Second week

 Monday 2Tuesday 3Wednesday 4Thursday 5Friday 6
9.00-10.30L1L2L3L1L2
10.30-11.00CBCBCBCBCB
11.00-12.30L3L1L2L3ES2 (ends at 12.00)
      
14.30-15.30S1 / T1 (starts at 14.45)ES3ES2ES3 
15.45-16.30S2 / T2S5 / T5 S8 / T8 
 CBCB CB 
17.00-17.45S3 / T3S6 / T6 S9 / T9 
18.00-18.45S4 / T4S7 / T7   

Rooms (See the practical information for more precision on the location)
L,ES,S: Amphi E
T: Amphi D

CB = coffee break (in front of Amphi E/D)

​L = Lecture (Amphi E)
L1 = Anne Moreau
L2 = Mircea Mustață
L3 = Enrica Floris

ES = exercise and/or QA session (Amphi E)
ES2 = Hyunsuk Kim
ES3 = Enrica Floris

S/T= short talk (S: Amphi E, T: Amphi D) 30' + 10' of questions

Short talks

Please follow this link in order to see the corresponding abstracts

Toric geometry (S1-S4)​

  • S1: Counting plane curves with δ nodes and a triple point (Anantadulal Paul)
  • S2: A new proof of monomialisation from 3-folds to surfaces (Yueting Jiang)
  • S3: Seminormal toric varieties (François Bernard)
  • S4: Toric reduction of singularities for Newton non-degenerate p-forms (Bilal Balo)

Hodge theory (T1-T4)​

  • T1: Categorification with Lattice Homology (Gergő Schefler)
  • T2: Hodge modules on toric varieties (Hyunsuk Kim)
  • T3: Stratification by the poles of the complex zeta function of µ-constant plane branch deformations (Roger Gómez López)
  • T4: Bernstein-Sato polynomials of hyperplane arrangements in three variables (Daniel Bath)

Singular varieties (S5-S7)​

  • S5: Classification of T-singular surfaces with small K2/Pg (Vincente Monreal)
  • S6: Multiplicative Chow-Kunneth decomposition for nested Hilbert-Schemes (Inder Kaur)
  • S7: Sur les relations Wheel pour l’algèbre de Hall en K-théorie d’une variété de matrices commutantes. (Danil Gubarevich)

Local algebraic aspects (T5-T7)​

  • T5: Cohomologies of p-group covers (Jędrzej Garnek)
  • T6: Variation of the local fundamental group on a complex normal space (S. R. Gurjar)
  • T7: Motivic local density in non-Archimedean geometry (Sidonie Ratajczak)

Resolution of singularities (S8-S9)​

  • S8: The Zariski Lipman conjecture (Paul Barajas)
  • S9: On the Nash Problem over 3-fold Terminal Singularities (Keng-Hung Steven Lin)

Further subjects (T8-T9)​

  • T8: Bergman spaces on algebraic curves (Alexander A. Kubasch)
  • T9: An algebraical geometrical and topological approach to 2-dimensional Jacobian Conjecture and a proof of the complex conjecture until degree 104 (Thuy Nguyen)

First week

 Monday 26Tuesday 27Wednesday 28Thursday 29Friday 30
Room (*)Amphi EAmphi EAmphi DAmphi EAmphi E
9.00-10.00 L2L3L3L1
10.00-10.30CB (10.15: SO)CBCBCBCB
10.30-11.30L1L3L4L2L2
11.35-12.35ES1L4L1L1L3
      
      
14.30-15.30L4ES2ES1L4 
15.35-16.35ES4ES3ES3ES4 
16.35-17.00CB CBCB 
17.00-18.00L218.00: SD ES2 

(*) See the practical information for more precision on the location

CB=coffee break (in front of Amphi E/D)

SO=school opening (in Amphi E)

SD=soft drinks (in the Club des professeurs, close to the lecture rooms)

L=Lecture
L1 = Hussein Mourtada
L2 = Tamara Servi
L3 = Lorenzo Fantini
L4 = Shihoko Ishii

ES = exercise and/or QA session
ES1 = Büşra Karadeniz Şen
ES2 = Tamara Servi
ES3 = Lorenzo Fantini
ES4 = Shihoko Ishii