gaussian Laplace eigenfunction on R2,
emerging e.g. as a universal local scaling limit for arithmetic and
monochromatic RWs, random spherical harmonics ...
See: Marinucci & Rossi (2016), Canzani and Hanin (2021), Dierickx,
Nourdin, Peccati & Rossi (2023).



NODAL LENGTHS

I B−1
E (0) := {x ∈ R2 : BE(x) = 0} smooth curves

I LE(Q) := length
(
B−1
E (0) ∩Q

)
rectangle Q ⊂ R2



GOAL

To fix ideas, letQ be the collection of all rectangles Q ⊂ [0, 1]2.

I Forevery E ≥ 1 and Q ∈ Q, consider LE(Q).

I Task 1: describe the joint fluctuations, as E →∞, of the random
variables LE(Q), Q ∈ Q.

I Task 2: describe the functional fluctuations, as E →∞, of the random
function

(s1, s2) 7→ LE(s1, s2) := LE([0, s1]× [0, s2]) s1, s2 ∈ [0, 1]



VARIANCE ESTIMATES AND CLT

I Berry (J. Phys. A, 2002) – as E →∞:

E [LE(Q)] =
π areaQ√

2

√
E Var (LE(Q)) ∼ areaQ

512π
logE

I Such an estimate follows from an analytical cancellation in Kac-Rice
formulae: the natural guess for the order of the variance is

√
E.

I Nourdin, Peccati & Rossi (CMP, 2019):√
512π

logE

(
LE(Q)− ELE(Q)

) d−→ N (0, area(Q)),



JOINT FLUCTUATIONS – PECCATI & V. (2020)

Define:

L̃E(Q) :=

√
512π

logE
{LE(Q)− E [LE(Q)]} , t ≥ 1 ,

and similarly
{

L̃E(s1, s2) : (s1, s2) ∈ [0, 1]2
}

.

1. For all Q1, . . . , Qd ∈ Q, as E →∞,
(
L̃E(Q1), . . . , L̃E(Qd)

)
converges

to a centered Gaussian vector with covariance function
Σ(i, j) = area(Qi ∩Qj).

2. As E →∞, the random field
{

L̃E(s1, s2) : (s1, s2) ∈ [0, 1]2
}

converges
in the f.d.d.-sense to a standard Wiener sheet.



WIENER SHEET

A standard Wiener sheet
{
W(s), s ∈ [0, 1]2

}
is a centred Gaussian process

with covariance

E [W(s1, s2)W(t1, t2)] = (s1 ∧ t1)(s2 ∧ t2)

A realization of a Wiener sheet, pic by George Lowther



FUNCTIONAL FLUCTUATIONS

Question: Does
{

L̃E(s1, s2)
}

converge to a Wiener sheet as a random function

(i.e. in D2, the Skorohod space of cadlag mappings on [0, 1]2)?

Lemma. {X,Xn : n ≥ 1} ⊂ D2, Xn = Un + Vn +Wn

(a) as n→∞, Un converges weakly to X in D2,

(b) as n→∞, Vn converges weakly to zero in D2,

(c) for every ε > 0, lim
n−→∞

P

{
sup

t∈[0,1]2
|Wn(t)| > ε

}
= 0,

=⇒ Xn converges weakly to X in D2.



FUNCTIONAL FLUCTUATIONS

I L̃E [q] := proj(L̃E |Cq), Cq :=the qth Wiener chaos associated with b.

I Then,

L̃E = L̃E [2] + L̃E [4] +RE , where RE :=
∑
q≥3

L̃E [2q] ,

Strategy: applying the previous lemma to

(Xn, Un, Vn,Wn) = (L̃E , L̃E [4], L̃E [2], RE)

(I) L̃E [4] converges weakly to a standard Wiener sheet (OK – easy);

(II) L̃E [2] converges weakly to zero;

(III) the residual term RE converges uniformly to zero in probability.



STEP (II) – NOTARNICOLA, PECCATI & V. (2023)

As E →∞,

Cov (LE [2](Q1),LE [2](Q2)) =
λ(∂Q1, ∂Q2)

16π2
√
E

+ o

(
1√
E

)
,

where
λ(∂Q1, ∂Q2) =

ˆ
∂Q1∩∂Q2

〈n1(x),n2(x)〉 dH1(x).

indicates the signed length of ∂Q1 ∩ ∂Q2.



STEP (II) – NOTARNICOLA, PECCATI & V. (2023)

I As E →∞,

4π E1/4
(
LE [2](Q1), ...,LE [2](Qd)

)
d−→ Nd(0,Σ)

Σ(i, j) = λ(∂Qi, ∂Qj)

I Var
(
L (b;R ·Q)[2]

)
=
R · length(∂Q)

8π
+ o(R) R = 2π

√
E



STEP (II) – A CONNECTION WITH BUCKLEY & SODIN (2017)

I Gaussian entire function: {ζn} i.i.d. complex std Gaussian

z 7→ f(z) =

∞∑
n=0

ζn
zn

n!
z ∈ C

I fR(z) := f(Rz) nR(Q) := #
{
f−1
R (0) ∩Q

}

I Var (nR(Q)) = c0R · length (∂Q) + o(R) R→∞

I 1√
c0R

((nR(Q1)− E [nR(Q1)]), ..., (nR(Qd)− E [nR(Qd)]))
d−→ Nd(0,Σ)



STEP (II) – COMMENTS AND CONCLUSION

I hyperuniformity: a variance that scales as the length of the boundary of
R ·Q, rather than as area(R ·Q) � R2.

I total disorder process:
I the linear span of the processes LE(Q)[2] and nE(Q) contains an

uncountable collection of i.i.d. centered Gaussian random variables with
unit variance (e.g. LE(s)[2]).

I physics, random matrix theory.

I As E →∞, the field
{

L̃E(s)[2] : (s) ∈ [0, 1]2
}

weakly converges to zero
in D2 (tightness + estimates for sup of stationary Gaussian fields).



STEP (III)[PARTIAL] – NOTARNICOLA, PECCATI & V. (2023)

Fix K ≥ 1, we define the partition ΠK of [0, 1]2 formed by the collection of
squares of side length 2−K :

I For every i = (i1, i2) ∈
{

0, . . . , 2K
}2, we define the partition points

pi(K,K) := (pi1(K), pi2(K)) ∈ [0, 1]2 by

pi1(K) :=
i1
2K

, pi2(K) :=
i2
2K

, i1, i2 = 0, 1, . . . , 2K .

I For s = (s1, s2) ∈ [0, 1]2, we write iK,K(s) = (i1,K(s1), i2,K(s2)) for the
vector verifying

pi1,K(s1) ≤ s1 < pi1,K(s1)+1 pi2,K(s2) ≤ s2 < pi2,K(s2)+1

that is, the vector iK,K(s) is such that piK,K(s)(K,K) is the closest
partition point to s on the left.



STEP (III)[PARTIAL] – NOTARNICOLA, PECCATI & V. (2023)

Discretized nodal length:

LK
E (s1, s2) := LE

(
[0, pi1,K(s1)(K)]× [0, pi2,K(s2)(K)]

)
Take {K(E) : E > 0} numerical sequence s.t. K(E)→∞ and
K(E) = o((logE)1/10) as E →∞. Then,

1. for every ε > 0, P

{
sup

s∈[0,1]2

∣∣∣RK(E)
E (s)

∣∣∣ > ε

}
−→ 0

2. the normalized process
{

L̃ K(E)
E (s)

}
converges weakly to a standard

Wiener sheet W on [0, 1]2 in the Skorohod space D2



COMMENTS

Main difficulty for directly dealing with the residual term RE :

I The expectation of LE(s) (order
√
E/ logE) grows much faster than the

normalizing factor logE.

I Planar chaining argument with RE requires

∣∣E [LE(t)]− E
[
LE(piK,K(t)(K,K))

]∣∣ ≈ √
E√

logE

1

2K

to be bounded.

I This requirement is incompatible with the constrained choice
K(E) = o((logE)1/10), as is needed in the above statements.



Thank you!


